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Models

Chapter 4 described methods related to a central notion in inference, namely like-
lihood. This chapter and the next discuss how those ideas apply to some particular
situations, beginning with the simplest model for the dependence of one variable on
another, straight-line regression. There is then an account of exponential family distri-
butions, which include many models commonly used in practice, such as the normal,
exponential, gamma, Poisson and binomial densities, and which play a central role in
statistical theory. We then briefly describe group transformation models, which are
also important in statistical theory. This is followed by a description of models for
data in the form of lifetimes, which are common in medical and industrial settings,
and a discussion of missing data and the EM algorithm.

5.1 Straight-Line Regression

We have already met situations where we focus on how one variable depends on
others. In such problems there are two or more variables, some of which are regarded
as fixed, and others as random. The random quantities are known as responses and
the fixed ones as explanatory variables. We shall suppose that only one variable is
regarded as a response. Such models, known as regression models, are discussed
extensively in Chapters 8, 9, and 10. Here we outline the basic results for the simplest
regression model, where a single response depends linearly on a single covariate. We
start with an example.

Example 5.1 (Venice sea level data) Table 5.1 and Figure 5.1 show annual maxi-
mum sea levels in Venice for 1931–1981. The most obvious feature is that the maxi-
mum sea level increased by about 25 cm over that period. A simple model is of linear
trend in the sea level, y, so in year j ,

y j = β0 + β1 j + ε j , (5.1)

where β0 (cm) represents the expected maximum sea level in year j = 0, β1 the
annual increase (cm/year) , and ε j is a random variable with mean zero and variance
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162 5 · Models

Table 5.1 Annual
maximum sea levels (cm)
in Venice, 1931–1981
(Pirazzoli, 1982). To be
read across rows.
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Figure 5.1 Annual
maximum sea levels in
Venice, 1931–1981, with
fitted regression line.

σ 2 (cm2) representing scatter about the trend. Here the response is sea level, y j , and
the year, j , is the sole explanatory variable. �

The simplest linear model is that independent random variables Y j satisfy

Y j = β0 + β1x j + ε j , j = 1, . . . , n, (5.2)

where the x j are known constants, the ε j
iid∼ N (0, σ 2), and β0, β1 and σ 2 are unknown iid∼ means ‘are

independent and
identically distributed as’.

parameters, Thus Y j is normal with mean β0 + β1x j and variance σ 2. The data arise
as pairs (x1, y1), . . . , (xn, yn), from which β0, β1, and σ 2 are to be estimated. In
Example 5.1 the pairs are (1931, 103), . . . , (1981, 138). If all the x j are equal, we
cannot estimate the slope of the dependence of y on x , so we assume that at least two
x j are distinct.

A reparametrization of (5.2) is more convenient, so we consider instead

Y j = γ0 + γ1(x j − x) + ε j , j = 1, . . . , n, (5.3)

where x = n−1 ∑
x j . In terms of the original parameters, γ1 = β1, and γ0 = β0 +

β1x . This can make better statistical sense too. In (5.1) the interpretation of β0 as a
mean sea level at the start of the Christian era — when j = 0 — involves a ludicrous
extrapolation of the straight-line model over two millenia, whereas γ0 concerns its
level when j = x = 1956; this is clearly more sensible.
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5.1 · Straight-Line Regression 163

Under (5.3) the Y j are independent and normal with means and variances γ0 +
γ1(x j − x) and σ 2, so the likelihood based on (x1, y1), . . . , (xn, yn) is

n∏
j=1

1

(2πσ 2)1/2
exp

[
− 1

2σ 2
{y j − γ0 − γ1(x j − x)}2

]
,

−∞ < γ0, γ1 < ∞, σ 2 > 0.

The log likelihood is

�(γ0, γ1, σ
2) ≡ −1

2

[
n log σ 2 + 1

σ 2

n∑
j=1

{y j − γ0 − γ1(x j − x)}2

]
. (5.4)

For any σ 2, maximizing this over γ0 and γ1 is equivalent to minimizing the sum of
squares

SS(γ0, γ1) =
n∑

j=1

{y j − γ0 − γ1(x j − x)}2,

which is the sum of squared vertical deviations between the y j and their means
γ0 + γ1(x j − x) under the linear model. Its derivatives are

∂SS

∂γ0
= −2

n∑
j=1

{y j − γ0 − γ1(x j − x)},

∂SS

∂γ1
= −2

n∑
j=1

(x j − x) {y j − γ0 − γ1(x j − x)},

∂2SS

∂γ 2
0

= 2n,
∂2SS

∂γ 2
1

= 2
n∑

j=1

(x j − x)2,
∂2SS

∂γ0∂γ1
= 2

n∑
j=1

(x j − x) = 0.

The solutions to the equations ∂SS/∂γ0 = ∂SS/∂γ1 = 0 are the least squares
estimates,

γ̂0 = y, γ̂1 =
∑n

j=1 y j (x j − x)∑n
j=1(x j − x)2

. (5.5)

As anticipated, γ1 cannot be estimated if all the x j are equal, for then x j ≡ x and
γ̂1 is undefined. The matrix of second derivatives of SS is positive definite, so the
estimates (5.5) minimize the sum of squares and hence maximize �(γ0, γ1, σ

2) with
respect to γ0 and γ1.

As the log likelihood may be written as − 1
2

{
n log σ 2 + SS(γ0, γ1)/σ 2

}
, the max-

imum likelihood estimate of σ 2 is

σ̂ 2 = n−1SS(γ̂0, γ̂1) = 1

n

n∑
j=1

{y j − γ̂0 − γ̂1(x j − x)}2.

The quantity SS(γ̂0, γ̂1), known as the residual sum of squares, is the smallest sum
of squares attainable by fitting (5.3) to the data.
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164 5 · Models

The least squares estimators are linear combinations of normal variables, so their
distributions are also normal. If we rewrite them as

γ̂0 = n−1
n∑

j=1

{γ0 + γ1(x j − x) + ε j } = γ0 + n−1
n∑

j=1

ε j ,

γ̂1 =
∑n

j=1 {γ0 + γ1(x j − x) + ε j }(x j − x)∑n
j=1(x j − x)2

= γ1 +
∑n

j=1(x j − x)ε j∑n
j=1(x j − x)2

,

we see that because the ε j are independent with means zero and variances σ 2, γ̂0 has
mean γ0 and variance σ 2/n, and that γ̂1 has mean γ1 and variance σ 2/

∑
(x j − x)2.

Moreover

cov(γ̂0, γ̂1) = cov

{
n−1

∑
ε j ,

∑n
j=1(x j − x)ε j∑n
j=1(x j − x)2

}

=
∑n

j=1 n−1(x j − x)var(ε j )∑n
j=1(x j − x)2

= 0 :

as γ̂0 and γ̂1 are uncorrelated normal random variables, they are independent.
If σ 2 is known, confidence intervals for the true values of γ0 and γ1 may be based

on the normal distributions of γ̂0 and γ̂1. A (1 − 2α) confidence interval for γ1, for
example, is γ̂1 ± σ zα/{∑(x j − x)2}1/2.

We shall see in Chapter 8 that the residual sum of squares SS(γ̂0, γ̂1) ∼ σ 2χ2
n−2,

independent of γ̂0 and γ̂1. Thus when σ 2 is unknown, the estimator

S2 = 1

n − 2
SS(γ̂0, γ̂1)

satisfies E(S2) = σ 2, and as S2 is independent of γ̂0 and γ̂1, a (1 − 2α) confidence
interval for γ1 is γ̂1 ± Stn−2(α)/{∑(x j − x)2}1/2, because

γ̂1 − γ1{
S2/

∑
(x j − x)2

}1/2 ∼ tn−2.

Example 5.2 (Venice sea level data) For the model y j = β0 + β1 j + ε j of Exam-
ple 5.1, we have n = 51, x1 = 1931, . . . , xn = 1981, so x = 1956. In parametrization
(5.3), γ0 is the expected annual maximum sea level in 1956 in cm, and γ1 is the mean
annual increase in maximum sea level in cm/year.

Straightforward calculation yields γ̂0 = 119.61 cm and γ̂1 = 0.567 cm/year,
SS(γ̂0, γ̂1) = 16988.1, and

∑
(x j − x)2 = 11050. The unbiased estimate of σ 2 is

s2 = 16988.1/(51 − 2) = 346.7, so we estimate σ by s = 18.6. This is very large
relative to the annual increase in sea level, which as we see from Figure 5.1 is small
relative to the overall vertical variation.

Standard errors for γ̂0 and γ̂1 are s/n1/2 = 2.61 and s/
{∑

(x j − x)2
}1/2 = 0.177,

and a 95% confidence interval for γ1 is γ̂1 ± 0.177t49(0.025), that is, (0.213, 0.921).
This does not include zero, confirming that the trend in Figure 5.1 is real. �
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5.1 · Straight-Line Regression 165

Linear combinations

Distributional results for linear functions of γ̂0 and γ̂1 are readily obtained. For exam-
ple, in the original linear model (5.2) we have β0 = γ0 − γ1x , the maximum likelihood
estimator of which is β̂0 = γ̂0 − γ̂1x . This has expected value γ0 − γ1x and variance

var(γ̂0 − γ̂1x) = var(γ̂0) − 2xcov(γ̂0, γ̂1) + x2var(γ̂1) = σ 2

{
1

n
+ x2∑n

j=1(x j − x)2

}
.

As

cov(̂β0, β̂1) = cov(γ̂0 − γ̂1x, γ̂1) = cov(γ̂0, γ̂1) − xvar(γ̂1) = −σ 2x∑n
j=1(x j − x)2

,

the normal random variables β̂0 and β̂1 are independent if and only if x = 0.
Suppose we wish to predict the response value at x+,

Y+ = γ0 + γ1(x+ − x) + ε+.

Here ε+ represents the random variation about the expected value, which is inde-
pendent of the other responses, because of our modelling assumptions. The random
variable Y+ has expected value γ0 + γ1(x+ − x). The maximum likelihood estimator
of this, γ̂0 + γ̂1(x+ − x), has mean and variance

γ0 + γ1(x+ − x), σ 2

{
1

n
+ (x+ − x)2∑n

j=1(x j − x)2

}
.

This is the variance not of Y+ but of γ̂0 + γ̂1(x+ − x): it does not account for the extra
variability introduced by ε+. The variance appropriate for the predicted response
actually observed is

var(Y+) = var {γ̂0 + γ̂1(x+ − x) + ε+} = σ 2

{
1

n
+ (x+ − x)2∑n

j=1(x j − x)2

}
+ σ 2. (5.6)

The final σ 2 is due to ε+ and would remain even if the parameters were known.

Example 5.3 (Venice sea level data) For illustration we take x+ = 1993. Our pre-
dicted value for Y+ is γ̂0 + γ̂1(x+ − x) = 140.59, with estimated variance 49.75 +
346.70 = 396.45, obtained by replacing σ 2 with s2 in (5.6). The estimated variance
of ε+, 346.70, is much larger than the estimated variance 49.75 of the fitted value
γ̂0 + γ̂1(x+ − x). A confidence interval for Y+ could be obtained from the t statistic.

Our model (5.2) presupposes that the errors ε j are normal, and that the dependence
of y on x is linear. We discuss how to check these assumptions in Section 8.6.1, here
noting that simple estimates of the errors ε j are the raw residuals e j = y j − β̂0 −
β̂1x j , which should be normal and approximately independent of x if the model is
correct. We check linearity by looking for patterns in a plot of the e j against the x j ,
and check normality by a normal probability plot of the e j ; see Figure 5.2. Linearity
seems justifiable, but the errors seem too skewed to be normally distributed.
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Figure 5.2 Straight-line
regression fit to annual
maximum sea levels in
Venice, 1931–1981. Left:
raw residuals plotted
against time. Right:
normal scores plot of raw
residuals; the line has
slope σ̂ . The skewness of
the residuals suggests that
the errors are not normal.

The astute reader will realise that the changing sea level is due not to the rising
waters of the Adriatic, but to the sinking of the marker that measures water height,
along with Venice, to which it is attached. �

Exercises 5.1

1 Find the observed and expected information matrices for the parameters in (5.4), and
confirm that general likelihood theory gives the same variances and covariance for the
least squares estimates as the direct argument on page 164.

2 Show that (γ̂0, γ̂1, s2) are minimal sufficient for the parameters of the straight-line regres-
sion model.

3 Consider data from the straight-line regression model with n observations and

x j =
{

0, j = 1, . . . , m,
1, otherwise,

where m ≤ n. Give a careful interpretation of the parameters β0 and β1, and find their least
squares estimates. For what value(s) of m is var(̂β1) minimized, and for which maximized?
Do your results make qualitative sense?

4 Let Y1, . . . , Yn be observations satisfying (5.2), with not all the x j equal. Find var(̂β0 +
x+β̂1), where x+ is fixed. Hence give exact 0.95 confidence intervals for β0 + β1x+ when
σ 2 is known and when it is unknown.

5.2 Exponential Family Models

Exponential families include most of the models we have met so far and are widely
used in applications. Densities such as the normal, gamma, Poisson, multinomial,
and so forth have the same underlying structure with elegant properties giving them
a central role in statistical theory. This section outlines those properties, first giving
the basic ideas for scalar random variables, then extending them to more complex
models, and finally considering inference.

5.2.1 Basic notions

Let f0(y) be a given probability density, discrete or continuous, under which random
variable Y has support Y = {y : f0(y) > 0} that is a subset of the real line IR. For
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5.2 · Exponential Family Models 167

example, f0(y) might be the uniform density on the unit interval Y = (0, 1), or might
have probability mass function e−1/y! on Y = {0, 1, . . .}. Let s(Y ) be a function of
Y , and letWhen Y is discrete we

interpret the integrals as
sums over y ∈ Y .

N =
{
θ : κ(θ ) = log

∫
es(y)θ f0(y) dy < ∞

}

denote the values of θ for which the cumulant-generating function κ(θ ) of s(Y ) is
finite. Evidently 0 ∈ N . To avoid trivial cases we suppose that N has at least one
other element and that var{s(Y )} > 0 under f0, so s(Y ) is not a degenerate random
variable. In fact the set N is convex, because if θ1, θ2 ∈ N and α ∈ [0, 1], then
αθ1 + (1 − α)θ2 ∈ N :∫

es(y){αθ1+(1−α)θ2} f0(y) dy =
∫ {

es(y)θ1
}α {

es(y)θ2
}1−α

f0(y) dy

≤
{∫

es(y)θ1 f0(y) dy

}α {∫
es(y)θ2 f0(y) dy

}1−α

< ∞;

the second line follows from Hölder’s inequality (Exercise 5.2.1). Moreover, as
κ{αθ1 + (1 − α)θ2} ≤ ακ(θ1) + (1 − α)κ(θ2), the function κ(θ ) is convex on the
set N . Equality occurs only if θ1 = θ2, so in fact κ(θ ) is strictly convex.

A single fixed density f0 is not flexible enough to be useful in practice, for which
we need families of distributions. Hence we embed f0 in the larger class

f (y; θ ) = es(y)θ f0(y)∫
es(x)θ f0(x) dx

, y ∈ Y, θ ∈ N ,

by exponential tilting: f0 has been tilted by multiplication by es(y)θ and then the
resulting positive function has been renormalized to have unit integral. Evidently
f (y; θ ) has support Y for every θ . If s(Y ) = Y , we have a natural exponential family
of order 1,

f (y; θ ) = exp {yθ − κ(θ )} f0(y), y ∈ Y, θ ∈ N . (5.7)

The family is called regular if the natural parameter space N is an open set.

Example 5.4 (Uniform density) Let f0(y) = 1 for y ∈ Y = (0, 1). Now

κ(θ ) = log
∫

eyθ f0(y) dy = log
∫ 1

0
eyθ dy = log{(eθ − 1)/θ} < ∞

for all θ ∈ N = (−∞, ∞), and the natural exponential family

f (y; θ ) =
{

θeθy/(eθ − 1), 0 < y < 1,
0, otherwise,

(5.8)

is plotted in the left panel of Figure 5.3 for θ = −3, 0, 1. For this or any natural
exponential family with bounded Y , N = (−∞, ∞) and the family is regular.
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A different choice of s(Y ) will generate a different exponential family. With s(Y ) =
log{Y/(1 − Y )}, for example, the cumulant-generating function is given by For a, b > 0, B(a, b) =∫ 1

0 ua−1(1 − u)b−1 du is
the beta function. It equals
�(a)�(b)/�(a + b),
where
�(a) = ∫ ∞

0 ua−1e−u du is
the gamma function; see
Exercise 2.1.3.

∫ 1

0
eθ log{y/(1−y)} dy =

∫ 1

0
y(1+θ )−1(1 − y)(1−θ )−1 dy

= B(1 + θ, 1 − θ )

= �(1 + θ )�(1 − θ )

�(1 + θ + 1 − θ )
, |θ | < 1,

and as �(2) = 1, we have κ(θ ) = log �(1 + θ ) + log �(1 − θ ). Here the set N =
(−1, 1) is open, so the resulting family is regular. Figure 5.3 shows how this family
differs from the natural one, being unbounded unless θ = 0. �

The natural exponential family of order 1 generated by a tilted version of f0 is
the same as that generated by f0 itself. To see why, note that if s(Y ) has density
(5.7) for some θ = θ1, say, exponential tilting generates a density proportional to
exp{s(y)θ} exp{s(y)θ1 − κ(θ1)} f0(y) with cumulant-generating function κ(θ + θ1) −
κ(θ1) for θ + θ1 ∈ N . The new density is exp{s(y)(θ + θ1) − κ(θ + θ1)} f0(y), for
θ + θ1 ∈ N . This is (5.7) apart from replacement of θ by θ + θ1. Hence just one
family is generated by a specific choice of f0 and s(Y ), and this family is obtained
by tilting any of its members.

For many purposes discussion of an exponential family is simplified if it is expressed
without reference to a baseline density f0. If a density may be written as

f (y; ω) = exp {s(y)θ (ω) − b(ω) + c(y)}, y ∈ Y, ω ∈ �, (5.9)

where Y is independent of the parameter ω and θ is a function of ω, it is said to be
an exponential family of order 1. Here θ and s are called the natural parameter and
natural observation.

Example 5.5 (Exponential density) The exponential density with mean ω is
f (y; ω) = ω−1 exp(−y/ω), for y > 0 and ω > 0. Here � = Y = (0, ∞), with
natural observation and parameter s(y) = y and θ (ω) = −1/ω, and b(ω) = log ω.
The cumulant-generating function is κ(θ ) = b{ω−1(θ )} = − log(−θ ), which has
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5.2 · Exponential Family Models 169

derivatives (r − 1)!(−1)rθ−r = (r − 1)!ωr , the usual formula for cumulants of an
exponential variable. �

Example 5.6 (Binomial density) If R is binomial with denominator m and proba-
bility 0 < π < 1, its density is

(
m

r

)
π r (1 − π )m−r = exp

{
r log

(
π

1 − π

)
+ m log(1 − π ) + log

(
m

r

)}
,

for r ∈ Y = {0, 1, . . . , m}. This has form (5.9) with ω = π ,

s(r ) = r, θ (π ) = log

(
π

1 − π

)
, b(π ) = m log(1 − π ), c(r ) = log

(
m

r

)
.

The natural parameter is the log odds θ = log{π/(1 − π )} ∈ (−∞, ∞). This family
is regular, with cumulant-generating function κ(θ ) = m log(1 + eθ ). �

If the function θ (ω) in (5.9) is 1–1, the density of S = s(Y ) has form

f (s; θ ) = exp [sθ − b {ω−1(θ )}]h(s), s ∈ s(Y), θ ∈ θ (�).

