Mathematical Statistics II

STA2212H S LEC9101

Week 12

April 7 2021

Start recording!

Matt Henderson @matthen2 · Apr 3

a visual demonstration of the connection between the triangular numbers, and counting all possible pairs in a set

link

In the news

@DataGeekB

Story that has flown under the radar (and should not)

#MaternalMortality rate rose sharply in the US

AND rose most for Black women--who already sut

that are unacceptably high.

Source: cdc.gov/nchs/data/hest...

pic.twitter.com/k7lldBwjCh

2021-04-02, 10:18 PM

CDC Apr 4

Mathematical Statistics II April 7 2021

¹Statistically significant increase in rate from 2018 to 2019 (p < 0.05). NOTE: Race groups are single race. SOURCE: National Center for Health Statistics, National Vital Statistics System, Mortality,

... In the news

Table. Number of maternal deaths and maternal mortality rates, by race and Hispanic origin and age: United States, 2018 and 2019

		2018		2019	
Race and Hispanic origin and age		Number of deaths	Maternal mortality rate ¹	Number of deaths	Maternal mortality rate ¹
Total ² Under 25 25–39 40 and over		<mark>658</mark> 96 458 104	<mark>17.4</mark> 10.6 16.6 81.9	754 111 544 98	20.1 12.6 19.9 75.5
Non-Hispanic white ³ Under 25 25–39 40 and over		291 41 207	14.9 10.5 13.8 72.0	343 49 248 46	17.9 13.1 16.8 75.2
Under 25 25–39 40 and over		206 27 137 42	15.3 38.2 239.9	241 32 179 30	44.0 18.8 49.7 166.5
Hispanic Under 25 25–39 40 and over		105 21 72 12	11.8 7.6 12.4	112 23 71 18	12.6 8.5 12.2

* Rate does not meet National Center for Health Statistics standards of reliability.

¹Maternal mortality rates are deaths per 100,000 live births.

²Total includes deaths for race and origin groups not shown separately, including deaths among multiple-race women and deaths with origin not stated. Race groups are single race.

³Race groups are single race. Mathematical Statistics II April 7 2021 NOTES: Maternal causes are those assigned to categories A34, 000–095, and 098–099 of the International Classification of Diseases, 10th Revision, 1992. Maternal deaths occur while pregnant or within 42 days of being pregnant.

In PNAS

Fig. 1. Balanced accuracy of model out of sample on test data when using various feature sets. (A) Big data vs. administrative data, (B) task-related vs. general information, and (C) comparison of feature sets gathered over the lifespan of the student. Models are estimated using logistic regression with L_2 regularization and using feature selection; see *Materials and Methods* for details. Each violin represents the distribution of weighted accuracy from 1,000 resamples. Inside the violins, the thick bar represents the bottom and top quartiles, and the thin lines represent the bottom and top deciles. The Mathematical black line indicates the performance of a baseline-random guessing mathematical black line indicates the performance of a baseline-random guessing mathematical black line indicates the performance of a baseline-random guessing mathematical black line indicates the performance of a baseline-random guessing mathematical black line indicates the performance of a baseline-random guessing mathematical black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing mathematical black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indicates the performance of a baseline random guessing black line indited black line indicates the performance of a baseli

Bjerre-Nielsen, et al. "Task-specific information outperforms surveillance-style big data in predictive analytics"

In PNAS

Hada, et al. "Confidence intervals for policy evaluation in adaptive experiments"

Fig. 1. Distribution of the estimates $\hat{Q}^{AVG}(1)$ and $\hat{Q}^{PW}(1)$ described in the introduction. The plots depict the distribution of the estimators for $T = 10^6$, scaled by a factor \sqrt{T} for visualization. The distributions are overlaid with the normal curve that matches the first two moments of the distribution, along with a dashed line that denotes the mean. All numbers are aggregated over 1 million replications.

Start Recording

1. HW 11 due Friday April 9

Take-home posted April 9 due April 19 🞸

- 2. Friday April 9: Inference for Visualization, Chenghui Zheng; Data science at CIBC, Manuel Blain
- 3. Week of April 12: No classes. Usual Office hours.
- 4. Course evaluations available until April 12
- 5. Sketch of some ideas in Causal Inference
- 6. Review of course
- Apr 12 3.00 4.00 pm EDT, Data Science ARES, Alison Hill, RStudio, "Crafting kind tools"

Mathematical Statistics II April

April 8 if I can

Monday 7pm; Thursday, Friday 11am

 multivariate distributions: normal, multinomial 	AoS Ch 14
• testing independence: correlation $ ho_{jk}$, χ^2 tests	AoS Ch 15
 classification – parametric and nonparametric 	AoS 22

Recap

- multivariate distributions: normal, multinomial
- testing independence: correlation ρ_{jk} , χ^2 tests
- classification parametric and nonparametric
- Markov random fields e.g. $f(x_t)x_{t-1} \dots x_t) = f(x_t)x_{t-1}$
- Directed acyclic graphs
- Graphical Gaussian models

AoS 22

SM 6.2

SM 6.2.2

SM 6.3.3

AoS Ch 14

AoS Ch 15

 $aR^2, R^3 s \cdots$ N neighbourhoods

 multivariate distributions: normal, multinomial 	AoS Ch 14
• testing independence: correlation $ ho_{jk}$, χ^2 tests	AoS Ch 15
 classification – parametric and nonparametric 	AoS 22
 Markov random fields 	SM 6.2
 Directed acyclic graphs 	SM 6.2.2
• Graphical Gaussian models	SM 6.3.3
methods for studying relationships between variables	
h	a word on modelling

