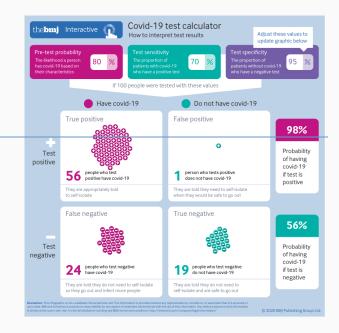
Mathematical Statistics II

STA2212H S LEC9101

Week 5

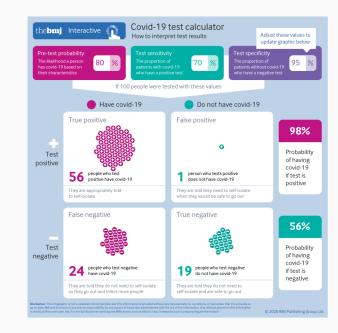
February 10 2021

Start recording!



Online calculator

Link to Calculator



t-test • Confidence intervals – approximate and exact; relationship to testing; re Nr.v. optimal confidence intervals; connection to size and power Wald test tse.Z • Likelihood-based confidence intervals and regions • pure significance tests; simple and composite H_0 goodness-of-fit tests $\widehat{F}_n(t) = \sum_{i=1}^n \mathbb{1}\{X_i \leq t\}$ empirical cumulative distribution function introduction to multiple testing Mathematical Statistics II February 10 2021

Today

- 1. Friday Feb 12
- 2. hypothesis vs significance testing 🤶
- 3. diagnostic testing 🖑
- 4. Benjamini-Hochberg method 🗲
- February 25-26 Workshop
- Feb 22 3.00 pm EST Joshua Speagle
 "Mapping the Milky Way in the Age of Gaia" Link Data Science ARES
- Feb 25 1.00 pm EST Dylan Small CANSSI National Seminar Series (Journal Club; Slack)

Mathematical Statistics II February 10 2021

Toronto Data Workshop on Reproducibility

A two-day workshop focusing on reproducibility in data-centric analysis. Thursday and Friday 25-26 February 2021. Free and hosted via Zoom. All welcome! Register <u>here</u>.

HW 4 updated

Start Recording

- 1. Friday Feb 12
- 2. hypothesis vs significance testing
- 3. diagnostic testing
- 4. Benjamini-Hochberg method
 - February 25-26 Workshop
- Feb 22 3.00 pm EST Joshua Speagle
 "Mapping the Milky Way in the Age of Gaia" Link Data Science ARES

Reading week: no office hours

• Feb 25 1.00 pm EST Dylan Small CANSSI National Seminar Series (Journal Club; Slack)

Hu 5 posted Fri 10-12 due Feb 25 Toronto Data Workshop on Reproducibility

10-12

A two-day workshop focusing on reproducibility in data-centric analysis. Thursday and Friday 25-26 February 2021. Free and hosted via Zoom. All welcome! Register <u>here</u>.

- Hypothesis tests typically means:
- H_0, H_1 critical/rejection region $R \subset X$, sample space $A \subseteq X \subseteq X \subseteq X \subseteq X$ level α , power 1β f = 4 ever; f = 2 ever of f = 0• conclusion: "reject H_0 at level α " or "do not reject H_0 at level α " $X = 3 \subseteq t(\alpha) \in \mathbb{I}$? planning: maximize power for some relevant alternative

- Hypothesis tests typically means:
 - *H*₀, *H*₁
 - critical/rejection region $R \subset \mathcal{X}$,
 - level α , power 1 β
 - conclusion: "reject H_0 at level α " or "do not reject H_0 at level α

"reject/not"

• planning: maximize power for some relevant alternative

minimize type II error

- Significance tests typically means: * p-value is ... /
 - H_o,
 - test statistic T
 - observed value t^{obs},
 - p-value $p^{obs} = \Pr(T \ge t^{obs}; H_o)$
 - · alternative hypothesis often only implicit