If � = θ (�) = N for some baseline density f0 then this is a natural exponential

θ (�) denotes the set
{θ (ω) : ω ∈ �}.

family with cumulant-generating function κ(θ ) = b {ω−1(θ )}.
Expressed as a function of θ rather than ω, the moment-generating function of s(Y )

under (5.9) is, if finite,

E
{
ets(Y )

} =
∫

exp {ts(y) + θs(y) − κ(θ ) + c(y)} dy

= exp {κ(θ + t) − κ(θ )}
∫

exp {(θ + t)y − κ(θ + t) + c(y)} dy

= exp {κ(θ + t) − κ(θ )} ,

because the second integral equals unity; here θ = θ (ω) andκ(θ ) = b {ω−1(θ )}. Hence
when Y has density (5.9), the cumulant-generating function of s(Y ) isκ(θ + t) − κ(θ ).
The cumulants result from differentiating κ(θ + t) − κ(θ ) with respect to t and then
setting t = 0, or equivalently differentiating κ(θ ) with respect to θ .

Mean parameter

Under (5.7) the cumulant-generating function of Y is κ(θ + t) − κ(θ ), so its mean
and variance are

E(Y ) = dκ(θ )

dθ
= κ ′(θ ), var(Y ) = d2κ(θ )

dθ2
= κ ′′(θ ),

say. As Y is non-degenerate under f0, var(Y ) > 0 for all θ ∈ N , and hence κ ′(θ ) is
a strictly monotonic increasing function of θ . Thus there is a smooth 1–1 mapping
between θ and the mean parameter µ = µ(θ ) = κ ′(θ ), and as θ varies in N , µ varies
in the expectation space M.

The function µ(θ ) is important for likelihood inference. A natural exponential
family is called steep if |µ(θi )| → ∞ for any sequence {θi } in intN that converges

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511815850.006
Downloaded from https://www.cambridge.org/core. University of Toronto, on 25 Aug 2020 at 18:27:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511815850.006
https://www.cambridge.org/core


170 5 · Models

to a boundary point of N . Let us define the closed convex hull of Y to be C(Y), the The interior of a set,
intN , is what remains
when its boundary is
subtracted from its
closure.

smallest closed set containing

{y : y = αy1 + (1 − α)y2, 0 ≤ α ≤ 1, y1, y2 ∈ Y} .

Now M ⊆ C(Y), because every density (5.7) reweights elements of Y . It can be
shown that a regular natural exponential family is steep, and that for such a family,
steepness is equivalent to M = int C(Y). Thus there is a duality between int C(Y)
and the expectation space M, and hence between int C(Y) and intN : for every
µ ∈ int C(Y) there is a unique θ ∈ N such that f (y; θ ) has mean µ. This equivalence
applies widely because most natural exponential families are regular. As we shall see
below, it implies that there is a unique maximum likelihood estimator of θ except for
pathological samples.

Example 5.7 (Uniform density) The mean function for the natural exponential
family generated by the U (0, 1) density, µ(θ ) = (1 − e−θ )−1 − θ−1, is shown in the
right panel of Figure 5.3. Here Y = (0, 1), so C(Y) = [0, 1] and int C(Y) = (0, 1) =
M. The family is steep because the only boundary points of N = (−∞, ∞) are ±∞,
to which no sequence {θi } ⊂ N can converge.

The family with � = [0, ∞) is not steep, because µ(θ ) → 1/2 as θ ↓ 0. �

Example 5.8 (Poisson density) If Y = {0, 1, . . .} and f0(y) = e−1/y!, then

κ(θ ) = log

( ∞∑
y=0

eθy−1/y!

)
= eθ − 1

is finite for all θ ∈ N = (−∞, ∞). Hence

f (y; θ ) = exp (θy − eθ )/y!, y ∈ Y, θ ∈ N ,

is a regular natural exponential family. Here C(Y) = [0, ∞), and the mean function
is µ(θ ) = κ ′(θ ) = eθ , so M = (0, ∞) = int C(Y); the family is steep.

In terms of µ we have the familiar expression

f (y; µ) = exp (y log µ − µ) /y! = µye−µ/y!, y = 0, 1, . . . , µ > 0.

�

Variance function

When Y has a natural exponential family density with cumulant-generating function
κ(θ ), its mean is µ(θ ) = κ ′(θ ). Now κ(θ ) is smooth and strictly convex, so the mapping
between θ and µ = µ(θ ) = κ ′(θ ) is smooth and monotone. It follows that the density
(5.7) can be reparametrized in terms of µ, setting θ = θ (µ). In terms of µ, κ(θ ) =
κ{θ (µ)}, so

var(Y ) = κ ′′(θ ) = dµ

dθ

∣∣∣∣
θ=θ (µ)

= V (µ), µ ∈ M,

say, where V (µ) is the variance function of the family. As we saw in Section 3.1.2, the
variance function determines the variance-stabilizing transformation for Y . It plays a
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central role in generalized linear models, which we shall study in Section 10.3. The
variance function and its domain M together determine their exponential family, as
we shall now see.

On differentiating the identity µ{θ (µ)} = µ with respect to µ, we obtain
µ′{θ (µ)}dθ/dµ = 1, and this implies that

dθ (µ)

dµ
= 1

µ′{θ (µ)} = 1

V (µ)
. (5.10)

As var(Y ) > 0, this derivative is finite for any µ ∈ M, so∫ µ

µ0

1

V (u)
du = θ (µ) − θ (µ0),

and as 0 ∈ N we can choose µ0 ∈ M to give θ (µ0) = 0. Now

κ(θ ) =
∫ θ

0
κ ′(t) dt =

∫ θ

0
µ(t) dt =

∫ µ

µ0

µ
dt

dµ
dµ =

∫ µ

µ0

u

V (u)
du,

where we have used (5.10). Hence

κ

{∫ µ

µ0

1

V (u)
du

}
=

∫ µ

µ0

u

V (u)
du, (5.11)

and given M and V (µ), we have expressed κ in terms of µ; this determines κ(θ )
implicitly. The natural parameter space N is traced out by θ (µ) = ∫ µ

µ0
V (u)−1 du as

µ varies in M.

Example 5.9 (Linear variance function) Let Y be a random variable with V (µ) =
µ and M = (0, ∞). Then∫ µ

µ0

1

V (u)
du =

∫ µ

µ0

du

u
= log(µ/µ0),

∫ µ

µ0

u

V (u)
du = µ − µ0,

and if µ0 = 1, (5.11) gives κ(log µ) = µ − 1. On setting θ = log µ, we have κ(θ ) =
eθ − 1, and asµvaries inM, θ = log µvaries in (−∞,∞). As eθ − 1 is the cumulant-
generating function of the Poisson density with mean eθ and there is a 1–1 correspon-
dence between cumulant-generating functions and distributions, Y is Poisson with
mean µ = eθ . �

5.2.2 Families of order p

To generalize the preceding discussion to models with several parameters, we again
start from a base density f0(y), now supposing that its support Y ⊆ IRd , for d ≥ 1,
is not a subset of any space of dimension lower than d. Let the p × 1 vector s(y) =
(s1(y), . . . , sp(y))T consist of functions of y for which the set {1, s1(y), . . . , sp(y)} is
linearly independent, and define

N =
{
θ ∈ IRp : κ(θ ) = log

∫
es(y)Tθ f0(y) dy < ∞

}
,
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where θ = (θ1, . . . , θp)T. In general θ = θ (ω) may depend on a parameter ω taking
values in � ⊂ IRq , where θ (�) ⊆ N .

An exponential family of order p has density

f (y; ω) = exp {s(y)Tθ (ω) − b(ω)} f0(y), y ∈ Y, ω ∈ �, (5.12)

where b(ω) = κ{θ (ω)}. This is called a minimal representation if the set
{1, θ1(ω), . . . , θp(ω)} is linearly independent. If there is a 1–1 mapping between
N and � the family can be written as a natural exponential family of order p,

f (y; ω) = exp {s(y)Tθ − κ(θ )} f0(y), y ∈ Y, θ ∈ N . (5.13)

Terms such as natural observation, natural parameter space, expectation space,
regular model, and steep family generalize to families of order p and we shall use
them below without further comment. Our proofs that the natural parameter space
N is convex, that the family may be generated by any of its members, that κ(θ ) is
strictly convex, and that s(Y ) has cumulant-generating function κ(θ + t) − κ(θ ) also
generalize with minor changes. The mean vector and covariance matrix of s(Y ) are
now the p × 1 vector and p × p matrix

E{s(Y )} = dκ(θ )

dθ
, var{s(Y )} = d2κ(θ )

dθdθ T
.

Example 5.10 (Beta density) If f0(y) is uniform on (0, 1) and s(y) equals
(log y, log(1 − y))T, then

κ(θ ) = log
∫ 1

0
exp {θ1 log y + θ2 log(1 − y)} dy = log B(1 + θ1, 1 + θ2),

where B(a, b) = �(a)�(b)/�(a + b) is the beta function; see Example 5.4. The re-
sulting model is usually written in terms of a = θ1 + 1 and b = θ2 + 1, giving the
beta density

f (y; a, b) = ya−1(1 − y)b−1

B(a, b)
, 0 < y < 1, a, b > 0. (5.14)

In this parametrization the natural parameter space is N = (0, ∞) × (0, ∞). In
Example 5.4 we took s(y) = log{y/(1 − y)}, thereby generating the one-parameter
subfamily in which b = 2 − a. This subfamily is also obtained by taking s(y) =
(log y, log(1 − y))T and θ (ω) = (ω, −ω)T, but this representation is not minimal be-
cause (1, 1)θ (ω) = 0.

Comparison of Figures 5.4 and 5.3 shows how tilting with two parameters broadens
the variety of densities the family contains. �

Example 5.11 (von Mises density) Directional data are those where the observa-
tions y j are angles — see Table 5.2, which gives the bearings of 29 homing pigeons
30, 60, and 90 seconds after release and on vanishing from sight. Another example is
a wind direction, while the position of a star in the sky is an instance of directional
data on a sphere.
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Table 5.2 Homing
pigeon data (Artes, 1997).
Bearings (degrees) of 29
homing pigeons 30, 60
and 90 seconds after
release, with their
bearings on vanishing
from sight.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
30 240 300 225 285 210 265 310 330 325 290 15 330 100 35 340
60 250 290 210 325 205 240 330 315 285 335 10 305 95 65 345
90 270 305 215 295 195 210 335 315 135 10 5 325 90 70 330
van 275 285 185 290 195 225 335 285 120 30 10 85 90 80 350

16 17 18 19 20 21 22 23 24 25 26 27 28 29
30 320 340 355 40 225 50 200 330 325 330 280 180 50 20
60 325 335 25 330 220 50 195 320 315 290 285 155 25 0
90 15 320 30 335 215 55 185 325 345 285 280 160 15 25
van 60 345 35 65 250 60 175 325 330 280 350 185 20 30
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Figure 5.4 Beta
densities for different
values of a and b.
Swapping a and b reflects
the densities about
y = 0.5.

To build a class of densities for circular data we start from the uniform density on
the circle, f0(y) = (2π )−1 for 0 ≤ y < 2π , and take

s(y) = (cos y, sin y)T, θ (ω) = (τ cos γ, τ sin γ )T,

where ω = (τ, γ ) lies in � = [0, ∞) × [0, 2π ). This choice of s(y) ensures the desir-
able property f (y) = f (y ± 2kπ ) for all integer k. Now s(y)Tθ (ω) = τ cos(y − γ )
and

∫
es(y)Tθ (ω) f0(y) dy = 1

2π

∫ 2π

0
eτ cos(y−γ ) dy = 1

2π

∫ 2π

0
eτ cos y dy = I0(τ ),
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Figure 5.5 Circular
data. Left: bearings of 29
homing pigeons at various
intervals after release.
Right: von Mises densities
for different values of γ

and τ . Shown are the
baseline uniform density
(heavy) (2π )−1, and von
Mises densities with
τ = 0.3, γ = 5π/4
(solid), τ = 0.7,
γ = 3π/8 (dots), and
τ = 1, γ = 7π/4
(dashes). In each case the
density f (y; τ, γ ) is given
by the distance from the
origin to the curve, so the
areas do not integrate to
one.

where Iν(τ ) is the modified Bessel function of the first kind and order ν. The resulting
exponential family is the von Mises density Richard von Mises

(1883–1953) was born in
Lvov and educated in
Vienna and Brno. He
became professor of
applied mathematics in
Strasbourg, Dresden and
Berlin, then left for
Istanbul to escape the
Nazis, finishing his career
at Harvard. A man of wide
interests, he spent the
1914–18 war as a pilot in
the Austro-Hungarian
army, gave the first
university course on
powered flight, and made
contributions to
aeronautics, aerodynamics
and fluid dynamics as well
as philosophy, probability
and statistics; he was also
an authority on the
Austrian poet Rainer
Maria Rilke. He is now
perhaps best known for
his frequency theory basis
for probability.

f (y; τ, γ ) = {2π I0(τ )}−1eτ cos(y−γ ), 0 ≤ y < 2π, τ > 0, 0 ≤ γ < 2π ;

see Figure 5.5. The mean direction γ gives the direction in which observations are
concentrated, and the precision τ gives the strength of that concentration. Notice that
τ = 0 gives the uniform distribution on the circle, whatever the value of γ . Here
interest focuses on Y rather than on s(Y ), which is introduced purely in order to
generate a natural class of densities for y.

The estimates and standard errors for the data in Table 5.2 are γ̂ = 320 (15) and
τ̂ = 1.08 (0.32) at 30 seconds, with corresponding figures 316 (15) and 1.05 (0.32)
at 60 seconds, 329 (21) and 0.75 (0.29) at 90 seconds, and 357 (29) and 0.52 (0.28)
on vanishing. Thus as Figure 5.5 shows, the bearings of the pigeons become more
dispersed as they fly away. The likelihood ratio statistics that compare the fitted
two-parameter model with the uniform density are 13.80, 13.34, 7.33, and 3.75. As
the mean direction γ vanishes under the uniform model, the situation is non-regular
(Section 4.6), but the evidence against uniformity clearly weakens as time passes.

�

Curved exponential families

In the examples above, the natural parameter θ = (θ1(ω), . . . , θp(ω))T is a 1–1 function
of ω = (ω1, . . . , ωq )T, so of course p = q . Another possibility is that q > p, in which
case ω cannot be identified from data. Such models are not useful in practice, and it
is more interesting to consider the case q < p. Now θ (ω) varies in the q-dimensional
subspace θ (�) ofN . If θ = a + Bω is a linear function ofω, where a and B are a p × 1
vector and a p × q matrix of constants, then s(y)Tθ (ω) = s(y)Ta + {s(y)T B}ω, and
the exponential family may be generated from f ′

0(y) ∝ eaTs(y) f0(y) by taking s ′(y) =
BTs(y). Hence it is just an exponential family of order q and no new issues arise: the
original representation was not minimal. If θ (ω) is a nonlinear function, however, and
the representation is minimal, we have a (p, q) curved exponential family.
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Example 5.12 (Multinomial density) The multinomial density with denominator
m and probability vector π = (π1, . . . , πp)T is

m!

y1! · · · yp!
π

y1
1 · · · π yp

p ∝ exp {y1 log π1 + · · · + yp log πp}
= exp {y1 log π1 + · · · + yp−1 log πp−1

+ (m − y1 − · · · − yp−1) log(1 − π1 − · · · − πp−1)}
= exp {y1θ1 + · · · + yp−1θp−1 − κ(θ )},

where

πr = eθr

1 + eθ1 + · · · + eθp−1
, κ(θ ) = m log (1 + eθ1 + · · · + eθp−1 ).

This is a minimal representation of a natural exponential family of order p − 1 with
s(y) = (y1, . . . , yp−1)T, N = (−∞, ∞)p−1 and

f0(y) = p−mm!

y1! · · · yp!
, Y =

{
(y1, . . . , yp) : y1, . . . , yp ∈ {0, . . . , m},

∑
yr = m

}
;

Y is a subset of the scaled p-dimensional simplex

C(Y) =
{

(y1, . . . , yp) : 0 ≤ y1, . . . , yp ≤ m,
∑

yr = m
}

.

Now

E{s(Y )} = m

1 + eθ1 + · · · + eθp−1
(eθ1 , . . . , eθp−1 ),

and as E(Yp) = m − E(Y1) − · · · − E(Yp−1), the expectation space in which µ(θ ) =
E(Y ) varies equals int C(Y): the model is steep.

Many multinomial models are curved exponential families. In Example 4.38, for
instance, the ABO blood group data had p = 4 groups with

πA = λ2
A + 2λAλO , πB = λ2

B + 2λBλO , πO = λ2
O , πAB = 2λAλB, (5.15)

where λA + λB + λO = 1. This is a (3, 2) curved exponential family. In the full family
of order p, the probabilities πA, πB and πAB vary in the set

A = {(πA, πB, πAB) : 0 ≤ πA, πB, πAB ≤ 1, 0 ≤ πA + πb + πAB ≤ 1},
shown in Figure 5.6. In the sub-family given by (5.15), when λO is fixed we have
λA + λB = 1 − λO , and as λA varies from 0 to 1 − λO , (πA, πB, πAB) traces a curve
from (0, 1 − λ2

O , 0) to (1 − λ2
O , 0, 0) shown in the figure. As λO varies from 0 to 1,

(πA, πB, πAB) = (
λ2

A + 2pλO , (1 − λA − λO )2 + 2(1 − λA − λO )λO ,

2λA(1 − λA − λO )
)

traces out the intersection of a cone with the set A. Thus although any value of
(πA, πB, πAB) inside the tetrahedron with corners (0, 0, 0), (0, 0, 1), (0, 1, 0) and
(1, 0, 0) is possible under the full model, the curved submodel restricts the probabil-
ities to the hatched surface. �
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Figure 5.6 Parameter
space for four-category
multinomial model. The
full parameter space for
(πA, πB , πAB ) is the
tetrahedron with corners
(0, 0, 0), (0, 0, 1), (0, 1, 0)
and (1, 0, 0), whose outer
face is shaded. The other
parameter πO =
1 − πA − πB − πAB . The
two-parameter sub-model
given by (5.15) is shown
by the hatched surface.

5.2.3 Inference

Let Y1, . . . , Yn be a random sample from an exponential family of order p. Their joint
density is

n∏
j=1

f (y j ; ω) = exp

{
n∑

j=1

s(y j )
Tθ (ω) − nb(ω)

}
n∏

j=1

f0(y j ), ω ∈ �, (5.16)

and consequently the density of S = ∑
s(Y j ) is

f (s; ω) =
∫ n∏

j=1

f (y j ; ω) dy = exp {sTθ (ω) − nb(ω)}
∫ n∏

j=1

f0(y j ) dy

= exp {sTθ (ω) − nb(ω)}g0(s),

say, where the integral is over{
(y1, . . . , yn) : y1, . . . , yn ∈ Y,

n∑
j=1

s(y j ) = s

}
.

Hence S too has an exponential family density of order p. That is, the sum of n
independent variables from an exponential family belongs to the same family, with
cumulant-generating function nκ(θ ) = nb(ω). The factorization criterion (4.15) ap-
plied to (5.16) implies that S is a sufficient statistic for ω based on Y1, . . . , Yn , and if
f (y; ω) is a minimal representation, S is minimal sufficient (Exercise 5.2.12). Thus
inference for ω may be based on the density of S, while the joint density of Y1, . . . , Yn

given the value of S is independent of ω:

f (y1, . . . , yn; ω) = f (y1, . . . , yn | s) f (s; ω). (5.17)

This decomposition allows us to split the inference into two parts, corresponding to
the factors on its right, the first of which may be used to assess model adequacy. If
satisfied of an adequate fit, we use the second term for inference on ω. We now discuss
these aspects in turn.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511815850.006
Downloaded from https://www.cambridge.org/core. University of Toronto, on 25 Aug 2020 at 18:27:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511815850.006
https://www.cambridge.org/core


5.2 · Exponential Family Models 177

Model adequacy

The argument for using the first factor on the right of (5.17) to assess model adequacy
is that the value of ω is irrelevant to deciding if f (y; ω) fits the random sample
Y1, . . . , Yn . Hence we should assess fit using the conditional distribution of Y given
S; see Example 4.10.