A word about models

 x_1, \dots, x_n isd $(f(x; e)) \quad e \in \Theta \in \mathbb{R}^p$ hep about behaviour? under model? $A g(X_1, \dots, X_n)$ $\mathbb{A}_{\text{s.s.}} \quad \overline{X} \quad \mathbb{E}(X \mid \mathbb{Z})$ d (22) 21 if the model is uron? best source I know for "robust inf." a very broad discussion d'explanation of 1 models types of data models probabilizzation i App. Stat. itical Statistics II App. 7 2021 i State i Stat SM best source I know for Mathematical Statistics II Apr 7 2021

Causal Inference

4

- X binary treatment indicator
- Y binary outcome
- "X causes Y"
- "X is associated with Y"
- potential outcomes C₀, C₁
- consistency equation

 $Y = C_{o}(1-x) + C_{i} X$

two expressions

"treatment"

could be continuous

Mathematical Statistics II April 7 2021

AoS Ch.16

Causal Inference

AoS Ch.16

Causal treatment effect

AoS Eq. (16.2)

6

$$\theta = E(C_1) - E(C_0) =$$

$$assoc \neq caus "$$

$$expld effect of office that i.e. the expld charpe in response between control e that
$$\alpha = E(Y|X=1) - E(Y|X=0) \quad association between that and response that $x = \Theta$; if not then thost Likely $a \neq 0$

$$d = E(Y|X=1) - E(Y|X=0) \quad random asit a \neq 0$$

$$d = E(Y|X=1) - E(Y|X=0) \quad random asit a \neq 0$$

$$d = E(C_1|X=1) - E(C_0|X=0) = E(C_1) - E(C_0) = 0$$$$$$

Example 16.2

Definitions of causality

If We have (Co,G) II X E tut ass't the $\Theta = \alpha$ We usually have covariates, Z (C., C.) I X (given) Z $\theta = E(c_{i}) - E(c_{i})$ where 2 = 2 = $E_{z} \{ E(C_{1} | Z) - E(C_{0} | Z) \}$ Mathematical Statistics II April 7 2021

Causal regression function

AoS §16.2

If X is cartinas, e.g. dose, the compositional function is C(X) presponent at level X E(Y|X) is observed r(x) = E(Y|X=x) $\Theta(x) = E(C | X = x)$ "no unmeasured conformaling" $\{c(x); x \in \mathcal{F}\} \downarrow X \mid \mathcal{F}$ -*Causad repression* $Q(x) = \int E(Y \mid X = \mathcal{X}, \mathbb{Z}_{z} \mathcal{E}) dF(\mathcal{E}) \mathcal{H}$ potential conf. Mathematical Statistics II April 7 2021

No unmeasured confounding

AoS §16.3

No unmeasured confounding

No unmeasured confounding

2101 Oct 22 slide 6

Strength Cons. Spec. frity - not another explanation toning & cause before effect dose-resp. 5 subject utter « samtific explan. April 7 2021 ating ev. E form other studies

Mathematical Statistics II

Summary

 likelihood function, MLE, asymptotic normality of MLE, LR, delta method, sufficient statistics, exponential family, MLEs are "BAN", Newton-Raphson, EM algorithm, ton vor (ô) = { i (6) } (soi) best asy. normal est guasi-Newton (0)^3 € (õ) rev hypothesis testing, null hypothesis, alternative hypothesis, type I and type II error size, power, test statistic, critical regions, optimal tests, NP Lemma, tests based on test «reject the if TE Ca " else A "do not reject" likelihood function (Wald, LRT, GLRT) Ho: 0=0 vs H, : 0≠0 significance testing, p-values, p-hacking, goodness-of-fit tests, diagnostic testing, multiple testing, FWER, Bonferroni, Benjamini-Hochberg $P = P_{11} \{ T(x) > t^{obs} \}$ Mathematical Statistics II April 7 2021

Summary

• Bayes' theorem, Bayesian inference, priors, likelihood, credible intervals, posterior modes, posterior distribution, HPD intervals, approximations to posterior, two-sided $\hat{\Theta} \pm \hat{se} / W = \hat{L} \int \pi(\Theta | 2)$ • types of priors - conjugate, subjective, objective, noninformative, flat, matching, Jeffreys', Bayesian computation – Laplace, importance sampling, MCMC, Bayesian $\Theta = (\Psi, \lambda)$ philosophy, empirical and epistemic probability, posterior predictive distributions, hierarchical models, empirical Bayes 7 interest random effects Nest. IT decision theory, loss functions, risk function, Bayes risk, admissibility, Stein's paradox, minimax risk, Bayes rules Mathematical Statistics II April 7 2021 15

Summary

m.v. t, skew-symmer, ext-value -> SM Ch 5,6
 multivariate normal distribution, inference for correlation, maximum likelihood
 estimates, partial correlation, gaussian graphical models, conditional independence

multinomial distribution, χ^2 testing, independence testing, classification and regression

 directed acyclic graphs, gaussian graphical models, Markov property, confounding, causality, potential outcomes, causal repression.