Som large T points to alternative

- Hypothesis tests typically means:
 - *H*₀, *H*₁
 - critical/rejection region $R \subset \mathcal{X}$,
 - level α , power 1 β
 - conclusion: "reject H_0 at level α " or "do not reject H_0 at level α
 - planning: maximize power for some relevant alternative

minimize type II error

- Significance tests typically means:
 - *H*_o,
 - test statistic T
 - observed value t^{obs},
 - p-value $p^{obs} = Pr(T \ge t^{obs}; H_0)$
 - alternative hypothesis often only implicit

large T points to alternative

• overlap: sometimes (not recommended) $p^{obs} < 0.05 \rightarrow$ "evidence against H_0 " $\int sig \rightarrow hyp.t.$ "reject H_0 " • overlap: p^{obs} is the smallest α -level at which the corresponding hypothesis test would reject H_0 $\int hypt \xrightarrow{2} sj$. tert $p^{obs} = 0.03$ H.f.@d = 0.03at dge f Rm R f d = 0.05

• overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "

Kice: X-level

"reject Ho"

Rice, Exercise 9.11.5

 overlap: p^{obs} is the smallest α-level at which the corresponding hypothesis test would reject H_o
 Definition 10.11 in AoS

Mini-quiz – True or False?

1. The significance level of a statistical test is equal to the probability the the null hypothesis is true

- overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "
- overlap: p^{obs} is the smallest α -level at which the corresponding hypothesis test would reject H_{0} Definition 10.11 in AoS

```
Mini-quiz – True or False?
```

"reject Ho"

```
Rice, Exercise 9.11.5
```

- 1. The significance level of a statistical test is equal to the probability the the null hypothesis is true
- 2. If the significance level of a test is decreased, the power would be expected to increase F

 $p(n_{j}, H_{0}, H_{0}) = \frac{\beta \uparrow}{1.96} + \frac{1-\beta \downarrow}{1-\beta \downarrow} + \frac{1-\beta$ Mathematical Statistics II February 10 2021

- overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "
- overlap: p^{obs} is the smallest α -level at which the corresponding hypothesis test would reject H_0

Mini-quiz – True or False?

Definition 10.11 in AoS

"reject H_0 "

- 1. The significance level of a statistical test is equal to the probability the the null hypothesis is true
- 2. If the significance level of a test is decreased, the power would be expected to increase
- 3. If the test is rejected at level α , the probability that the null hypothesis is true equals α .

- overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "
- overlap: p^{obs} is the smallest α -level at which the corresponding hypothesis test would reject H_0 Def

Mini-quiz – True or False?

Definition 10.11 in AoS

"reject H_0 "

- 1. The significance level of a statistical test is equal to the probability the the null hypothesis is true
- 2. If the significance level of a test is decreased, the power would be expected to increase
- 3. If the test is rejected at level α , the probability that the null hypothesis is true equals α .
- > 4. The probability that the null hypothesis is falsely rejected is equal to the power of the test

- overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "
- overlap: p^{obs} is the smallest α-level at which the corresponding hypothesis test would reject H_o

Mini-quiz – True or False?

Definition 10.11 in AoS

"reject H_0 "

- 1. The significance level of a statistical test is equal to the probability the the null hypothesis is true
- 2. If the significance level of a test is decreased, the power would be expected to increase
- 3. If the test is rejected at level α , the probability that the null hypothesis is true equals α .
- 4. The probability that the null hypothesis is falsely rejected is equal to the power of the test
- 5. A type I error occurs when the test statistic falls in the rejection region of the test

- overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "
- overlap: p^{obs} is the smallest α -level at which the corresponding hypothesis test would reject H_{0}

Mini-quiz – True or False?

"reject H_0 "

Definition 10.11 in AoS

- 1. The significance level of a statistical test is equal to the probability the the null hypothesis is true
- 2. If the significance level of a test is decreased, the power would be expected to increase
- 3. If the test is rejected at level α , the probability that the null hypothesis is true equals α .
- 4. The probability that the null hypothesis is falsely rejected is equal to the power of the test
- 5. A type I error occurs when the test statistic falls in the rejection region of the test
- 6. A type II error is more serious than a type I error convention is to for a smallish) athematical Statistics II February 10 2021 Rebruary 10 2021 February 10 2021 Rebruary 10

- overlap: sometimes (not recommended) $p^{obs} < 0.05 \longrightarrow$ "evidence against H_0 "
- overlap: p^{obs} is the smallest α -level at which the corresponding hypothesis test would reject H_0 Defined

Mini-quiz – True or False?