Example 5.13 (Poisson density) If Y1, . . . , Yn is a random sample from a Poisson
density with mean µ, their common cumulant-generating function is µ(et − 1) and
the natural observation is s(y j ) = y j . Hence S = ∑

s(Y j ) = ∑
Y j has cumulant-

generating function nµ(et − 1). The joint conditional density of y1, . . . , yn given that
S = s,

f (y1, . . . , yn | s) = f (y1, . . . , yn; θ )

f (s; θ )

=
∏n

j=1 µy j e−µ/y j !

(nµ)se−nµ/s!

=
{

s!
y1!···yn ! n

−s, y1 + · · · + yn = s,
0, otherwise,

is multinomial with denominator s and n × 1 probability vector (n−1, . . . , n−1). This
density is independent of µ by its construction.

The mean and variance of a Poisson variable both equal µ, so Poissonness of a
random sample of counts can be assessed by comparing their average Y and sample
variance (n − 1)−1 ∑

(Y j − Y )2. A common problem with such data is overdisper-
sion, which is suggested if P = ∑

(Y j − Y )2/Y greatly exceeds n − 1. How big is
‘greatly’? As µ̂ = Y is the maximum likelihood estimate of µ, P is Pearson’s statistic
(Section 4.5.3) and has an asymptotic χ2

n−1 distribution. The argument above suggests
that we assess if P is large compared to its conditional distribution given the value
of S = ∑

Y j = nY , so the distribution we seek is that of P conditional on Y . The
conditional mean and variance of P are (n − 1) and 2(n − 1)(1 − s−1)

.= 2(n − 1),
and the conditional distribution of P is very close to χ2

n−1 unless s and n are both
very small. Hence the Poisson dispersion test compares P to the χ2

n−1 distribution,
with large values suggesting that the counts are more variable than Poisson data
would be.

In Table 2.1, for example, the daily numbers of arrivals are 16, 16, 13, 11, 14, 13,
12, so P takes value 1.6, to be treated as χ2

6 , so the counts seem under- rather than
overdispersed. In Example 4.40, by constrast, with counts 1, 5, 3, 2, 2, 1, 0, 0, 2, 1,
1, 7, 11, 4, 7, 10, 16, 16, 9, 15, we have P = 99.92, which is very large compared
to the χ2

19 distribution; and in fact Pr(P ≥ 99.92)
.= 0 to 12 decimal places. As one

might expect, these data are highly overdispersed relative to the Poisson model.
Another possibility is that although all Poisson, the Y j have different means. In

Example 4.40 we compared the changepoint model under which Y1, . . . , Yτ and
Yτ+1, . . . , Yn have different means with the model of equal means. The comparison
involved the likelihood ratio statistic, whose exact conditional distribution was
simulated under the simpler model; see Figure 4.9. �
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178 5 · Models

Example 5.14 (Normal model) The normal density may be written

f (y; µ, σ 2) = 1

(2π )1/2σ
exp

{
− 1

2σ 2
(y − µ)2

}

= exp

{
µ

σ 2
y − 1

2σ 2
y2 − µ2

2σ 2
− log σ − 1

2
log(2π )

}
. (5.18)

This is a minimal representation of an exponential family of order 2 with

ω = (µ, σ 2) ∈ � = (−∞, ∞) × (0, ∞),

θ (ω)T = (µ/σ 2, 1/(2σ 2)) ∈ N = (−∞, ∞) × (0, ∞),

s(y)T = (y, −y2),

κ(θ ) = θ2
1 /(4θ2) − 1

2
log(2θ2),

arising from tilting the standard normal density (2π )−1/2e−y2/2.
We now consider how decomposition (5.17) applies for the normal model with n >

2. When Y1, . . . , Yn is a random sample from (5.18), our general discussion implies
that (

∑
Y j , −

∑
Y 2

j ) is minimal sufficient. As this is in 1–1 correspondence with Y ,

S2 = (n − 1)−1 ∑
(Y j − Y )2, our old friends the average and sample variance are also

minimal sufficient. When n > 1 the joint distribution of Y and S2 is nondegenerate
with probability one, and (3.15) states that they are independently distributed as
N (µ, σ 2/n) and (n − 1)−1σ 2χ2

n−1.
In order to compute the conditional density of Y1, . . . , Yn given Y and S, it is

neatest to set E j = (Y j − Y )/S and consider the conditional density of E1, . . . , En .
As

∑
E j = 0 and

∑
E2

j = n − 1, the random vector (E1, . . . , En) ∈ IRn lies on the
intersection of the hypersphere of radius n − 1 and the hyperplane

∑
E j = 0. As this

is a (n − 2)-dimensional subset of IRn , the joint density of E1, . . . , En is degenerate
but that of E3, . . . , En is not.

To find the joint density of T3 = E3, . . . , Tn = En given T1 = Y and T2 = S, we
need the Jacobian of the transformation from y1, . . . , yn to t1, . . . , tn . In order to
obtain this Jacobian, we first note that y j = t1 + t2t j , for j = 3, . . . , n. As

∑
e j = 0

and
∑

e2
j = n − 1, we can write

e1 + e2 = −
n∑

j=3

t j , n − 1 − e2
1 − e2

2 =
n∑

j=3

t2
j ,

implying that there are functions h1 and h2 such that

e1 = h1(t3, . . . , tn), e2 = h2(t3, . . . , tn),

which in turn gives

y1 = t1 + t2h1(t3, . . . , tn), y2 = t1 + t2h2(t3, . . . , tn).
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Let hi j = ∂hi (t3, . . . , tn)/∂t j . The Jacobian we seek is

∣∣∣∣∂(y1, . . . , yn)

∂(t1, . . . , tn)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 h1 t2h13 t2h14 · · · t2h1n

1 h2 t2h23 t2h24 · · · t2h2n

1 t3 t2 0 · · · 0
1 t4 0 t2 · · · 0
...

...
...

...
. . .

...
1 tn 0 0 · · · t2

∣∣∣∣∣∣∣∣∣∣∣∣∣

= tn−2
2 h′(t3, . . . , tn)

= sn−2 H (e), (5.19)

say. Hence

f (e3, . . . , en | y, s) = f (y1, . . . , yn; µ, σ 2)sn−2 H (e)

f (y; µ, σ 2) f (s; σ 2)
∝ H (e)

after a straightforward calculation. As this depends on e1, . . . , en alone, the corre-
sponding random variables E1, . . . , En are independent of Y and S2.

Thus assessment of fit of the normal model should be based on the raw residuals
e1, . . . , en . One simple tool is a normal probability plot of the e j , which should be a
straight line of unit gradient through the origin. Such plots and variants are common
in regression (Section 8.6.1). Further support for use of the e j for model checking is
given in Section 5.3. �

Likelihood

Let Y1, . . . , Yn be a random sample from an exponential family of order p. Inference
for the parameter may be based on the sufficient statistic S = n−1 ∑

s(Y j ), which
also belongs to a natural exponential family of order p, with support S, say. Hence
the log likelihood may be written

�(ω) ≡ n {S
T
θ (ω) − b(ω)} = n[S

T
θ (ω) − κ {θ (ω)}], ω ∈ �,

and the score vector and observed information matrix are given by

U (ω) = ∂�(ω)

∂ω
= ∂θ T

∂ω
n

{
S − ∂κ(θ )

∂θ

}
,

J (ω)rs = − ∂2�(ω)

∂ωr∂ωs
= − ∂2θ T

∂ωr∂ωs
n

{
S − ∂κ(θ )

∂θ

}
+ ∂θ T

∂ωr

{
n
∂2κ(θ )

∂θ∂θ T

}
∂θ

∂ωs
.

The observed information is random unless the family is in natural form, in which
case θ = ω and hence ∂2θ/∂ωr∂ωs = 0; then I (θ ) = E{J (θ )} = J (θ ).

If the family is steep, there is a 1–1 relation between the interior of the closure of S,
int C(S), the expectation space M of S, and the natural parameter space N = θ (�).
Thus if S ∈ int C(S), there is a single value of θ such that S = µ(θ ) and u(θ ) = 0,
and moreover there is a 1–1 map between θ̂ and ω̂. Hence the maximum likelihood
estimators satisfy

µ̂ = µ(̂θ ) = µ{θ (ω̂)} = S.
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180 5 · Models

Thus the likelihood equation has just one solution, which maximizes the log likeli-
hood. Moreover, as � is open and ω̂ ∈ �, standard likelihood asymptotics will apply,
so ω̂

.∼ N {ω, I (ω)−1} and 2{�(ω̂) − �(ω)} .∼ χ2
p. If the model permits S 
∈ M,

standard asymptotics will break down. The same difficulty could arise if the true
parameter lies on the boundary of the parameter space.

Example 5.15 (Uniform density) The average y of a random sample from (5.8)
must lie in the interval (0, 1). Given y, the maximum likelihood estimate θ̂ is read off
from the right panel of Figure 5.3 as the value of θ on the horizontal axis for which
µ(θ ) = y on the vertical axis.

As mentioned in Example 5.7, when θ is restricted to � = [0, ∞) the family is
not steep, because M = [1/2, 1) 
= (0, 1) = int C(Y). A value y < 1/2 is possible
for any sample size and any θ ∈ �, and as θ̂ = 0 is the maximum likelihood estimate
for any such y, the 1–1 mapping between y and θ̂ is destroyed. Furthermore, this
� is not open, so the limiting distribution of θ̂ and the likelihood ratio statistic are
non-standard if θ = 0; see Example 4.39. �

Example 5.16 (Binomial density) The binomial model with denominator m,
probability 0 < π < 1 and natural parameter θ = log{π/(1 − π )} ∈ (−∞, ∞) has
Y = {0, 1, . . . , m} and int C(Y) = M = (0, m). The average R of a random sample
R1, . . . , Rn lies outside (0, m) with probability

Pr(R1 = · · · = Rn = 0) + Pr(R1 = · · · = Rn = m) = (1 − π )mn + πmn > 0,

so the maximum likelihood estimator θ̂ = log
{

R/(m − R)
}

may not be finite. As
the family is steep, a unique value of θ corresponds to each R ∈ M, so the only
problem that can arise is that θ̂ = ±∞ with small probability. On the other hand
Pr(|̂θ | = ∞) → 0 exponentially fast as n → ∞, so infinite θ̂ is rare in practice,
though not unknown. It corresponds to π̂ = 0 or π̂ = 1.

This difficulty also arises with other discrete exponential families. �

Example 5.17 (Normal density) Example 4.18 gives the score and information
quantities for a sample from the normal model in terms of µ and σ 2; in this
parametrization the observed information is random. In Example 4.22 we saw that
the log likelihood �(µ, σ 2) is unimodal and that the maximum likelihood estimators
are the sole solution to the likelihood equation; this is an instance of the general result
above. �

Derived densities

Various models derived from exponential families are themselves exponential fami-
lies, and this can be useful in inference.

Consider a natural exponential family of order p with ST and θ T partitioned as
(ST

1, ST
2) and (ψT, λT), where S1 and ψ have dimension q < p. The marginal density
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5.2 · Exponential Family Models 181

of S2, obtained by integration over the values of S1, is

f (s2; θ ) =
∫

exp
{
sT

1ψ + sT
2λ − κ(θ )

}
g0(s1, s2) ds1

= exp
{
sT

2λ − κ(θ )
} ∫

exp
(
sT

1ψ
)

g0(s1, s2) ds1

= exp
{
sT

2λ − κ(θ ) + dψ (s2)
}
,

say, so for fixed ψ the marginal density of S2 is an exponential family with natural
parameter λ.

The conditional density of S1 given S2 = s2 is

fS1|S2 (s1 | s2; θ ) = exp
{
sT

1ψ + sT
2λ − κ(θ )

}
g0(s1, s2)

exp
{
sT

2λ − κ(θ ) + dψ (s2)
}

= exp
{
sT

1ψ − κs2 (ψ)
}

gs2 (s1),

say. This is an exponential family of order q with natural parameter ψ , but the base
density and cumulant-generating function depend on s2. Such a removal of λ by
conditioning is a powerful way to deal with nuisance parameters.

Example 5.18 (Gamma density) Independent gamma variables Y1, . . . , Yn with
scale parameter λ and shape parameters κ1, . . . , κn have joint density

n∏
j=1

λκ j y
κ j −1
j

�(κ j )
exp(−λy j ) = λ

∑
κ j exp

(
−λ

n∑
j=1

y j

)
n∏

j=1

y
κ j −1
j

�(κ j )
.

As Y j has cumulant-generating function −κ j log(1 − λt), S1 = S = ∑
Y j is gamma

with parameters λ and
∑

κ j . The conditional density of Y1, . . . , Yn given S = s is

�
(∑

κ j
)

∏n
j=1 �(κ j )

s−n
n∏

j=1

( y j

s

)κ j −1
, y j > 0,

n∑
j=1

y j = s.

Thus the joint density of U1 = Y1/S, . . . , Un = Yn/S,

f (u1, . . . , un; κ1, . . . , κn) = �
(∑

κ j
)

∏n
j=1 �(κ j )

n∏
j=1

u
κ j −1
j , u j > 0,

n∑
j=1

u j = 1, (5.20)

lies on the simplex in n dimensions; it is called the Dirichlet density. Hence we may
base inferences for κ1, . . . , κn on the conditional density of Y1, . . . , Yn given their
sum, or equivalently on the observed values of the U j . �

The discussion above suggests that we may write

f (s; θ ) = fS1|S2 (s1 | s2; ψ) fS2 (s2; ψ, λ). (5.21)

If the model can be reparametrized in terms of a (p − q) × 1 vector ρ = ρ(ψ, λ)
which is variation independent of ψ , in such a way that the second term on the right
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182 5 · Models

of (5.21) depends only on ρ, then S2 is said to be a cut. The log likelihood based
on (5.21) then has form �1(ψ) + �2(ρ), maximum likelihood estimates of ρ and ψ

do not depend on each other, and the observed information matrix is block diagonal.
Inferences on ψ and ρ may be made separately, using the conditional density of S1

given S2 and the marginal density of S2. The cut most commonly encountered in
practice arises with Poisson variables; see Example 7.34 and page 501.

Exercises 5.2

1 Here is a version of Hölder’s inequality: let f (x) be a density supported in [a, b], let
p > 1, and let g(y) and h(y) be any two real functions such that the integrals

∫ b

a
|g(y)|p f (y) dy,

∫ b

a
|h(y)|q f (y) dy,

are finite, where p−1 + q−1 = 1. Then

∫
g(y)h(y) f (y) dy ≤

{∫ b

a
|g(y)|p f (y) dy

}1/p {∫ b

a
|h(y)|q f (y) dy

}1/q

.

If g and h are both non-zero, there is equality if and only if c|g(y)|p = d|h(y)|q for positive
constants c and d.
Show strict convexity of the cumulant-generating function κ(θ ) of an exponential family.

2 What natural exponential families are generated by (a) f0(y) = e−y , y > 0, and (b) f0(y) =
1
2 e−|y|, −∞ < y < ∞?

3 Which of Examples 4.1–4.6 are exponential families? What about the U (0, θ ) density?

4 Show that the gamma density (2.7) is an exponential family. What about the inverse gamma
density, for 1/Y when Y is gamma?

5 Show that the inverse Gaussian density

f (y; µ, λ) =
(

λ

2πy3

)1/2

exp {−λ(y − µ)2/(2µ2 y)}, y > 0, λ, µ > 0,

is an exponential family of order 2. Give a general form for its cumulants.

6 Find the exponential families with variance functions (i) V (µ) = aµ(1 − µ),M = (0, 1),
(ii) V (µ) = aµ2, M = (0, ∞), and (iii) V (µ) = aµ2, M = (−∞, 0).

7 For what values of a is there an exponential family with variance function V (µ) = aµ,
M = (0, ∞)?

8 Show that the N (µ, µ2) model is a curved exponential family and sketch how the density
changes as µ varies in (−∞, 0) ∪ (0, ∞). Sketch also the subset of the natural parameter
space for the N (µ, σ 2) distribution generated by this model.

9 Find a connection between Example 4.11 and (5.20), and hence suggest methods of
checking the fit of the exponential model.

10 Explain how (5.20) may be generated as an exponential family, by showing that it gener-
alizes (5.14).

11 Use Example 5.18 to construct a simulation algorithm for Dirichlet random variables.

12 Show that
∑

s(Y j ) is minimal sufficient for the parameter ω of an exponential family of
order p in a minimal representation.
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5.3 · Group Transformation Models 183

5.3 Group Transformation Models

Another important class of models stems from observing that many inferences should
have invariance properties. If, for instance, data y are recorded in degrees Celsius, one
might obtain a conclusion s(y) directly from the original data, or one might transform
them to degrees Fahrenheit, giving g(y), say, obtain the conclusion s{g(y)} in these
terms, and then back-transform to Celsius scale, giving conclusion g−1[s{g(y)}].
It is clearly essential that g−1[s{g(y)}] = s(y). The transformation from Celsius to
Fahrenheit is just one of many possible invertible linear transformations that might
be applied to y, however, any of which should leave the inference unchanged. More
generally we might insist that inferences be invariant when any element g of a group
of transformations acts on the sample space. This section explores some consequences
of this requirement.

A group G is a mathematical structure having an operation ◦ such that:

� if g, g′ ∈ G, then g ◦ g′ ∈ G;
� G contains an identity element e such that e ◦ g = g ◦ e = g for each g ∈ G;

and
� each g ∈ G possesses an inverse g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

A subgroup is a subset of G that is also a group.
A group action arises when elements of a group act on those of a set Y . In the

present case the group elements gθ typically correspond to elements of a parameter
space � and Y is the sample space of a random variable Y . The action of g on y,
g(y), say, is defined for each y ∈ Y and g(y) is an element of Y for each g ∈ G.

Setting y ≈ y′ if and only if there is a g ∈ G such that y = g(y′) gives an equivalence
relation, which partitions Y into equivalence classes called orbits and labelled by an
index a, say. Each y belongs to precisely one orbit, and can be represented by a
and its position on the orbit. Hence we can write y = g(a) for some g ∈ G. If this
representation is unique for a given choice of index, the group action is said to be free.

Example 5.19 (Location model) Let Y = θ + ε, where θ ∈ � = IR and ε is a
scalar random variable with known density f (y), where y ∈ IR. The density of Y
is f (y − θ ) = f (y; θ ), say, and that of θ ′ + Y = θ ′ + θ + ε is f (y; θ + θ ′). Thus
adding θ ′ to Y changes the parameter of the density. Taking θ ′ = −θ gives the baseline
density f (y; 0) = f (y) of ε.

Here group elements may be written gθ , corresponding to the parameters θ , and
the group operation is equivalent to addition. Hence gθ ◦ gθ ′ = gθ+θ ′ , the identity e
is g0 and the inverse of gθ is g−θ . Each element of the group corresponds to a point
in �, but it induces a group action gθ (y) = θ + y on the sample space.

For a random sample Y1, . . . , Yn , we take Y = IRn and interpret expressions such
as gθ (Y ) = θ + Y as vectors, with θ ≡ θ1n and Y = (Y1, . . . , Yn)T. Then y and y′1n is the n × 1 vector of

ones. belong to the same orbit if there exists a gθ such that gθ (y) = y′, that is, there exists
a θ such that θ + y = y′, and this implies that y′ is a location shift of y. On taking
θ = y′ − y we see that y − y = y′ − y′, implying that we can represent the orbit by
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184 5 · Models

the vector a(y) = y − y, because this choice of index gives a(y) = a(y′). Thus y is
equivalently written as (y − y, y), where the first term indexes the orbit and the second
the position of y within it. In terms of this representation we write y as gy(a) = y +
a = y + y − y = y. The group action is free because gθ (a) = y implies that θ = y.

In geometric terms, a(y) lies on the (n − 1)-dimensional hyperplane
∑

a j = 0,
each point of which determines a different orbit. The orbits themselves are lines
θ + a(y) passing through these points, with θ ∈ IR. When n = 2, each point (y1, y2)
in IR2 is indexed by a point on the line y1 + y2 = 0, which determines the orbit, a
straight line perpendicular to this. �

Two points y and y′ on the same orbit have the same index a = a(y), which is
said to be invariant to the action of the group because its value does not depend on
whether y or g(y) was observed, for any g ∈ G. It is maximal invariant if every other
invariant statistic is a function of it, or equivalently

a(y) = a(y′) implies that y′ = g(y) for some g ∈ G.

The distribution of A = a(Y ) does not depend on the elements of G. In the present
context these are identified with parameter values, so the distribution of A does not
depend on parameters and is known in principle; A is said to be distribution constant. A
maximal invariant can be thought of as a reduced version of the data that represents it as
closely as possible while remaining invariant to the action ofG. In some sense it is what
remains of Y once minimal information about the parameter values has been extracted.

Often there is a 1–1 correspondence between the elements of G and the parameter
space �, and then the action of G onY induces a group action on �. If we can write gθ

for a general element of G, then g ◦ gθ = gθ ′ for some θ ′ ∈ �. Hence g has mapped
θ to θ ′, thereby inducing an action on �. In principle the action of g on � might be
different from its action on Y , and it is clearer to think of two related groups G and G∗,
the second of which acts on �. We use g∗

θ to denote the element of G∗ that corresponds
to gθ ∈ G. In many cases the action of G∗ is transitive, that is, each parameter can be
obtained by applying an element of the group to a single baseline parameter.

Example 5.20 (Permutation group) Permutation of the indices of a random sample
Y1, . . . , Yn should leave any inference unaffected. Hence we may consider the group
of permutations π , with gπ (y) representing the permuted version of y ∈ IRn . Note that
π−1 is also a permutation, as is the operation that leaves the indices of y unchanged.
In the location model we might let G be the group containing all n! of the gπ in
addition to the gθ . Though well-defined on the sample space, gπ has no counterpart
in the parameter space, and so the enlarged group is not transitive.

To check that a(y) = (y(1) − y, . . . , y(n) − y)T is a maximal invariant, note that if
a(y) = a(y′), then permutations π, π ′ exist such that gπ ◦ g−y(y) = gπ ′ ◦ g−y′ (y′).
This in turn implies that g−1

−y′ ◦ g−1
π ′ ◦ gπ ◦ g−y(y) = y′. Hence a is a maximal

invariant.
If permutations are not included in the group, the same argument shows that (y1 −

y, . . . , yn − y)T is a maximal invariant. Thus the maximal invariant depends on the
chosen group. �
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5.3 · Group Transformation Models 185

We shall usually ignore permutations of the order of a random sample, because the
discussion below is simpler if the group considered is transitive.

Equivariance

A statistic S = s(Y ) defined on Y and taking values in the parameter space � is said
to be equivariant if s(gθ (Y )) = g∗

θ (s(Y )) for all gθ ∈ G. Often S is chosen to be an
estimator of θ , and then it is called an equivariant estimator. Maximum likelihood
estimators are equivariant, because of their transformation property, that if φ = φ(θ )
is a 1–1 transformation of the parameter θ , then φ̂ = φ (̂θ ), where θ̂ = s(Y ) is the
maximum likelihood estimator of θ . If the transformation φ corresponds to g∗

φ ∈ G∗,
and gφ(Y ) is the transformation of Y whose maximum likelihood estimator is φ̂, then
φ̂ = s(gφ(Y )), while φ (̂θ ) = g∗

φ(s(Y )). Hence s(gφ(Y )) = g∗
φ(s(Y )) for all such gφ ,

which is the requirement for equivariance.
An equivariant estimator can be used to construct a maximal invariant. Note first

that as s(Y ) ∈ �, the corresponding group elements g∗
s(Y ) ∈ G∗ and gs(Y ) ∈ G exist.

Now consider a(Y ) = g−1
s(Y )(Y ). If a(Y ) = a(Y ′), then g−1

s(Y )(Y ) = g−1
s(Y ′)(Y

′), and it
follows that Y ′ = gs(Y ′) ◦ g−1

s(Y )(Y ). Hence A = a(Y ) = g−1
s(Y )(Y ) is maximal invariant.

Example 5.21 (Location-scale model) Let Y = η + τε, where as before ε has a
known density f , and the parameter θ = (η, τ ) ∈ � = IR × IR+. The group action is
gθ (y) = g(η,τ )(y) = η + τ y, so

g(η,τ ) ◦ g(µ,σ )(y) = g(η,τ )(µ + σ y) = η + τµ + τσ y = g(η+τµ,τσ )(y). (5.22)

The set of such transformations is closed with identity g(0,1). It is easy to check that
g(η,τ ) has inverse g(−η/τ,τ−1). Therefore

G = {
g(η,τ ) : (η, τ ) ∈ IR × IR+

}
is indeed a group under the operation ◦ defined above.

The action of g(η,τ ) on a random sample is g(η,τ )(Y ) = η + τY , with η ≡ η1n and
Y an n × 1 vector, as in Example 5.19. Expression (5.22) implies that the implied
group action on � is

g∗
(η,τ )((µ, σ )) = ( η + τµ, τσ ) .

The sample average and standard deviation are equivariant, because with s(Y ) =
(Y , V 1/2), where V = (n − 1)−1 ∑

(Y j − Y )2, we have

s(g(η,τ )(Y )) =
(

η + τY ,
{

(n − 1)−1
∑

(η + τY j − η + τY )2
}1/2

)

=
(

η + τY ,
{

(n − 1)−1
∑

(η + τY j − η − τY )2
}1/2

)

= (
η + τY , τ V 1/2

)
= g∗

(η,τ ) (s(Y )) .
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A maximal invariant is A = g−1
s(Y )(Y ), and the parameter corresponding to g−1

s(Y ) is
(−Y/V 1/2, V −1/2). Hence a maximal invariant is the vector of residuals

A = (Y − Y )/V 1/2 =
(

Y1 − Y

V 1/2
, . . . ,

Yn − Y

V 1/2

)T

, (5.23)

also called the configuration. It can be checked directly that the distribution of A
depends on n and f but not on θ . Any function of A is invariant. If permutations are
added to G, a maximal invariant is A = (Y(·) − Y )/V 1/2, where Y(·) = (Y(1), . . . , Y(n))
represents the vector of ordered values of Y .

The orbits are determined by different values a of the statistic A, and Y has a unique
representation as gs(Y )(A) = Y + V 1/2 A. Hence the group action is free.

The elements of a satisfy the equations
∑

a j = 0 and
∑

a2
j = n − 1, so A lies

on an (n − 2)-dimensional surface in IRn . When n = 3 this is easily visualized; it
is the circle that forms the intersection of the sphere of radius 2 with the plane
a1 + a2 + a3 = 0. The entire space IR3 is generated by first choosing an element of
this circle, then multiplying it by a positive number to rescale it to lie on a ray passing
through the origin, and finally adding the vector y13.

Another equivariant estimator is (Y(1), Y(2) − Y(1)), where Y(r ) is the r th order statis-
tic, and the argument above shows that the vector (Y − Y(1))/(Y(2) − Y(1)) is corre-
sponding maximal invariant. Evidently this is just one of many possible location-scale
shifts of A, which can be thought of as the ‘shape’ of the sample, shorn of information
about its location and scale. �

The group-averse reader may wonder whether the generality of the discussion
above is needed to deal with our motivating example of temperatures in Celsius
and Fahrenheit. In fact we have not yet raised a crucial distinction between invari-
ances intrinsic to a context and those stemming only from the mathematical structure
of the model. Invariances of the first sort are more defensible than are the second,
because not every mathematical expression of a statistical problem successfully pre-
serves aspects such the interpretation of key parameters. Thus the sensible choice of
group in a particular context may not be mathematically most natural. Furthermore
appeal to invariance is not sensible if external information suggests that some pa-
rameter values should be favoured over others. Invariance arguments require careful
thought.

Example 5.22 (Venice sea level data) The straight-line regression model (5.2) can
be expressed as

y = Xβ + ε,

where

y =



y1
...

yn


 , X =




1 x1
...

...
1 xn


 , β =

(
β0

β1

)
, ε =




ε1
...
εn


 .
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5.3 · Group Transformation Models 187

If the ε j are independent normal variables then Y ∼ Nn(Xβ, σ 2 In). Hence OY ∼
Np(O Xβ, σ 2 In) for any n × n orthogonal matrix O that preserves the column spaceAn n × n orthogonal

matrix of real numbers O
has the properties that
OT O = O OT = In .

of X , that is, such that X (X T X )−1 X O X = O X . It is straightforward to check that
such matrices form a group. Now E(OY ) = Xγ , where γ = (X T X )−1 X T O Xβ =
A−1β, say, is the result of applying the corresponding group element in the parameter
space.

The transformation giving (5.3), with

(
β0

β1

)
= β = Aγ =

(
a11 a12

a21 a22

)
γ =

(
1 −x
0 1

)
γ =

(
γ0 − γ1x

γ1

)
,

preserves the interpretation of β1 = a22γ1 as a rate of change of E(Y ) with respect
to time, though the time origin is shifted. From a mathematical viewpoint there is no
reason not to take more general invertible transformations β = Aγ , for example with
a21 
= 0, but this makes no sense statistically. Moreover even with a21 = 0 not every
choice of a22 makes sense: taking a22 < 0 or such that the units of γ1 were seconds
would have little appeal. �

In some cases the full parameter space does not give a useful group of transforma-
tions, but subspaces of it do. If the parameter space has form � × �, with the same
group of transformations G = {gλ : λ ∈ �} acting on the sample space for each value
of ψ , then we have a composite group transformation model.

Example 5.23 (Location-scale model) In the previous example, suppose that the
density fψ of ε depends on a further parameter ψ . An example is the tψ density.
Then for each fixed ψ we have a location-scale model in terms of λ = (η, τ ), with
gλ(y) = η + τ y, and our previous discussion applies.

For each ψ a maximal invariant based on a random sample Y1, . . . , Yn is
A = (Y − Y )/V 1/2, whose distribution depends on the sample size and on fψ but
not on λ. �

Exercises 5.3

1 Show that ≈ is an equivalence relation.

2 Suppose Y = τε, where τ ∈ IR+ and ε is a random variable with known density f . Show
that this scale model is a group transformation model with free action gτ (y) = τ y. Show
that s1(Y ) = Y and s2(Y ) = (

∑
Y 2

j )1/2 are equivariant and find the corresponding maximal
invariants. Sketch the orbits when n = 2.

3 Suppose that ε has known density f with support on the unit circle in the complex
plane, and that Y = eiθ ε for θ ∈ IR. Show that this is a group transformation model. Is it
transitive? Is the action free?

4 Write the configuration (5.23) in terms of ε1, . . . , εn , where Y j = µ + σε j , and thereby
show that its distribution does not depend on the parameters.

5 Show that the gamma density with shape and scale parameters ψ and λ, is a composite
transformation model under the mapping from Y to τY , where τ > 0.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511815850.006
Downloaded from https://www.cambridge.org/core. University of Toronto, on 25 Aug 2020 at 18:27:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511815850.006
https://www.cambridge.org/core


188 5 · Models

y

H
az

ar
d 

fu
nc

tio
n

0 1 2 3 4 5

0
1

2
3

4
5

y

H
az

ar
d 

fu
nc

tio
n

0 1 2 3 4 5

0
1

2
3

4
5 Figure 5.7 Hazard

functions. Left panel:
Weibull hazards with
θ = 1 and α = 0.5 (dots),
α = 1 (large dashes),
α = 1.5 (dashes), and
bi-Weibull hazard with
θ1 = 0.3, α1 = 0.5,
θ2 = α2 = 5 (solid). Right
panel: Log-logistic
hazards with λ = 1 and
α = 0.5 (solid), α = 5
(dots), gamma hazard
with λ = 0.6 and α = 2
(dashes), and standard
normal hazard (large
dashes).

5.4 Survival Data

5.4.1 Basic ideas

The focus of interest in survival data is the time to an event. An important area of
application is medicine, where, for example, interest may centre on whether a new
treatment lengthens the life of a cancer patient, relative to those who receive existing
treatments. Other common applications are in industrial reliability, where the aim may
be to estimate the distribution of time to failure for a fridge, a computer program,
or a pacemaker. Examples also abound in the social sciences, where for example the
length of a period of unemployment may be of interest. In each case the time Y to
the event is non-negative and may be censored. For example, a patient may be lost to
follow-up for some reason unrelated to his disease, so that it is unknown whether or
not he died from the cause under study. In general discussion we refer to the items
liable to fail as units; these may be persons, widgets, marriages, cars, or whatever.

This section outlines some basic notions in survival analysis, concentrating on
single samples. More complex models are discussed in Section 10.8.

Hazard and survivor functions

A central concept is the hazard function of Y , defined loosely as the probability density
of failure at time y, given survival to then. If Y is a continuous random variable this is

h(y) = lim
δy→0

1

δy
Pr (y ≤ Y < y + δy | Y ≥ y) = f (y)

F(y)
,

where F(y) = Pr(Y ≥ y) = 1 − F(y) is the survivor function of Y . An older term
for h(y) is the force of mortality, and it is also called the age-specific failure rate.
Evidently h(y) ≥ 0; some example hazard functions are shown in Figure 5.7.

The exponential density with rate λ has F(y) = exp(−λy) and constant hazard
function h(y) = λ, and although data are rarely so simple, this model of a constant
failure rate independent of the past is a natural baseline from which to develop more
realistic models.
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5.4 · Survival Data 189

The cumulative hazard function isOr integrated hazard
function.

H (y) =
∫ y

0
h(u) du =

∫ y

0

f (u)

1 − F(u)
du = − log {1 − F(y)} ,

as F(0) = 0. Thus the survivor function may be written as F(y) = exp{−H (y)}, and
f (y) = h(y) exp{−H (y)}. If limy→∞ H (y) < ∞, then F(∞) > 0 and the distribu-
tion is defective, putting positive probability on an infinite survival time. This may
arise in practice if, for example, the endpoint for a study is death from a disease, but
complete recovery is possible.

For a discrete distribution with probabilities fi at 0 ≤ t1 < t2 < · · ·, we may write
h(y) = ∑

hiδ(y − ti ), where

hi = Pr(Y = ti | Y ≥ ti ) = fi

fi + fi+1 + · · · .

Thus

Pr(Y > ti | Y ≥ ti ) = 1 − hi , fi = hi

i−1∏
j=1

(1 − h j ), (5.24)

and if ti < y ≤ ti+1 then

F(y) = Pr(Y > ti | Y ≥ ti )Pr(Y > ti−1 | Y ≥ ti−1) · · · Pr(Y > t1)

=
∏

i :ti <y

(1 − hi ). (5.25)

We define the cumulative hazard as H (y) = −∑
i :ti <y log(1 − hi ), again giving

F(y) = exp{−H (y)}. The more natural definition
∑

i :ti <y hi is approximately equal
to H (y) if the individual hi are small.

Mixed discrete-continuous variables are important in a general treatment of survival
data — for example, a patient may die so fast from complications after an operation
that the survival time is effectively zero, but otherwise may live for years — but here
we avoid them and the complications they bring.

Suppose that Y = min(Y1, . . . , Yk), where the Yi are continuous times to failure
from k independent causes, and that their hazard functions are hi (y). Then Y exceeds
y if and only if all the Yi exceed y, so

F(y) =
k∏

i=1

Pr(Yi ≥ y) = exp

{
−

k∑
i=1

∫ y

0
hi (u) du

}
,

and it follows that Y has hazard function h(y) = ∑
hi (y). That is, hazards for inde-

pendent causes of failure are added.

Example 5.24 (Weibull density) The Weibull density (4.4) has survivor function
F(y) = exp{−(y/θ )α}, so its hazard function is αθ−α yα−1. This is constant when
α = 1, decreasing when α < 1, and increasing when α > 1, as shown in the left
panel of Figure 5.7. This flexibility and the tractability of its density and distribution
functions make the Weibull a popular choice in reliability studies.
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190 5 · Models

This density is the basis of the bi-Weibull model, which corresponds to the minimum
of two independent Weibull variables, shown by the argument above to have hazard
function α1θ

−α1
1 yα1−1 + α2θ

−α2
2 yα2−1. If the shape parameters lie on opposite sides

of unity, so 0 < α1 < 1 < α2, say, h(y) is bathtub-shaped: there is a high early failure
rate during a ‘burn-in period’, then a flattish hazard and an eventual increase in failure
rate; see Figure 5.7. If α1 = α2 the hazard is indistinguishable from the Weibull hazard
and θ1 and θ2 are not identifiable. �

Example 5.25 (Log-logistic density) The log-logistic distribution has survivor and
hazard functions

F(y) = {1 + (λy)α}−1, h(y) = α
λα yα−1

1 + (λy)α
, y > 0, α, λ > 0.

Two examples of h(y) are shown in the right panel of Figure 5.7. It is decreasing for
α ≤ 1 and unimodal otherwise. The log-normal distribution, that is, the distribution
of Y = eZ , where Z has a normal distribution, is similar to the log-logistic, and its
hazard can take similar shapes. The normal hazard, also shown, increases very rapidly
due to the light tails of the normal density. �

Example 5.26 (Gamma density) The gamma survivor and hazard functions are

F(y) =
∫ ∞

y

λαuα−1

�(α)
e−λu du, h(y) = λα yα−1e−λy∫ ∞

y λαuα−1e−λu du
.

Figure 5.7 shows an example of the gamma hazard function. �

Censoring

The simplest form of censoring occurs when a random variable Y is watched until a
pre-determined time c. If Y ≤ c, we observe the value y of Y , but if Y > c, we know
only that Y survived beyond c. This is known as Type I censoring. Type II censoring
arises when n independent variables are observed until there have been r failures, so
the first r order statistics 0 < Y(1) < · · · < Y(r ) are observed, All that is known about For simplicity we assume

no ties.the n − r remaining observations is that they exceed Y(r ). This scheme is typically
used in industrial life-testing.

Under random censoring we suppose that the j th of n independent units has an
associated censoring time C j drawn from a distribution G, independent of its survival
time Y 0

j . The time actually observed is Y j = min(Y 0
j , C j ), and it is known whether

or not Y j = Y 0
j , an event indicated by D j . Thus a pair (y j , d j ) is observed for each

unit, with d j = 1 if y j is the survival time and d j = 0 if y j is the censoring time. This
type of censoring is important in medical applications, where a patient may die of a
cause unrelated to the reason they are being studied, may withdraw from the study or
be lost to follow-up, or the study may end before their survival time is observed.