"reject H_o"

Definition 10.11 in AoS

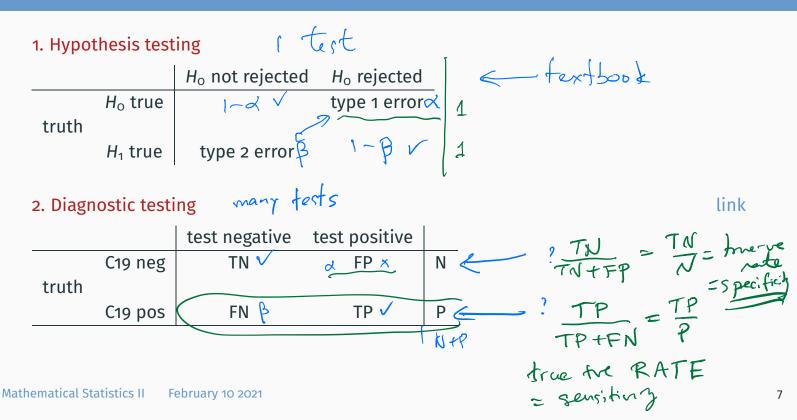
Rice, Exercise 9.11.5

- 1. The significance level of a statistical test is equal to the probability the the null hypothesis is true
- 2. If the significance level of a test is decreased, the power would be expected to increase
- 3. If the test is rejected at level α , the probability that the null hypothesis is true equals α .
- 4. The probability that the null hypothesis is falsely rejected is equal to the power of the test
- 5. A type I error occurs when the test statistic falls in the rejection region of the test
- 6. A type II error is more serious than a type I error

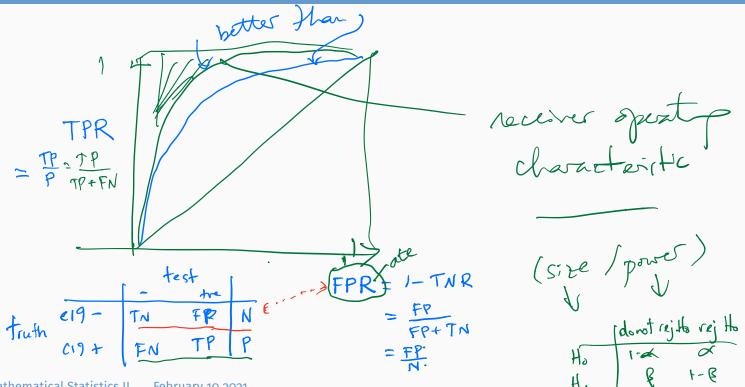
7. The power of a test is determined by the null distribution of the test statistic Mathematical Statistics II February 10 2021

Diagnostic testing

Wikipedia



Diagnostic testing and ROC



AoS Table 10.2

2. Diagnostic te	esting			link
	test negative	test positive		
C19 ne	eg TN	FP	N	€ 0 = f R=0
truth			\checkmark	= 0 + x = 0
C19 po	os FN	TP	Р <	
				V False disc.
3. Multiple test	ing			R proportia
	H _o not rejecte	d H_0 rejected	E	
H _o tru	le U	graf V ×	$m_o?$	$\left(\frac{1}{R}\right) = fD$ Kate
truth		whe		
H ₁ tru	e T≫	S	m_1 ?	
		V R	m - l	ots of the i=1,,w
	m-R			

Diagnostic testing

Tit's possible to have $FDR \leq 2 \simeq 0.1$ (when FWER needs a citoff of 10^{-3} , 10^{-4} (m) veported p-value is pobs a-kivel to control Progregication any false Hills FWER Ex Ex nod a critical value Za/2 = (.96 m=10) Z.005/2 to reject ~3.1 ??

• order the *p*-values $p_{(1)}, \ldots, p_{(m)}$

- order the *p*-values $p_{(1)}, \ldots, p_{(m)}$
- find i_{max} , the largest index for which

$$p_{(i)} \leq \frac{i}{m}q$$
 $p_{\xi} \leq \frac{i(.1)}{m}$

- order the *p*-values $p_{(1)}, \ldots, p_{(m)}$
- find i_{max} , the largest index for which

$$p_{(i)} \leq \frac{1}{m}q$$

• Let BH_q be the rule that rejects H_{oi} for $i \leq i_{max}$, not rejecting otherwise

- order the *p*-values $p_{(1)}, \ldots, p_{(m)}$
- find i_{max} , the largest index for which