Figure 5.8 shows the relation between calendar time and time on trial for a medical
study, with censoring both before and at the end of the trial. We assume below that
failure does not depend on the calendar time at which an individual enters the study;
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Figure 5.8 Lexis
diagram showing typical
pattern of censoring in a
medical study. Each
individual is shown as a
line whose x coordinates
run from the calendar time
of entry to the trial to the
calendar time of failure
(blob) or censoring
(circle). Censoring occurs
at the end of the trial,
marked by the vertical
dotted line, or earlier. The
vertical axis shows time
on trial, which starts when
individuals enter the
study. The risk set for the
failure at calendar time
4.5 comprises those
individuals whose lines
touch the horizontal
dashed line; see page 543.

thus we study events on the vertical axis. Calendar time may be used to account for
changes in medical practice over the course of a trial.

In applications the assumption that C j and Y 0
j are independent is critical. There

would be serious bias if the illest patients drop out of a trial because the treatment
makes them feel even worse, thereby inducing association between survival and cen-
soring variables because patients die soon after they withdraw.

The examples above all involve right-censoring. Less common is left-censoring,
where the time of origin is not known exactly, for example if time to death from a
disease is observed, but the time of infection is unknown.

In practice a high proportion of the data may be censored, and there may be a
serious loss of efficiency if they are ignored (Example 4.20). There will also be bias,
as survival probabilities will be underestimated if censoring is not taken into account.
Hence it is crucial to make proper allowance for censoring.

5.4.2 Likelihood inference

Suppose that the survival times are continuous, that data (y1, d1), . . . , (yn, dn) on n
independent units are available, and that there is a parametric model for survival
times, with survivor and hazard functions F(y; θ ) and h(y; θ ). Recall that the density
may be written f (y; θ ) = h(y; θ )F(y; θ ) and that in terms of the integrated hazard
function, F(y; θ ) = exp{−H (y; θ )}. Under random censoring in which the censoring
variables have density and distribution functions g and G, the likelihood contribution
from y j is

f (y j ; θ ){1 − G(y j )} if d j = 1, and F(y j ; θ )g(y j ) if d j = 0.

If the censoring distribution does not depend on θ , then g(y j ) and G(y j ) are constant
and the overall log likelihood is

�(θ ) ≡
∑

u

log f (y j ; θ ) +
∑

c

logF(y j ; θ ),
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Table 5.3
Blalock–Taussig shunt
data (Oakes, 1991). The
table gives survival time
of shunt (months after
operation) for 48 infants
aged over one month at
time of operation,
followed by times for 33
infants aged 30 or fewer
days at operation. Infants
whose shunt has not yet
failed are marked +.

0+ 1+ 1+ 3+ 3+ 7 10+ 11+ 12+ 12+ 15+ 18+
20+ 22+ 22+ 24+ 25+ 26+ 31+ 36+ 36+ 36 38 40
47+ 47+ 49+ 53+ 53+ 55+ 56+ 57+ 61+ 67+ 67+ 70
73 75+ 77+ 83+ 84+ 88+ 89+ 99 121+ 122+ 123+ 141+

0+ 0+ 2+ 2+ 2+ 2+ 3 3+ 4+ 5+ 9+ 10+
11 12+ 13 13+ 18+ 22+ 22+ 24+ 24+ 24+ 25+ 26+
27 28 32+ 35+ 36 40+ 43+ 50+ 54

where the sums are over uncensored and censored units. This amounts to treating the
censoring pattern as fixed, and encompasses Type I censoring, for which G puts all its
probability at c. In terms of the hazard function and its integral, the log likelihood is

�(θ ) =
n∑

j=1

{d j log h(y j ; θ ) − H (y j ; θ )}. (5.26)

Inference for θ is based on this in the usual way. As calculation of expected information
involves assumptions about the censoring mechanism, standard errors for parameter
estimates are based on observed information.

Example 5.27 (Exponential distribution) When f (y; λ) = λe−λy , the hazard is
h(y; λ) = λ, and hence the log likelihood for a random sample (y1, d1), . . . , (yn, dn) is

�(λ) =
n∑

j=1

(d j log λ − λy j ) = log λ

n∑
j=1

d j − λ

n∑
j=1

y j ,

giving maximum likelihood estimate λ̂ = ∑
d j/

∑
y j and observed information

J (λ) = ∑
d j/λ

2; see Example 4.20. Hence the estimate of λ is zero if there are
no failures, and censored data contribute no information about λ.

The expected information I (λ) = E {J (λ)} involves E(D j ), where D j indicates
whether a failure or censoring time is observed for the j th observation, but this
expectation cannot be obtained without some assumption about the censoring dis-
tribution G. Although this is feasible for theoretical calculations such as those in
Example 4.20, in practice the inverse observed information is used to give a standard
error J (̂λ)−1/2 for λ̂.

The mean of the exponential density is θ = λ−1, and its maximum likelihood
estimate is θ̂ = ∑

y j/
∑

d j , with observed information J (̂θ ) = θ̂2/
∑

d j and max-
imized log likelihood �(̂θ ) = −(1 + log θ̂ )

∑
d j . �

Example 5.28 (Blalock–Taussig shunt data) The Blalock–Taussig shunt is an
operative procedure for infants with congential cyanotic heart disease. Table 5.3
contains data from the University of Rochester on survival times for the shunt for
81 infants, divided into two age groups. Many of the survival times are censored,
meaning that the shunt was still functioning after the given survival time; its time to
failure is not known for these children, whereas it is known for the others. There are
just seven failures in each group. The table suggests that the shunt fails sooner for
younger children, and it is of interest to see how failure depends on age.
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A simple model for these data is that the failure times are independent exponential
variables, with common mean θ for both groups. Formulae from Example 5.27 show
that θ̂ = 209.1 and the maximized log likelihood is −88.79. If the means are different,
θ1 and θ2, say, then the maximized log likelihood is −85.98, so the likelihood ratio
statistic for comparing these models is 2 × (88.79 − 85.98) = 5.62, to be compared
with the χ2

1 distribution. As Pr(χ2
1 ≥ 5.62)

.= 0.018, there is strong evidence that
the mean survival time is shorter for the younger group, if the exponential model is
correct.

If the data were uncensored, it would be straightforward to assess the fit of this
model using probabability plots, but the amount of censoring is so high that this
is not sensible. More specialized methods are needed, and they are discussed in
Section 5.4.3.

One way to judge adequacy of the exponential model is to embed it in a larger one.
A simple alternative is to suppose that the data are Weibull, with H (y) = (y/θ )α .
The maximized log likelihoods are −83.72 when this model is fitted separately to
each group, and −83.74 when the same value of α is used for both groups. The
likelihood ratio statistic for comparison of these is 2 × (83.74 − 83.72) = 0.04, which
is negligible, but that for comparison with the best exponential model, 2 × (85.98 −
83.74) = 4.48, suggests that the Weibull model gives the better fit. The corresponding
estimates and their standard errors are θ̂1 = 181.1 (52.7), θ̂2 = 57.6 (15.1), and α̂ =
1.64 (0.35). The value of α̂ corresponds to an increasing hazard. �

Discrete data

Suppose that events could occur at pre-assigned times 0 ≤ t1 < t2 < · · ·, and that
under a parametric model of interest the hazard function at ti is hi = hi (θ ). We adopt
the convention that a unit censored at time ti could have been observed to fail there,
so giving likelihood contribution

lim
y↓ti

F(y) = (1 − h1) · · · (1 − hi ),

from (5.25); one way to think of this is that censoring at ti in fact takes place im-
mediately afterwards. The contribution to the likelihood from a unit that fails at ti
is (1 − h1) · · · (1 − hi−1)hi ; see (5.24). Although the likelihood can be written down
directly, it is more useful to express it in terms of the ri units still in the risk set —
that is not yet failed or censored — at time ti and the number di of units who fail
there. This modifies our previous notation: now di is the sum of the indicators of unit
failures at time ti , and can take one of values 0, 1, . . . , ri . Each of the di failures at ti
contributes hi to the likelihood, and the other units then still in view each contribute
1 − hi . It follows that the log likelihood may be written as

�(θ ) =
∑

i

{di log hi + (ri − di ) log (1 − hi )} , (5.27)

with the interpretation that the probability of failure at ti conditional on survival to ti
is hi , and di of the ri units in view at ti fail then. Thus (5.27) is a sum of contributions
from independent binomial variables representing the numbers of failures di at each
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Table 5.4 Historical
estimates of the force of
mortality (year−1),
averaged for 5-year age
groups (Thatcher, 1999).
The bottom line gives the
estimated number of
deaths at age 30 years and
above, on which the force
of mortality is based.

Age Hungary England Breslau
England & Wales, 1841 England & Wales, 1980–82

group 900–1100 1640–89 1687–91 Males Females Males Females

30–35 0.0235 0.0171 0.0164 0.0108 0.0107 0.0010 0.0006
35–40 0.0291 0.0205 0.0195 0.0123 0.0118 0.0014 0.0009
40–45 0.0337 0.0195 0.0233 0.0140 0.0131 0.0024 0.0016
45–50 0.0402 0.0244 0.0282 0.0159 0.0145 0.0043 0.0028
50–55 0.0696 0.0307 0.0342 0.0181 0.0162 0.0079 0.0047
55–60 0.0814 0.0459 0.0383 0.0254 0.0220 0.0138 0.0076
60–65 0.1033 0.0513 0.0474 0.0375 0.0331 0.0227 0.0119
65–70 0.1485 0.0701 0.0630 0.0553 0.0493 0.0365 0.0187
70–75 0.1877 0.1129 0.0995 0.0815 0.0736 0.0587 0.0308
75–80 0.3008 0.1445 0.1589 0.1201 0.1097 0.0930 0.0527
80–85 0.1974 0.1771 0.1638 0.1432 0.0919
85–90 0.2617 0.2448 0.2110 0.1567
90–95 0.3884 0.3674 0.2900 0.2374

95–100 0.3894 0.3215

Deaths 2300 3133 2675 71,000 74,000 834,000 828,000

time ti , with denominators ri and failure probabilities hi . In fact ri depends on the
history of failures and censorings up to time ti , so the di are not independent, but
it turns out that for large sample inference we may proceed as if they were. This
can be formalized using the theory of counting processes and martingales; see the
bibliographic notes to this chapter and to Chapter 10.

Example 5.29 (Human lifetime data) The virtual elimination of many infectious
diseases due to improved medical care and living conditions have led to increased
life expectancy in the developed world. If the trend continues there are potentially
major consequences for social security systems. Some physicians have asserted that
an upper limit to the length of human life is imposed by physical constraints, and
that the consequence of improved health care is that senesence will eventually be
compressed into a short period just prior to death at or near this upper limit. This view
is controversial, however, and there is a lively debate about the future of old age.

A natural way to assess the plausibility of the hypothesized upper limit is to exam-
ine data on mortality. Table 5.4 contains historical snapshots of the force of mortality,
obtained from census data, records of births and deaths, and other sources. The ear-
liest data were obtained by forensic examination of adult skeletons in Hungarian
graveyards, using a procedure that probably underestimates ages over 60 years and
overestimates those below. The table shows estimates of the average probability of
dying per year, conditional on survival to then, using the following argument. For
continuous-time data with survivor function F(y) and corresponding hazard function
h(y), the probability of failure in the period [ti , ti+1) given survival to ti would be

F(ti ) − F(ti+1)

F(ti )
= 1 − exp

{
−(ti+1 − ti )

1

ti+1 − ti

∫ ti+1

ti

h(y) dy

}
,
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mortality for historical
data, in units of deaths per
person-year. Left panel,
from top to bottom: data
for medieval Hungary,
England 1640–89, Breslau
1687–91 (dots), English
and Welsh females 1841
and 1980–82. Right panel:
data for England and
Wales, 1980–82, males
(above) and females
(below) and fitted hazard
functions (dots).

where (ti+1 − ti )−1
∫ ti+1

ti
h(y) dy is the average hazard over the interval. Given dis-

cretized data with ri people alive at time ti , of whom di fail in [ti , ti+1), the corre-
sponding empirical hazard is −(ti+1 − ti )−1 log(1 − di/ri ), and this is reported in the
table; the corresponding di and ri are unavailable to us. For British males dying in
1980 the empirical hazard rose from about 0.001 year−1 at age 30 years to about
0.1 year−1 at 80 years to about 0.4 year−1 at 95 years; for females the probabilities
were slightly lower. Figure 5.9 shows the force of mortality of some of the columns
of the table; it is no surprise that it is lower in later than in earlier periods.

One model for such data is that

h(y; θ ) = λ + αeβy

1 + αeβy
,

where θ = (α, β, λ), corresponding to integrated hazard and survivor functions

H (y; θ ) = λy + 1

β
log

(
1 + αeβy

1 + α

)
, F(y; θ ) = e−λy ×

(
1 + α

1 + αeβy

)
1/β, y ≥ 0.

One interpretation of this model is that there are two competing causes of death, one
with a constant hazard, and the other with a logistic hazard.

In order to use (5.27) to fit this model to the data given in Table 5.4, we must calculate
hi (θ ) and (di , ri ). The probability of dying in [ti , ti+1) conditional on survival to ti is

hi (θ ) = Pr(ti ≤ Y ≤ ti+1 | Y ≥ ti )

= F(ti ; θ ) − F(ti+1; θ )

F(ti ; θ )

= 1 − exp {H (ti ; θ ) − H (ti+1; θ )} ,

and this is calculated using the logistic hazard given above. The empirical values of
the hazard function hi = di/ri , where di is the number of deaths among the ri persons
at risk, can be obtained from the columns of Table 5.4. Some calculation gives

d1 = nh1, di = nhi (1 − h1) · · · (1 − hi−1), i = 2, . . . , k,
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Table 5.5 Maximum
likelihood estimates for
fits of logistic hazard
model to the data in
Table 5.4. Standard errors
given as 0.00 are smaller
than 0.005.

Deaths at age 30
Estimate (standard error)

Data set years and over 104α̂ 102β̂ 102λ̂

Hungary, 900–1100 2300 8.76 (3.78) 7.68 (0.65) 1.27 (0.32)
England, 1640–89 3133 1.87 (0.66) 8.65 (0.48) 1.40 (0.12)
Breslau, 1687–91 2675 1.44 (0.76) 8.88 (0.73) 1.57 (0.15)
England & Wales, 1841, males 71,000 0.50 (0.03) 10.08 (0.08) 0.97 (0.01)
England & Wales, 1841, females 74,000 0.32 (0.02) 10.50 (0.08) 0.97 (0.01)
England & Wales, 1980–82, males 834,000 0.46 (0.00) 9.93 (0.01) −0.04 (0.00)
England & Wales, 1980–82, females 828,000 0.12 (0.00) 10.92(0.01) 0.03 (0.00)

where n = r1 is the number initially at risk, an estimate of which is given at the foot
of the table; once the di are known the ri are given by di/hi . When these pieces are
put together, maximum likelihood estimates of θ may be obtained by numerical max-
imization of (5.27), with standard errors based on the inverse observed information
matrix, also obtained numerically. Table 5.5 shows that α̂ and λ̂ decrease systemati-
cally with time, while the value of β̂ increases slightly but is broadly constant, close
to 0.1. These are consistent with the overall decrease in the hazard function, but no
change in its shape, that we see in the left panel of Figure 5.9. The values of λ̂ are gen-
erally similar to the observed force of mortality at age 30–35, and one interpretation
is that λ̂ represents the danger from the principal risks at this age, namely infectious
diseases and child-bearing, which has sharply reduced over the last 150 years.

The fits for the 1980–82 data are shown in the right panel of Figure 5.9. Although the
fit is good, the extrapolation beyond the range of the data must be treated skeptically.
It shows that although the model imposes no absolute upper limit on lifetimes, for a
person dying in 1980–82 there was an effective limit of about 140 years, well beyond
the limits of 110 or 115 years which have been suggested by physicians. In fact the
longest life for which there is good documentation is that of Mme Jeanne Calment,
who died in 1997 aged 122 years, and there is unlikely ever to be enough data to see
if there is an upper limit well above this.

Example 5.32 gives further discussion of this model. �

5.4.3 Product-limit estimator

Graphical procedures are essential for initial data inspection, for suggesting plausible
models and for checking their fit. One standard tool is a nonparametric estimator of
the survivor function, in effect extending the empirical distribution function (Exam-
ple 2.7) to censored data.

The simplest derivation of it is based on the model for failures at discrete pre-
specified times given above (5.25), though the estimator is useful more widely. We
therefore start with expression (5.27), which gives the log likelihood for such data in
terms of the hazard function h1, h2, . . .. For parametric analysis of a discrete failure
distribution the hi are functions of a parameter θ , but for nonparametric estimation
we treat each hi as a separate parameter and estimate it by maximum likelihood.
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Differentiation of (5.27) with respect to hi gives ĥi = di/ri and hence

F̂(y) =
∏

i :ti <y

(
1 − ĥi

) =
∏

i :ti <y

(
1 − di

ri

)
.

This is known as the product-limit or Kaplan–Meier estimator. Note thatEdward Kaplan and Paul
Meier were former
students of John Tukey
who submitted separate
papers to Journal of the
American Statistical
Association. They were
encouraged to merge them
by the editor. Despite
mixed reviews the editor
decided to publish the
joint paper (Kaplan and
Meier, 1958), which has
become one of the
most-cited articles in
statistics.

− ∂2�

∂hi∂h j
=

{ ri

ĥi (1−ĥi )
, i = j ,

0, otherwise,

implying that that the ĥi are asymptotically independent, with diagonal variance
matrix whose i th element is ĥi (1 − ĥi )/ri .

This derivation extends to continuous failure times by supposing that the y j are
ordered and that there are no ties, giving t1 = y1 < · · · < tn = yn . Then d j simply
indicates whether y j is a failure or a censoring time, and

F̂(y) =
∏

j :y j <y

(
1 − 1

r j

)d j

, (5.28)

so the estimate decreases only at those values of t j with d j = 1. This estimate is
valid also when the y j are not pre-specified, but full justification of this would take
us too far afield. If there is no censoring, then 1 − F̂(y) is the empirical distribution
function.

We find the variance of F̂(y) by arguing that if the di are asymptotically independent
binomial variables with denominators ri , then

var{log F̂(y)} = var

{ ∑
i :yi <y

log(1 − ĥi )

}

.=
∑

i :yi <y

var{log(1 − ĥi )}

.=
∑

i :yi <y

1

(1 − ĥi )2

ĥi (1 − ĥi )

ri

=
∑

i :yi <y

di

ri (ri − di )
, (5.29)

where the first approximation uses the asymptotic independence of the ĥi and the
second uses the delta method. As var{log F̂(y)} .= var{F̂(y)}/F̂(y)2, we obtain

Major Greenwood
(1880–1949) qualified as
a physician before turning
to statistics and
epidemiology under the
influence of Karl Pearson.
He was the first resident
statistician at any medical
research institute, and
worked for the British
Medical Research Council
and the London School of
Hygiene and Tropical
Medicine. He studied
infant mortality,
tuberculosis and hospital
fatality rates, pioneered
clinical trials and
gradually persuaded
sceptical physicians of the
value of statistical
thinking. Major was not
his military rank but his
first name.

Greenwood’s formula,

var{F̂(y)} .= F̂(y)2
∑

i :yi <y

di

ri (ri − di )
,

variants of which are widely used to assess the uncertainty of F̂(y). In practice it is
better to use (5.29) to compute approximate normal confidence intervals for logF(y),
and then to transform these intervals back to the original scale.

The cumulative hazard function can be estimated as Ĥ (y) = ∑
i :yi <y di/ri ; this is

a step function with jumps at failure times and approximate variance (5.29).
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Table 5.6 Product-limit
estimator for older group
of infants in Table 5.3.

Failure time, yi 7 36 38 40 70 73 99
Number in view, ri 43 29 26 25 13 12 5
Number failing, di 1 1 1 1 1 1 1
1 − di /ri 0.977 0.966 0.962 0.960 0.923 0.916 0.8
F̂(yi +) 0.977 0.944 0.908 0.872 0.804 0.737 0.590
Standard error 0.023 0.040 0.052 0.062 0.086 0.102 0.155
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Nonparametric analysis of
shunt data. Left panel:
product-limit estimates of
survivor function for older
(upper heavy line) and
younger infants (lower
heavy line), with 95%
confidence intervals (dots
and light solid). Pluses on
the product-limit
estimates mark times of
censored data. Right
panel: estimated
cumulative hazard
functions for older (solid)
and younger (dots)
infants, using
nonparametric estimate
and fitted Weibull model
(smooth curves).

Example 5.30 (Blalock–Taussig shunt data) Table 5.6 illustrates the calculation
of the product-limit estimator using data from Table 5.3. As the estimator changes
only at times of failures, it need not be calculated at censoring times. The estimate
does not approach zero for large y because the largest observation in the sample is
censored.

Estimated survivor functions for both groups are shown in the left panel of
Figure 5.10, together with approximate 95% confidence intervals. There is a strong
effect of age, with shunts failing appreciably sooner for the younger children. The
right panel compares the cumulative hazard function estimators Ĥ (y) = ∑

i :yi ≤y ĥi

with their parametric counterparts under the best Weibull model of Example 5.28.
The parametric fits overstate the hazards appreciably. The apparent large difference
after 60 months is largely due to a single failure in the younger group that strongly
influences the analysis. �

5.4.4 Other ideas

Competing risks

In some applications there may be different types of failure due to k different causes,
say, and each failure time Y is accompanied by an indicator I showing which type of
failure occurred. We can then define cause-specific hazard functions

hi (y) = lim
δy→0

Pr (y ≤ Y ≤ y + δy, I = i | Y ≥ y)

δy
, y ≥ 0, i = 1, . . . , k,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511815850.006
Downloaded from https://www.cambridge.org/core. University of Toronto, on 25 Aug 2020 at 18:27:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511815850.006
https://www.cambridge.org/core


5.4 · Survival Data 199

corresponding to the rate at which failure of type i occurs, given survival to y. The
overall hazard, cumulative hazard and survivor functions may be written

h(y) =
k∑

i=1

hi (y), H (y) =
k∑

i=1

∫ y

0
hi (u) du, F(y) = exp

{
k∑

i=1

∫ y

0
hi (u) du

}
.

If we imagine observing a population of values of (Y, I ), then each of the hi (y) would
be known, but we would observe no other aspect of the population. Thus without
further assumptions the only estimable quantities are functions of the hi (y) such as
H (y) and F(y).

The likelihood contribution from an uncensored failure of type i is hi (y)F(y),
while provided censoring is independent, that from a censored failure is F(y), be-
cause the corresponding I is unknown. Suppose that we have independent triplets
(y1, i1, d1), . . . , (yn, in, dn), where y j is the j th survival time and d j = 1 if it is un-
censored. If so, i j indicates its failure type, while i j = 0, say, if d j = 0. The likelihood
based on these data is

n∏
j=1

F(y j )
k∏

i=1

hi j (y j )
d j =

k∏
i=1

[
n∏

j=1

exp

{
−

∫ y j

0
hi (y) du

}
hi (y j )

d j I (i j =i)

]
,

so it follows that to estimate hi (y) we treat any failure not of type i as a censoring.
Thus, for example, the survivor function for hi (y) may be estimated by the product-
limit estimator (5.28) with d j replaced by d j I (i j = i). Failures of types other than i
are treated as censorings. Likewise for estimation of a parametric hi .

For simplicity let k = 2. One way to think of competing risks is in terms of latent
or potential failure times Y1, Y2 corresponding to the failure types. The observed
quantities are Y = min(Y1, Y2) and I = {i : Yi = Y }. Here Y1 is interpreted as the
time to failure that would be observed if cause 2 was removed, assuming that the
failure time distribution for cause 1 when both causes of failure operate remains
unchanged if cause 2 is eliminated. This assumption may be plausible in situations
such as a reliability study where different types of failure are due to physically separate
sub-systems and it is possible to imagine that all but one of these have been perfected,
but the elimination of one failure type may alter the risk for others, particularly in
medical contexts, where the assumption is often unsustainable. If it can be justified
by appeal to subject-matter considerations it is very useful — the case for vaccination
against infectious diseases, for example, presumes that removal of their risks increases
overall survival.

An even stronger assertion is that Y1 and Y2 actually exist for each unit under
study, with independence of causes of failure equivalent to independence of Y1 and
Y2. In fact it is impossible to contradict this model. As mentioned above, the only
observable quantities are functions of the cause-specific hazards h1(y) and h2(y). The
joint survivor function

F(y1, y2) = Pr(Y1 > y1, Y2 > y2) = exp

{
−

∫ y1

0
h1(u) du −

∫ y2

0
h2(u) du

}
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Table 5.7 Mouse data
(Hoel and Walburg, 1972).
Age at death (days) of
RFM male mice exposed
to 300 rads of x-radiation
at 5–6 weeks of age. The
causes of death were
thymic lymphoma,
reticulum cell sarcoma
and other. The upper
group of 95 mice were
kept in a conventional
environment; the lower 82
in a germ-free
environment.

Lymphoma 159 189 191 198 200 207 220 235 245 250
256 261 265 266 280 343 356 383 403 414
428 432

Sarcoma 317 318 399 495 525 536 549 552 554 557
558 571 586 594 596 605 612 621 628 631
636 643 647 648 649 661 663 666 670 695
697 700 705 712 713 738 748 753

Other 163 179 206 222 228 249 252 282 324 333
341 366 385 407 420 431 441 461 462 482
517 517 524 564 567 586 619 620 621 622
647 651 686 761 763

Lymphoma 158 192 193 194 195 202 212 215 229 230
237 240 244 247 259 300 301 321 337 415
434 444 485 496 529 537 624 707 800

Sarcoma 430 590 606 638 655 679 691 693 696 747
752 760 778 821 986

Other 136 246 255 376 421 565 616 617 652 655
658 660 662 675 681 734 736 737 757 769
777 800 807 825 855 857 864 868 870 870
873 882 895 910 934 942 1015 1019

is a model for independent failures that yields cause-specific hazard functions h1 and
h2, so whatever the form of these functions, data of form (Y, I ) cannot give evidence
against independent risks. Dependence can only be inferred from data in which both
Y1 and Y2 are observed for certain units, or from subject-matter considerations. This
is important because interest often focuses on the effect of eliminating failures of
one type, say type 2, in which case the survivor function is F(y, 0). As this is not
a function of h1 and h2 it is inestimable unless assumptions, typically unverifiable
ones, are made about the relation between the risks. Some statisticians therefore insist
that the only valid inferences from competing risk data concern the hi and quantities
derived from them.

Example 5.31 (Mouse data) The data in Table 5.7 are from a experiment in which
two groups of RFM strain male mice were exposed to 300 rad of radiation at age
5–6 weeks. The first group lived in a conventional laboratory environment, and the
second group lived in a germ-free environment. After their deaths, a pathologist
ascertained whether the death was due to one of two types of cancer or to other
causes. One purpose of the experiment was to assess the effect of environment on
different causes of death. As irradiation took place when the mice were aged between
35 and 42 days old, it might be better to take age since irradiation as the response,
but its exact value is unknown.

The panels of Figure 5.11 shows the estimated cumulative hazard functions for
death from lymphoma and from other causes. Mortality from the lymphoma arises
early, and seems to depend little on the environment. Deaths from other causes
arise earlier in the conventional environment than in the germ-free one. See also
Example 10.38. �
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Frailty

The discussion above presupposes that all units have the same propensity to fail. In
practice this is unrealistic — some cars are more reliable than others, some persons
healthier than others, and so forth — and it may be important to build heterogene-
ity into models for survival. One reason for this is that allowing the failure rate to
vary across units may greatly change the interpretation of the hazard function. It is
tempting to view the population hazard function as a measure of how the risk for
each unit changes as a function of time. For example, the fact that the divorce rate
typically increases to a maximum a few years after marriage and thereafter decreases
is sometimes interpreted as meaning that the typical marriage experiences increas-
ing difficulties, but that if these are resolved there is eventually a more stable union.
A unimodal divorce rate can be generated, however, by supposing that the hazard
of failure increases with the duration of each marriage, but that the initial value of
this hazard varies randomly from couple to couple. If this second interpretation is
correct, then the population hazard function depends both on hazards for individual
marriages and on variation across them, and reflects a selection process whereby the
marriages most at risk tend to fail quickly, leaving those that were more stable to begin
with. Thus the hazard rate is a more complicated quantity than it might seem at first
sight.

One approach is to represent heterogeneity using the outcome of a positive random
variable, Z , known as a frailty. We suppose that Z varies across units according to
a density fZ (z), and that at time y the hazard function for a unit for whom Z = z is
zh(y); thus the cumulative hazard to that time is zH (y). Units whose z is large have
high hazard functions and tend to fail sooner than those whose frailty is low. If known,
the value of z could be incorporated into the analysis by modifying the likelihood,
but we suppose it is unobserved, perhaps representing unobserveable genetic and
environmental differences among units, and use it to model heterogeneity in the
data.

As the survivor function for a unit with frailty z may be expressed as Pr(Y ≥ y |
Z = z) = exp{−zH (y)}, the survivor function for a unit taken randomly from the
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population is

Pr(Y ≥ y) =
∫ ∞

0
Pr(Y ≥ y | Z = z) fZ (z) dz

=
∫ ∞

0
exp {−zH (y)} fZ (z) dz

= M {−H (y)} ,

where M is the moment-generating function of Z . Thus the cumulative hazard function
for the population is − log M{−H (y)}. The densities of Z conditional on failure at y
and conditional on survival at least to y,

f (z | Y = y) = z fZ (z) exp {−zH (y)}∫ ∞
0 z fZ (z) exp {−zH (y)} dz

,

fZ (z | Y ≥ y) = e−zH (y) fZ (z)∫ ∞
0 exp {−zH (y)} fZ (z) dz

, z > 0,

can be used to see how frailty depends on failure and on survival.

Example 5.32 (Logistic hazard) Let β > 0 and H (y) = eβy − 1, so a unit with
frailty z has hazard zβeβy ; this increases exponentially. Suppose also that Z has the
gamma density with mean αβ−1/(1 + α) and shape parameter β−1. Then M(u) =
{1 − αu/(1 + α)}−1/β , and the population cumulative hazard function,

− log M {−H (y)} = 1

β
log

(
1 + αeβy

1 + α

)
,

is the same as that fitted to the data on old age in Example 5.29. Thus although each
unit has a constant hazard, the effect of frailty is that the population hazard has an S-
shaped logistic form, because of the selective effect of the early failure of the weakest
units.

Simple calculations show that the density of frailties among those units failing
at time y is gamma with mean α(1 + β−1)/(1 + αeβy) and shape parameter 1 +
β−1, while that among those units who have not failed at time y is gamma with
corresponding parameters αβ−1/(1 + αeβy) and β−1. Both of these are decreasing in
y, showing how the tendency for units with high frailties to fail first leads to survival
of the fittest.

Information on unit hazard functions would be needed before such a model could
be regarded as a serious explanation of the good fit of the logistic hazard for the
data on old age. Absent such knowledge, the model is best regarded as suggesting a
possible mechanism for the observed phenomenon, and as indicating the type of data
needed for a more detailed investigation. �

Evidently frailty has the potential to greatly complicate the analysis of population
phenomena. It also complicates group comparisons (Problem 5.15).
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Exercises 5.4

1 Show that if there is no censoring, the product-limit estimator may be written F̂(y) =
n−1#{i : yi > y}, and hence show that in this case 1 − F̂(y) equals the empirical distri-
bution function (2.3). Find Greenwood’s formula, and comment.

If in doubt, think of
failures of your car,
fridge, computer, . . .

2 Suggest physical phenomena that might give increasing, decreasing, and bathtub-shaped
hazard functions. Sketch the corresponding survivor functions.

3 Use the relation F(y) = exp{− ∫ y
0 h(u)du} between the survivor and hazard functions

to find the survivor functions corresponding to the following hazards: (a) h(y) = λ; (b)
h(y) = λyα; (c) h(y) = αyκ−1/(β + yκ ). In each case state what the distribution is.
Show that E{1/h(Y )} = E(Y ) and hence find the means in (a), (b), and (c).

4 The mean excess life function is defined as e(y) = E(Y − y | Y > y). Show that

e(y) = F(y)−1

∫ ∞

y
F(u) du

and deduce that e(y) satisfies the equation e(y)Q ′(y) + Q(y) = 0 for a suitable Q(y).
Hence show that provided the underlying density is continuous,

F(y) = e(0)

e(y)
exp

{
−

∫ y

0

1

e(u)
du

}
.

As a check on this, find e(y) and hence F(y) for the exponential density.
One approach to modelling survival is in terms of e(y). For human lifetime data, let
e(y) = γ (1 − y/θ )β , where θ is an upper endpoint and β, γ > 0. Find the corresponding
survivor and hazard functions, and comment.

5 If F1(y), . . . ,Fk(y) are the survivor functions of independent positive random variables
and β1, . . . , βk > 0, show that

∏
Fi (y)βi is also a survivor function, and find the corre-

sponding hazard and cumulative hazard functions.
Suppose that k = 2 and the survivor functions are (i) log-logistic, (ii) log-normal and (iii)
Weibull. Show that in the first two cases new models are obtained, but that in the third the
parameters are not identifiable.

6 An empirical estimate of the survivor function F(y) when data y1, . . . , yn are not cen-
sored is given by F̂(y) = #{ j : y j > y}/(n + 1). Suggest how plots of log{− log F̂(y j )}
against log y j may be used to indicate if the data have Weibull or exponential distri-
butions. Describe the corresponding plot for the Gumbel distribution function F(y) =
exp[− exp{−(y − η)/α}].

7 Show that the log likelihood (5.26) may be expressed as

�(θ ) =
∫ ∞

0
log h(y; θ ) d D(y) −

∫ ∞

0
R(y) d H (y; θ ),

where D(y) is a step function with jumps of size one at the values of y that are failures
and R(y) is the number of units at risk of failure at time y. Establish that both integrals
are over finite ranges. Such expressions are useful in a general treatment of likelihood
inference for failure data.

5.5 Missing Data

5.5.1 Types of missingness

Missing observations arise in many applications, but particularly in data from living
subjects, for example when frost kills a plant or the laboratory cat kills some experi-
mental mice. They are common in data on humans, who may agree to take part in a
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two-year study and then drop out after six months, or refuse to answer questions about
their salaries or sex-lives. They may occur by accident or by design, for example when
lifetimes are censored at the end of a survival study (Section 5.4).

The central problem they pose is obvious: little can be said about unknown data,
even if the pattern of missingness suggests its cause and hence indicates to what
extent remaining observations can be trusted and lost ones imputed. Loss of data
will clearly increase uncertainty, but a more malign effect is that inferences from the
data are sharply limited unless we are prepared to make assumptions that the data
themselves cannot verify. Thus, if data are missing or might be missing it is essential
to consider possible underlying mechanisms and their potential effect on inferences.
The discussion below is intended to focus thought about these.

Suppose that our goal is inference for a parameter θ based on data that would
ideally consist of n independent pairs (X, Y ), but that some values of Y are missing,
as shown by an indicator variable, I . Thus the data on an individual have form (x, y, 1)
or (x, ?, 0). We suppose that although the missingness mechanism Pr(I = 0 | x, y)
may depend on x and y, it does not involve θ . Then the likelihood contribution from
an individual with complete data is the joint density of X , Y and I , which we write as

Pr(I = 1 | x, y) f (y | x ; θ ) f (x ; θ ),

while if Y is unknown we use the marginal density of X and I ,∫
Pr(I = 0 | x, y) f (y | x ; θ ) f (x ; θ ) dy. (5.30)

There are now three possibilities:

� data are missing completely at random, that is, Pr(I = 0 | x, y) = Pr(I = 0) is
independent both of x and y, and (5.30) reduces to Pr(I = 0) f (x ; θ );

� data are missing at random, that is, Pr(I = 0 | x, y) = Pr(I = 0 | x) depends
on x but not on y, and (5.30) equals Pr(I = 0 | x) f (x ; θ ); and

� there is non-ignorable non-response, meaning that Pr(I = 0 | x, y) depends on
y and possibly also on x .

In the first two of these, which are often grouped as ignorable non-response,
I carries no information about θ and can be omitted for most likelihood infer-
ences. To see why, suppose that we have n independent observations of form
(x1, y1, I1), . . . , (xn, yn, In), let M be the set of j for which y j is unobserved, and
suppose that data are missing at random. Then the likelihood is

L(θ ) =
∏
j∈M

Pr(I j = 0 | x j ) f (x j ; θ ) ×
∏
j 
∈M

Pr(I j = 1 | x j ) f (x j , y j ; θ )

∝
∏
j∈M

f (x j ; θ ) ×
∏
j 
∈M

f (x j , y j ; θ ),

because the terms involving I j do not depend on θ . Thus the missing data mecha-
nism does not affect maximum likelihood estimates θ̂ , likelihood ratio statistics or
the observed information J (̂θ ). It does affect the expected information, however, so
standard errors for θ̂ should be based on J (̂θ )−1; see the discussion of likelihood
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Figure 5.12 Missing
data in straight-line
regression for Venice
sea-level data. Clockwise
from top left: original
data, data with values
missing completely at
random, data with values
missing at random —
missingness depends on x
but not on y, and data with
non-ignorable
non-response —
missingness depends on
both x and y. Missing
values are represented by
a small dot. The dotted
line is the fit from the full
data, the solid lines those
from the non-missing
data.

inference in Section 5.4 and Problem 5.16. A similar argument applies if data are
missing completely at random. If the non-response is non-ignorable, however, the
density of I is no longer a constant of integration in (5.30). In that case, knowledge
of the observed I j is informative about θ , and likelihood inference is possible only if
Pr(I = 0 | x, y) can be specified.

Example 5.33 (Venice sea level data) The upper left panel of Figure 5.12 shows
the data of Example 5.1. Here x represents a year in the range 1931–1981; in the
absence of sea level it contains no information about any trend. The annual maximum
sea level y is taken to be a normal variable with mean β0 + β1(x j − x) and variance
σ 2; hence θ = (β0, β1, σ

2) and the full data likelihood has form f (y | x ; θ ) f (x), of
which f (x) is ignored.

The upper right panel of Figure 5.12 shows the effect of data missing completely at
random, while in the panel below the probability that a value is unobserved depends
on x but not on y; the data are missing at random, with earlier observations missing
more often than later ones. The lower left panel shows non-ignorable non-response,
because the probability of missingness depends on y and on x ; values of y that are
larger than their means are more likely to be missing. Here the fitted line differs from
those in the other panels due to bias induced by the missingness mechanism.
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Table 5.8 Average
estimates and standard
errors for missing value
simulation based on
Venice data, for full
dataset, with data missing
completely at random
(MCAR), missing at
random (MAR) and with
non-ignorable
non-response (NIN). 1000
samples were taken.
Standard errors for the
averages for β̂0 and β̂1 are
at most 0.16 and 0.01;
those for their standard
errors are at most 0.03 and
0.002.