- Let BH_q be the rule that rejects H_{oi} for $i \leq i_{max}$, not rejecting otherwise
- Theorem: If the *p*-values corresponding to valid null hypotheses are independent of each other, then

 $p_{(i)} \leq \frac{l}{m}q$

$$\frac{FDR(BH_q)}{m_0} = \frac{\pi_0 q}{q} \le q, \quad \text{where } \pi_0 = \frac{m_0}{m}$$

$$\pi_0 \text{ unknown but close to 1}$$

$$R_{\text{J}} = \frac{1}{2} \qquad props. \text{ from } p \text{ free rulls}$$

EH 15.2

Ho not reg

Ho true

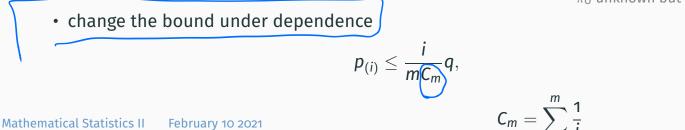
- order the *p*-values $p_{(1)}, \ldots, p_{(m)}$
- find i_{max} , the largest index for which

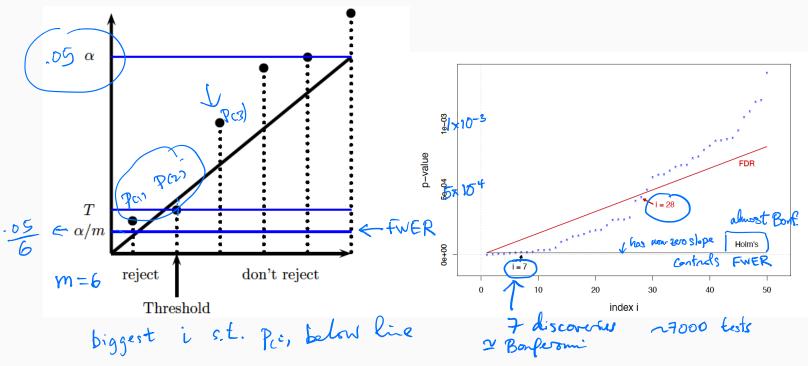
$$p_{(i)} \leq \frac{i}{m}q$$

- Let BH_q be the rule that rejects H_{oi} for $i \leq i_{max}$, not rejecting otherwise
- Theorem: If the *p*-values corresponding to valid null hypotheses are independent of each other, then

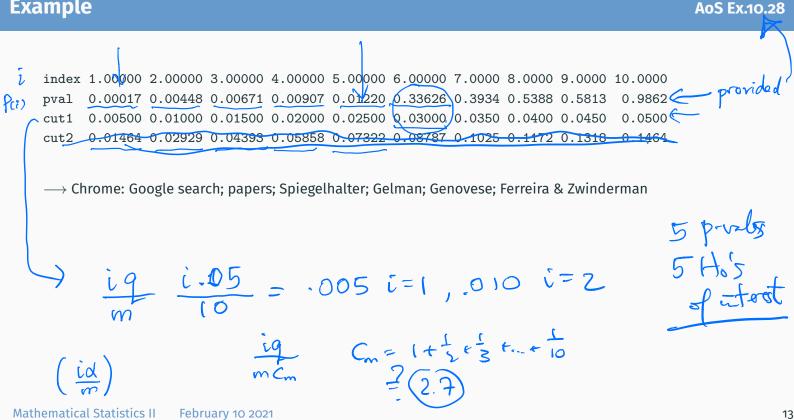
$$FDR(BH_q) = \pi_o q \leq q, \qquad ext{where } \pi_o = m_o/m$$

 $\pi_{\rm O}$ unknown but close to 1



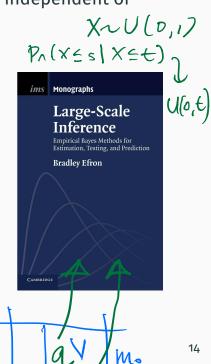


February 10 2021



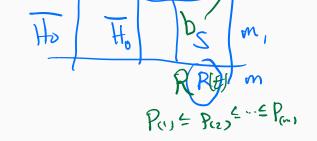
Theorem: If the *p*-values corresponding to valid null hypotheses are independent of each other, then χ_{\sim}

 $FDR(BH_q) = \pi_o q \leq q, \qquad ext{where } \pi_o = m_o/m$



to

Efron; FZ 2006



Gelman's blog

link