Average estimate (average standard error)

Truth Full MCAR MAR NIN

β0 120 120 (2.79) 120 (4.02) 120 (4.73) 132 (3.67)
β1 0.50 0.49 (0.19) 0.48 (0.28) 0.50 (0.32) 0.20 (0.25)

To assess the extent of this bias, we generated 1000 samples from a model with
parameters β0 = 120, β1 = 0.5 and σ = 20, close to the estimates for the Venice data
and with the same covariate x . We then computed maximum likelihood estimates for
the full data and for those observations that remain after applying the non-response
mechanisms

Pr(I = 1 | x, y) =



0.5,

� {0.05(x − x)} ,

� [0.05(x − x) + {y − β0 − β1(x − x)} /σ ] ,

to give data missing completely at random, missing at random, and with non-ignorable
non-response. In each case roughly one-half of the observations are missing. Table 5.8
shows that although data loss increases the variability of the estimates, their means
are unaffected, provided the probability of non-response does not depend on y. If the
probability of missingness depends on the response, however, estimates based on the
remaining data become entirely unreliable. �

The message of this example is bleak: when there is non-ignorable non-response
and a non-negligible proportion of the data is missing, the only possible rescue is
to specify the missingness mechanism correctly. In practice it is typically hard to
tell if missingness is ignorable or not, so fully reliable inference is largely out of
reach. Sensitivity analysis to assess how heavily the conclusions depend on plausible
mechanisms for non-response is then useful, and we now outline one approach to this.

Publication bias

Breakthroughs in medical science are regularly reported, offering hope of a new cure
or suggesting that some enjoyable activity has dire consequences. It is unwise to take
them all at face value, however, as some turn out to be spurious. One reason for this
is the publication process to which they are subjected. Once a study is completed, an
article describing it is typically submitted to a medical journal for peer review. If the
study design and analysis are found to be satisfactory, a decision is taken whether the
article should be published. This decision is likely to be positive if the study reports a
significant result or if it involved a large number of patients, but will often be negative
if no association is found — there is no ‘significant finding’ — particularly if the
study is small and hence deemed unreliable. The end-result of this selection process
is publication bias, whereby studies finding associations tend to be the ones published,
even if in fact there is no effect. Recommendations to change medical practice are
usually based not on a single study — unless it is huge, involving many thousands of
patients — but on a meta-analysis that combines results from all published studies.
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As studies finding no effect are more likely to remain unpublished, however, wrong
conclusions can be drawn.

For a simple model of this selection process, suppose that we wish to estimate a
parameter µ that represents the effect of a treatment, subject to possible publication
bias. A study based on n individuals produces an estimate µ̂, normally distributed
with mean µ and variance σ 2/n. The vagaries of the editorial process are represented
by a variable Z , with the study published if Z is positive. We suppose that µ̂ and Z
are related by

µ̂ = µ + σn−1/2U1, Z = γ0 + γ1n1/2 + U2,

withU1 andU2 standard normal variables with correlationρ ≥ 0. One interpretation of
U1 is as the standardized form n1/2(µ̂ − µ)/σ of µ̂, which is used to assess significance
of the treatment effect. If ρ > 0 then publication becomes increasingly likely as
U1 increases, because Z is positively correlated with U1. In terms of our previous
discussion, Y and X correspond to µ̂ and n, but now neither is observed if the study
is unpublished.

The missingness indicator I equals one if Z > 0 and zero otherwise, so the marginal
probability of publication is

Pr(I = 1) = Pr(Z > 0) = Pr
(
U2 > −γ0 − γ1n1/2

) = �
(
γ0 + γ1n1/2

)
. (5.31)

If γ1 > 0 this increases with n: large studies are then more likely to be published,
whatever their outcome. Conditional on the value of µ̂, (3.21) implies that Z is
normal with mean γ0 + γ1n1/2 + ρn1/2(µ̂ − µ)/σ and variance 1 − ρ2. Hence the
conditional probability of publication given µ̂ is

Pr(I = 1 | µ̂) = Pr (Z > 0 | µ̂) = �

{
γ0 + γ1n1/2 + ρn1/2(µ̂ − µ)/σ

(1 − ρ2)1/2

}
. (5.32)

If ρ > 0, this is increasing in µ̂: the probability that a study is published increases
with the estimated treatment effect, at each study size n. Moreover, as µ̂ appears in
(5.32), non-response — non-publication of a study — is non-ignorable. If ρ = 0,
(5.32) reduces to (5.31). Unpublished studies are then missing at random: the odds
that a study is published depend on its size n but not on its outcome µ̂.

Conditional on publication, the mean of µ̂ is

E (µ̂ | Z > 0) = µ + ρσn−1/2ζ
(
γ0 + γ1n1/2

)
, (5.33)

where ζ (u) = φ(u)/�(u) is the ratio of the standard normal density and distribution
functions. If γ1, ρ > 0, then E(µ̂ | Z > 0) > µ, so the mean of a published µ̂ is
always larger than µ, but by an amount that decreases with n. For small γ1, Taylor
expansion gives

E (µ̂ | Z > 0)
.= µ + ρσγ1ζ

′ (γ0) + ρσζ (γ0) n−1/2,

so the conditional mean of µ̂ in published studies is roughly linear in n−1/2. As just
three parameters — intercept, slope and variance — can be estimated from a linear
fit, simultaneous estimation of µ, ρ, σ 2, γ0, and γ1 is infeasible. In order to assess
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Table 5.9 Data from 11
clinical trials to compare
magnesium treatment for
heart attacks with control,
with n patients randomly
allocated to treatment and
control; there are r deaths
out of m patients in each
group (Copas, 1999). The
estimated log treatment
effect µ̂ will be positive if
treatment is effective;
(v/n)1/2 is its standard
error. The huge ISIS-4
trial is not included in the
meta-analysis.

Magnesium Control
Trial r/m r/m n µ̂ (v/n)1/2

1 1/25 3/23 48 1.18 1.05
2 1/40 2/36 76 0.80 0.83
3 2/48 2/46 94 0.04 0.75
4 1/50 9/53 103 2.14 0.72
5 4/56 14/56 112 1.25 0.69
6 3/66 6/66 132 0.69 0.63
7 2/92 7/93 185 1.24 0.53
8 27/135 43/135 270 0.47 0.44
9 10/160 8/156 316 −0.20 0.41

10 90/1159 118/1157 2316 0.27 0.15

Meta-analysis 3652 0.41 0.11

ISIS-4 2216/29011 2103/29039 58050 −0.05 0.03

the impact of selection in the following example, we fix γ0 and γ1 to give plausible
probabilities of publication for small and large samples, and consider inference for
θ = (µ, ρ, σ ).

Now suppose that we wish to estimate µ based on k independent estimates
µ̂1, . . . , µ̂k from published studies of sizes n1, . . . , nk . As µ̂ j is observed only con-
ditional on its publication, the likelihood contribution from study j is

f (µ̂ j | Z j > 0; θ ) = f (µ̂ j ; θ )Pr(Z j > 0 | µ̂ j ; θ )

Pr(Z j > 0)
.

The marginal density of µ̂ j is normal with mean µ and variance σ 2/n j , and on
recalling (5.31) and (5.32), we see that the overall log likelihood is

�(µ, ρ, σ 2) ≡ −
k∑

j=1

{
1

2
log σ 2 + n j

2σ 2
(µ̂ j − µ)2 + log �(a j ) − log �(b j )

}
,

(5.34)
where a j = γ0 + γ1n1/2

j and b j = (1 − ρ2)−1/2{a j + ρn1/2
j (µ̂ j − µ)/σ }.

The simplest meta-analysis ignores the possibility of selection bias and amounts
to setting ρ = 0, presuming the publication of a study to be unrelated to its result.
If this is so, then a j = b j and the log likelihood is easily maximized, the maximum
likelihood estimate of µ being the weighted average∑

n j µ̂ j∑
n j

. (5.35)

When ρ = 0, this estimator is normal with mean µ and variance σ 2/
∑

n j . If in fact
ρ > 0, then (5.33) implies that µ̂0 will tend to exceed µ; the treatment effect will tend
to be overstated by the published data.

Example 5.34 (Magnesium data) Table 5.9 shows data from clinical trials on the
use of intraveneous magnesium to treat patients with suspected acute myocardial
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Figure 5.13 Likelihood
analysis of magnesium
data. Left: funnel plot
showing variation of µ̂

with trial size n, with 95%
confidence interval for µ

based on each trial. The
vertical dotted line is the
combined estimate of µ

from the ten small trials,
ignoring the possibility of
publication bias; the
vertical solid line shows
no treatment effect. The
solid line is the estimated
conditional mean (5.33).
Right: contours of µ̂ as a
function of γ0 and γ1.

infarction. For each trial, we consider the difference in log proportion of deaths be-Myocardial infarction is
the medical term for heart
attack — death of part of
the heart muscle because
of lack of oxygen and
other nutrients.

tween control and treated groups, the estimated treatment effect µ̂ = log(r2/m2) −
log(r1/m1). Now m1

.= m2 for each trial and the proportion of deaths is small, so
the delta method suggests that an approximate variance for µ̂ is 4/(̂λn), where
λ̂ = 0.097 is the death rate estimated from all the trials and n = m1 + m2 is the size
of each trial. The combined sample is large enough to treat λ̂ and hence σ 2 = 4/̂λ

as constant. Although the estimated treatment effects µ̂ from the ten small trials
are individually inconclusive, the meta-analysis estimate (5.35) is 0.41 with stan-
dard error 0.11; this gives an estimated reduction in the probability of death by
a factor exp(0.41) = 1.51 with 0.95 confidence interval (1.22,1.86). A similar pub-
lished meta-analysis concluded that the magnesium treatment was ‘effective, safe and
simple’.

For a more skeptical view, consider the funnel plot of n and exp(µ̂) in the left panel of
Figure 5.13; note the logarithmic axes. Symmetry about the overall weighted average
(5.35) would show lack of publication bias, but the visible asymmetry suggests that
small studies tend to be published only if µ̂ is sufficiently positive.

The right panel shows how the maximum likelihood estimate of µ from (5.34)
depends on γ0 and γ1. The contours are very roughly parallel with slope −0.05,
suggesting that the maximum likelihood estimate varies mainly as a function of
γ0 + 4001/2γ1, or equivalently the probability �(γ0 + 4001/2γ1) that a study of size
n = 400 is published. For example, if the selection probabilities are 0.9 and 0.1 for
the largest and smallest studies in Table 5.9, then this probability is 0.32, ρ̂ = 0.5
and the estimated treatment effect is 0.27 with standard error 0.12 from observed
information. This estimate is substantially less than the value 0.41 obtained when
ρ = 0, and the significance of the estimated treatment effect is much reduced. The
estimated conditional mean (5.33) in the left panel shows how the selection due to
having ρ > 0 affects the mean of published studies.

The sensitivity of the estimated effect to potential publication bias suggests that
treatment policy conclusions cannot be based on Table 5.9. Indeed, a subsequent
much larger trial — ISIS-4 — found no evidence that magnesium is effective. �
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Publication bias is an example of selection bias, where the mechanism underlying
the choice of data introduces an uncontrolled bias into the sample. This is endemic
in observational studies, for example in epidemiology and the social sciences, and it
can greatly weaken what conclusions may be drawn.

5.5.2 EM algorithm

The fitting of certain models is simplified by treating the observed data as an in-
complete version of an ideal dataset whose analysis would have been easy. The key
idea is to estimate the log likelihood contribution from the missing data by its con-
ditional value given the observed data. This yields a very general and widely used
estimation-maximization or EM algorithm for maximum likelihood estimation.

Let Y denote the observed data and U the unobserved variables. Our goal is to use
the observed value y of Y for inference on a parameter θ , in models where we cannot
easily calculate the density

f (y; θ ) =
∫

f (y | u; θ ) f (u; θ ) du

and hence cannot readily compute the likelihood for θ based only on y. We write the
complete-data log likelihood based on both y and the value u of U as

log f (y, u; θ ) = log f (y; θ ) + log f (u | y; θ ), (5.36)

where the first term on the right is the observed-data log likelihood �(θ ). As the value
of U is unobserved, the best we can do is to remove it by taking expectation of (5.36)
with respect to the conditional density f (u | y; θ ′) of U given that Y = y; for reasons
that will become apparent we use θ ′ rather than θ for this expectation. This yields

E{log f (Y, U ; θ ) | Y = y; θ ′} = �(θ ) + E{log f (U | Y ; θ ) | Y = y; θ ′}, (5.37)

which we express as

Q(θ ; θ ′) = �(θ ) + C(θ ; θ ′). (5.38)

We now fix θ ′ and treat Q(θ ; θ ′) and C(θ ; θ ′) as functions of θ . If the conditional
distribution of U given Y = y is non-degenerate and no two values of θ give the
same model, then the argument at (4.31) applied to f (y | u; θ ) shows that C(θ ′; θ ′) ≥
C(θ ; θ ′), with equality only when θ = θ ′. Hence

Q(θ ; θ ′) ≥ Q(θ ′; θ ′) implies �(θ ) − �(θ ′) ≥ C(θ ′; θ ′) − C(θ ; θ ′) ≥ 0. (5.39)

Moreover under mild smoothness conditions, C(θ ; θ ′) has a stationary point at θ = θ ′.
Hence if Q(θ ; θ ′) is stationary at θ = θ ′, so too is �(θ ).

This leads to the EM algorithm: starting from an initial value θ ′ of θ ,

1. compute Q(θ ; θ ′) = E
{
log f (Y, U ; θ ) | Y = y; θ ′}; then

2. with θ ′ fixed, maximize Q(θ ; θ ′) over θ , giving θ †, say; and
3. check if the algorithm has converged, using �(θ †) − �(θ ′) if available, or |θ † − θ ′|,

or both. If not, set θ ′ = θ † and go to 1.
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Steps 1 and 2 are the expectation (E) and maximization (M) steps of the algorithm. As
the M-step ensures that Q(θ †; θ ′) ≥ Q(θ ′; θ ′), we see from (5.39) that �(θ †) ≥ �(θ ′):
the log likelihood never decreases. Moreover, if �(θ ) has just one stationary point,
and if Q(θ ; θ ′) eventually reaches a stationary value at θ̂ , then θ̂ must maximize �(θ ).
If �(θ ) has more than one stationary point the algorithm may converge to a local
maximum of the log likelihood or to a turning point. As the EM algorithm never
decreases the log likelihood it is more stable than Newton–Raphson-type algorithms,
which do not have this desirable property.

As one might expect, the convergence rate of the algorithm depends on the amount
of missing information. If knowledge of Y tells us little about U , then Q(θ ; θ ′) and �(θ )
will be very different and the algorithm slow. This may be quantified by differentiating
(5.36) and taking expectations with respect to the conditional distribution of U given
Y , to give

−∂2�(θ )

∂θ∂θ T
= E

{
−∂2 log f (y, U ; θ )

∂θ∂θ T

∣∣∣∣ Y = y; θ

}

− E

{
−∂2 log f (U | y; θ )

∂θ∂θ T

∣∣∣∣ Y = y; θ

}
,

or J (θ ) = Ic(θ ; y) − Im(θ ; y), interpreted as meaning that the observed information
equals the complete-data information minus the missing information; this is some-
times called the missing information principle. If U is determined by Y , then the
conditional density f (u | y; θ ) is degenerate and under mild conditions the missing
information will be zero. It turns out that the rate of convergence of the algorithm
equals the largest eigenvalue of the matrix Ic(θ ; y)−1 Im(θ ; y); values of this eigen-
value close to one imply slow convergence and occur if the missing information is a
high proportion of the total.

When the EM algorithm is slow it may be worth trying to accelerate it by replacing
the M-step with direct maximization, assuming of course that �(θ ) is unavailable. It
turns out that (Exercise 5.5.5)

∂�(θ )

∂θ
= ∂ Q(θ ; θ ′)

∂θ

∣∣∣∣
θ ′=θ

,
∂2�(θ )

∂θ∂θ T
=

{
∂2 Q(θ ; θ ′)

∂θ∂θ T
+ ∂2 Q(θ ; θ ′)

∂θ∂θ
′T

}∣∣∣∣
θ ′=θ

. (5.40)

Thus even if �(θ ) is inaccessible, its derivatives may be obtained from those of Q(θ ; θ ′)
and used in a generic maximization algorithm. The second of these formulae also
provides standard errors for the maximum likelihood estimate θ̂ when Q(θ ; θ ′) is
known but �(θ ) is not.

Example 5.35 (Negative binomial model) For a toy example, suppose that con-
ditional on U = u, Y is a Poisson variable with mean u, and that U is gamma with
mean θ and variance θ2/ν. Inference is required for θ with the shape parameter ν > 0
supposed known. Here (5.36) equals

y log u − u − log y! + ν log ν − ν log θ + (ν − 1) log u − νu/θ − log �(ν),
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Figure 5.14 EM
algorithm for negative
binomial example. Left
panel: observed-data log
likelihood �(θ ) (solid) and
functions Q(θ ; θ ′) for
θ ′ = 1.5, 1.347 and 1.028
(dots, from right). The
blobs show the values of θ

that maximize these
functions, which
correspond to the first,
fifth and fortieth iterations
of the EM algorithm.
Right: convergence of EM
algorithm (dots) and
Newton–Raphson
algorithm (solid). The
panel shows how
successive EM iterations
update θ ′ and θ̂ . Notice
that the EM iterates
always increase �(θ ),
while the
Newton–Raphson steps do
not.

and hence (5.37) equals

Q(θ ; θ ′) = (y + ν − 1)E(log U | Y = y; θ ′) − (1 + ν/θ )E(U | Y = y; θ ′) − ν log θ

plus terms that depend neither on U nor on θ .
The E-step, computation of Q(θ ; θ ′), involves two expectations, but fortunately

E(log U | Y = y; θ ′) does not appear in terms that involve θ and so is not required.
To compute E(U | Y = y; θ ′), note that Y and U have joint density

f (y | u) f (u; θ ) = uy

y!
e−u × ννuν−1

θν�(ν)
e−νu/θ , y = 0, 1, . . . , u > 0, θ > 0,

so the marginal density of Y is

f (y; θ ) =
∫ ∞

0
f (y | u) f (u; θ, ν) du = �(y + ν)νν

�(ν)y!

θ y

(θ + ν)y+ν
, y = 0, 1, . . .

Hence the conditional density f (u | y; θ ′) is gamma with shape parameter y + ν and
mean E(U | Y = y; θ ′) = (y + ν)/(1 + ν/θ ′), and we can take

Q(θ ; θ ′) ≡ −(1 + ν/θ )(y + ν)/(1 + ν/θ ′) − ν log θ,

where we have ignored terms independent of both θ and θ ′.
The M-step involves maximization of Q(θ ; θ ′) over θ for fixed θ ′, so we differentiate

with respect to θ and find that the maximizing value is

θ † = θ ′(y + ν)/(θ ′ + ν). (5.41)

In this example, therefore, the EM algorithm boils down to choosing an initial θ ′,
updating it to θ † using (5.41), setting θ ′ = θ † and iterating to convergence.

The log likelihood based only on the observed data y is

�(θ ) = log f (y; θ ) ≡ y log θ − (y + ν) log(θ + ν), θ > 0.

This is shown in the left panel of Figure 5.14 for y = 1 and ν = 15. The panel also
shows the functions Q(θ ; θ ′) on the first, fifth and fourtieth iterations starting at θ ′ =
1.5, which gives the sequence θ ′ = 1.5, 1.45, 1.41, . . .. The functions Q(θ ; θ ′) are
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much more concentrated than is �(θ ), showing that the amount of missing information
is large. The difference in curvature corresponds to the information lost through not
observing U .

Here the unmodified EM algorithm converges slowly. The right panel of Figure 5.14
illustrates this, as successive values of θ † descend gently towards the limiting value
θ = 1: convergence has still not been achieved after 100 iterations, at which point
θ † = 1.00056. The ratio of missing to complete-data information, 15/16, indicates
slow convergence. The Newton–Raphson algorithm (4.25) using the derivatives (5.40)
converges much faster, with θ̂ = 1 to seven decimal places after only five iterations,
so here it pays handsomely to use the derivative information in (5.40). �

Example 5.36 (Mixture density) Mixture models arise when an observation Y
is taken from a population composed of distinct subpopulations, but it is unknown
from which of these Y is taken. If the number p of subpopulations is finite, Y has a
p-component mixture density

f (y; θ ) =
p∑

r=1

πr fr (y; θ ), 0 ≤ πr ≤ 1,

p∑
r=1

πr = 1,

where πr is the probability that Y comes from the r th subpopulation and fr (y; θ ) is its
density conditional on this event. An indicator U of the subpopulation from which Y
arises takes values 1, . . . , p with probabilities π1, . . . , πp. In many applications the
components have a physical meaning, but sometimes a mixture is used simply as a
flexible class of densities. For simplicity of notation below, let θ contain all unknown
parameters including the πr .

If the value u of U were known, the likelihood contribution from (y, u) would be∏
r { fr (y; θ )πr }I (u=r ), giving contribution

log f (y, u; θ ) =
p∑

r=1

I (u = r ) {log πr + log fr (y; θ )}

to the complete-data log likelihood. In order to apply the EM algorithm we must
compute the expectation of log f (y, u; θ ) over the conditional distribution

Pr(U = r | Y = y; θ ′) = π ′
r fr (y; θ ′)∑p

s=1 π ′
s fs(y; θ ′)

, r = 1, . . . , p. (5.42)

This probability can be regarded as the weight attributable to component r if y has
been observed; for compactness below we denote it by wr (y; θ ′). The expected value
of I (U = r ) with respect to (5.42) is wr (y; θ ′), so the expected value of the log
likelihood based on a random sample (y1, u1), . . . , (yn, un) is

Q(θ ; θ ′) =
n∑

j=1

p∑
r=1

wr (y j ; θ
′){log πr + log fr (y j ; θ )}

=
p∑

r=1

{
n∑

j=1

wr (y j ; θ
′)

}
log πr +

p∑
r=1

n∑
j=1

wr (y j ; θ
′) log fr (y j ; θ ).
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Table 5.10 Velocities
(km/second) of 82
galaxies in a survey of the
Corona Borealis region
(Roeder, 1990). The error
is thought to be less than
50 km/second.

9172 9350 9483 9558 9775 10227 10406 16084 16170 18419
18552 18600 18927 19052 19070 19330 19343 19349 19440 19473
19529 19541 19547 19663 19846 19856 19863 19914 19918 19973
19989 20166 20175 20179 20196 20215 20221 20415 20629 20795
20821 20846 20875 20986 21137 21492 21701 21814 21921 21960
22185 22209 22242 22249 22314 22374 22495 22746 22747 22888
22914 23206 23241 23263 23484 23538 23542 23666 23706 23711
24129 24285 24289 24366 24717 24990 25633 26960 26995 32065
32789 34279

The M step of the algorithm entails maximizing Q(θ ; θ ′) over θ for fixed θ ′. As the
πr do not usually appear in the component density fr , the maximizing values π

†
r are

obtained from the first term of Q, which corresponds to a multinomial log likelihood;
see (4.45). Thus π

†
r = n−1 ∑

j wr (y j ; θ ′), the average weight for component r .
Estimates of the parameters of the fr are obtained from the weighted log likelihoods

that form the second term of Q(θ ; θ ′). For example, if fr is normal with mean µr and
variance σ 2

r , simple calculations give the weighted estimates

µ†
r =

∑n
j=1 wr (y j ; θ ′)y j∑n

j=1 wr (y j ; θ ′)
σ 2†

r =
∑n

j=1 wr (y j ; θ ′)(y j − µ
†
r )2∑n

j=1 wr (y j ; θ ′)
, r = 1, . . . , p.

Given initial values of (πr , µr , σ
2
r ) ≡ θ ′, the EM algorithm simply involves computing

the weights wr (y j ; θ ′) for these initial values, updating to obtain (π †
r , µ

†
r , σ

2†
r ) ≡ θ †,

and checking convergence using the log likelihood, |θ † − θ ′|, or both. If convergence
is not yet attained, θ ′ is replaced by θ † and the cycle repeated.

We illustrate these calculations using the data in Table 5.10, which gives the ve-
locities at which 82 galaxies in the Corona Borealis region are moving away from
our own galaxy. It is thought that after the Big Bang the universe expanded very fast,
and that as it did so galaxies formed because of the local attraction of matter. Owing
to the action of gravity they tend to cluster together, but there seem also to be ‘su-
perclusters’ of galaxies surrounded by voids. If galaxies are indeed super-clustered
the distribution of their velocities estimated from the red-shift in their light-spectra
would be multimodal, and unimodal otherwise. The data given are from sections of
the northern sky carefully sampled to settle whether there are superclusters.

Cursory examination of the data strongly suggests clustering. In order to estimate
the number of clusters we fit mixtures of normal densities by the EM algorithm with
initial values chosen by eye. The maximized log likelihood for p = 2 is −220.19,
found after 26 iterations. In fact this is the highest of several local maxima; the global
maximum of +∞ is found by centering one component of the mixture at any of the
y j and letting the corresponding σ 2

r → ∞; see Example 4.42. Only the local maxima
yield sensible fits, the best of which is found using randomly chosen initial values. The
number of iterations needed depends on these and on the number of components, but
is typically less than 40. This procedure gives maximized log likelihoods −240.42,
−203.48, −202.52 and −192.42 for fits with p = 1, 3, 4 and 5. The latter gives a
single component to the two observations around 16,000 and so does not seem very
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sensible. Standard likelihood asymptotics do not apply here, but evidently there is
little difference between the 3- and 4-component fits, the second of which is shown
in Figure 5.15. Both fits have three modes, and the evidence for clustering is very
strong.

An alternative is to apply a Newton–Raphson algorithm directly to the log likeli-
hood �(θ ) based on the mixture density, but if this is to be reliable the model must
be reparametrized so that the parameter space is unconstrained, using log σ 2

r and
expressing π1, . . . , πp in terms of θ1, . . . , θp−1 of Example 5.12. As mentioned in
Example 4.42, the effect of the spikes in �(θ ) can be reduced by replacing fr (y; θ )
by Fr (y + h; θ ) − Fr (y − h; θ ), where h is the degree of rounding of the data, here
50 km/second. �

Exponential family models

The EM algorithm has a particularly simple form when the complete-data log likeli-
hood stems from an exponential family, giving

log f (y, u; θ ) = s(y, u)Tθ − κ(θ ) + c(y, u).

The expected value of this is needed with respect to the conditional density f (u |
y; θ ′). Evidently the final term will not depend on θ and can be ignored, so the M-step
will involve maximizing

Q(θ ; θ ′) = E{s(y, U )Tθ | Y = y; θ ′} − κ(θ ),

or equivalently solving for θ the equation

E{s(y, U ) | Y = y; θ ′} = dκ(θ )

dθ
.

The likelihood equation for θ based on the complete data would be s(y, u) =
dκ(θ )/dθ , so the EM algorithm simply involves replacing s(y, u) by its conditional
expectation E{s(y, U ) | Y = y; θ ′} and solving the likelihood equation. Thus a rou-
tine to fit the complete-data model can readily be adapted for missing data if the
conditional expectations are available.
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Example 5.37 (Positron emission tomography) Positron emission tomography
is performed by introducing a radioactive tracer into an animal or human subject.
Radioactive emissions are then used to assess levels of metabolic activity and blood
flow in organs of interest. Positrons emitted by the tracer annihilate with nearby
electrons, giving pairs of photons that fly off in opposite directions. Some of these
are counted by bands of gamma detectors placed around the subject’s body, but
others miss the detectors. The detected counts are used to form an image of the level
of metabolic activity in the organs based on the estimated spatial concentration of
isotope.

For a statistical model, the region of interest is divided into n pixels or voxels and Pixels and voxels are
picture and volume
elements, in 2 and
3 dimensions respectively.

it is assumed that the number of emissions Ui j from the j th pixel detected at the i th
detector is a Poisson variable with mean pi jλ j ; here λ j is the intensity of emissions
from that pixel and pi j the probability that a single emission is detected at the i th
detector. The pi j depend on the geometry of the detection system, the isotope and
other factors, but can be taken to be known. The Ui j are unknown but can plausibly
be assumed independent. The counts Yi at the d detectors are observed and have
independent Poisson distributions with means

∑n
j=1 pi jλ j .

The complete-data log likelihood,

d∑
i=1

n∑
j=1

{ui j log(pi jλ j ) − pi jλ j },

is an exponential family in which the maximum likelihood estimates of the unknown
λ j have the simple form λ̂ j = ∑

i ui j/
∑

i pi j . The E-step requires only the condi-
tional expectations E(Ui j | Y ; λ′). As Yi = Ui1 + · · · + Uin , the conditional density of
Ui j given Yi = yi is binomial with denominator yi and probability pi jλ

′
j/

∑
h pihλ

′
h .

Thus the M-step yields

λ
†
j =

∑d
i=1 E(Ui j | Y j = y j ; λ′)∑d

i=1 pi j

=
∑d

i=1 y j pi jλ
′
j/

∑n
h=1 pihλ

′
h∑d

i=1 pi j

= λ′
j

1∑d
i=1 pi j

d∑
i=1

yi pi j∑n
h=1 λ′

h pih
, j = 1, . . . , n.

The algorithm converges to a unique global maximum of the observed-data log like-
lihood provided that d > n, with the positivity constraints on the λ j satisfied at each
step.

Though simple, this algorithm has the undesirable property that the resulting images
are too rough if it is iterated to full convergence. The difficulty is that although we
would anticipate that adjacent pixels would be similar, the model places no constraint
on the λ j and so the final image is too close to the data. Some modification is required,
such as adding a smoothing step to the algorithm or introducing a roughness penalty
(Section 10.7.2). �

The EM algorithm is particularly attractive in exponential family problems, but
is used much more widely. In more general situations both E- and M-steps may
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5.5 · Missing Data 217

be complicated, and it often pays to break them into smaller components, perhaps
involving Monte Carlo simulation to compute the conditional expectations required
for the E-step. Discussion of this here would take us too far afield, but some of the
recent research devoted to this is mentioned in the bibliographic notes.

Exercises 5.5

1 Data are observed at random if Pr(I = 0 | x, y) = Pr(I = 0 | y), where I is the indicator
that y is missing. Show that if data are observed at random and missing data are missing
at random, then data are missing completely at random.

2 Show that Bayesian inference for θ is unaffected by the model for non-response if data
are missing completely at random or missing at random, but not if there is non-ignorable
non-response. What happens when Pr(I | x, y) depends on θ?

3 In Example 5.33, suppose that y is normal with mean β0 + β1x and variance σ 2, and that
it is missing with probability �(a + by + cx), where a, b and c are unknown. Use (3.25)
to find the likelihood contributions from pairs (x, y) and (x, ?), and discuss whether the
parameters are estimable.

4 When ρ = 0, show that (5.35) is the maximum likelihood estimate of µ and find its
variance.

5 Use the fact that
∫

f (u | y; θ ) du = 1 for all y and θ to show that

0 = E

{
∂ log f (U | Y ; θ )

∂θ

∣∣∣∣ Y = y; θ

}
,

0 = E

{
∂2 log f (U | Y ; θ )

∂θ∂θT
+ ∂ log f (U | Y ; θ )

∂θ

∂ log f (U | Y ; θ )

∂θT

∣∣∣∣ Y = y; θ

}
.

Now use (5.38) to establish (5.40).
Check this in the special case of Example 5.35, and hence give the Newton–Raphson step
for maximization of the observed-data log likelihood, even though �(θ ) itself is unknown.
Write a program to compare the convergence of the EM and Newton–Raphson algorithms
in that example.
(Oakes, 1999)

6 Check the forms of π †
r , µ†

r and σ 2†
r in Example 5.36, and verify that they respect the

constraints σ 2
r > 0, 0 ≤ πr ≤ 1 and

∑
πr = 1 on the parameter values.

7 Check the details of Example 5.37.

8 (a) To apply the EM algorithm to data censored at a constant c, let U denote the underlying
failure time and suppose that Y = min(U, c) and D = I (U ≤ c) are observed. Thus the
complete-data log likelihood is log f (u; θ ). Show thatδ(·) is the Dirac delta

function.

f (u | y, d; θ ) =
{

δ(u − y), d = 1,
f (u;θ )

1−F(c;θ ) , u > c, d = 0.

(b) If f (u; θ ) = θe−θu , show that E(U | Y = y, D = d; θ ′) = dy + (1 − d)(c + 1/θ ′),
and deduce that the iteration for a random sample (y1, d1), . . . , (yn, dn) is

θ † = n∑n
j=1

{
d j y j + (1 − d j )(c + 1/θ ′)

} .

Show that the missing information is
∑

(1 − d j )/θ2 and find the rate of convergence of
the algorithm. Discuss briefly.
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5.6 Bibliographic Notes

Linear regression is discussed in more depth in Chapter 8, and references to the
enormous literature on the topic can be found in Section 8.8. Exponential family
models date to work of Fisher and others in the 1930s, are widely used in applications
and have been intensively studied. Chapter 5 of Pace and Salvan (1997) is a good
reference, while longer more mathematical accounts are Barndorff-Nielsen (1978)
and Brown (1986). The term natural exponential family was introduced by Morris
(1982, 1983), who highlighted the importance of the variance function.

The roots of group transformation models go back to Pitman (1938, 1939), but owe
much of their modern development to D. A. S. Fraser, summarized in Fraser (1968,
1979).

Survival analysis is a huge field with inter-related literatures on industrial and med-
ical problems, though time-to-event data arise in many other fields also. The early
literature is mostly concerned with reliability, of which Crowder et al. (1991) is an
elementary account, while the literature on biostatistical and medical applications
has grown enormously over the last 30 years. Cox and Oakes (1984), Miller (1981),
Kalbfleisch and Prentice (1980), and Collett (1995) are standard accounts at about
this level; see also Klein and Moeschberger (1997). Competing risks are surveyed by
Tsiatis (1998); a helpful earlier account is Prentice et al. (1978). Their nonidentifia-
bility was first pointed out by Cox (1959). Aalen (1994) gives an elementary account
of frailty models, with further references. Keiding (1990) describes inference using
the Lexis diagram.

The formal study of missing data began with Rubin (1976), though ad hoc pro-
cedures for dealing with missing observations in standard models were widely used
much earlier. A standard reference is Little and Rubin (1987). More recently the related
notion of data coarsening, which encompasses censoring, truncation and grouping as
well as missingness, has been discussed by Heitjan (1994).

Although data in areas such as epidemiology and the social and economic sci-
ences are often analyzed as if they were selected randomly from some well-defined
population, the possibility that bias has entered the selection process is ever-present;
publication bias is just one example of this. There is a large literature on selection bias
from many points of view, much of which is mentioned by Copas and Li (1997) and
its discussants. Example 5.34 is taken from Copas (1999). Molenberghs et al. (2001)
give an example of analysis of sensitivity to missing data in contingency tables, with
references to related literature.

Special cases of the EM algorithm were used well before it was crystallized and
named by Dempster et al. (1977), who gave numerous applications and pointed the
way for the substantial further work largely summarized in McLachlan and Krishnan
(1997). A useful shorter account is Chapter 4 of Tanner (1996). One common criticism
of the algorithm is its slowness, and Meng and van Dyk (1997) and Jamshidian
and Jennrich (1997) describe some of the many approaches to speeding it up; they
also contain further references. Oakes (1999) gives references to the literature on
computing standard errors for EM estimates. Modern applications go far beyond the
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simple exponential family models used initially and may require complex E- and
M-steps including Monte Carlo simulation; see for example McCulloch (1997).

Mixture models and their generalizations are widely used in applications, partic-
ularly for classification and discrimination problems; see Titterington et al. (1985)
and Lindsay (1995). The thorny problem of selecting the number of components is
given an airing by Richardson and Green (1997) and their discussants, using methods
discussed in Section 11.3.3.

5.7 Problems

1 In the linear model (5.3), suppose that n = 2r is an even integer and define W j = Yn− j+1 −
Y j for j = 1, . . . , r . Find the joint distribution of the W j and hence show that

γ̃1 =
∑r

j=1(xn− j+1 − x j )W j∑r
j=1(xn− j+1 − x j )2

satisfies E(γ̃1) = γ1. Show that

var(γ̃1) = σ 2

{
n∑

j=1

(x j − x)2 − 1

2

r∑
j=1

(xn− j+1 + x j − 2x)2

}−1

.

Deduce that var(γ̃1) ≥ var(γ̂1) with equality if and only if xn− j+1 + x j = c for some c and
all j = 1 . . . , r .

2 Show that the scaled chi-squared density with known degrees of freedom ν,

f (v; σ 2) = vν/2−1

(2σ 2)ν/2�
(

1
2 ν

) exp
(
− v

2σ 2

)
, v > 0, σ 2 > 0, ν = 1, 2, . . . ,

is an exponential family, and find its canonical parameter and observation and cumulant-
generating function.

3 Show that the geometric density

f (y; π ) = π (1 − π )y, y = 0, 1, . . . , 0 < π < 1,

is an exponential family, and give its cumulant-generating function.
Show that S = Y1 + · · · + Yn has negative binomial density(

n + s − 1

n − 1

)
π n(1 − π )s, s = 0, 1, . . . ,

and that this is also an exponential family.

4 (a) Suppose that Y1 and Y2 have gamma densities (2.7) with parameters λ, κ1 and λ, κ2.
Show that the conditional density of Y1 given Y1 + Y2 = s is

�(κ1 + κ2)

sκ1+κ2−1�(κ1)�(κ2)
uκ1−1(s − u)κ2−1, 0 < u < s, κ1, κ2 > 0,

and establish that this is an exponential family. Give its mean and variance.
(b) Show that Y1/(Y1 + Y2) has the beta density.
(c) Discuss how you would use samples of form y1/(y1 + y2) to check the fit of this model
with known ν1 and ν2.

5 If Y has density (5.7) and Y1 is a proper subset of Y , show the the conditional density of
Y given that Y 
∈ Y1 is also a natural exponential family.
Find the cumulant-generating function for the truncated Poisson density given by f0(y) ∝
1/y!, y = 1, 2, . . ., and give the likelihood equation and information quantities.
Compare with Practical 4.3.
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220 5 · Models

6 Show that the two-locus multinomial model in Example 4.38 is a natural exponen-
tial family of order 2 with natural observation and parameter s(Y ) = (YA + YAB, YB +
YAB)T and (θA, θB)T = (log{α/(1 − α)}, log{β/(1 − β)}) and cumulant-generating func-
tion m log(1 + eθA ) + m log(1 + eθB ). Deduce that the elements of s(Y ) are independent.
Under what circumstances will maximum likelihood estimation of θA, θB give infinite
estimates?

7 Suppose that Y1, . . . , Yn follow (5.2). Show that the joint density of the Y j is a linear
exponential family of order three, and give the canonical statistics and parameters and the
cumulant-generating function. Find the minimal representations in the cases where the x j

(i) are, and (ii) are not, all equal.
Is the model an exponential family when E(Y j ) = β0 exp(x jβ1)?

8 Show that the multivariate normal distribution Np(µ, �) is a group transformation model
under the map Y �→ a + BY , where a is a p × 1 vector and B an invertible p × p matrix.
Given a random sample Y1, . . . , Yn from this distribution, show that

Y = n−1
n∑

j=1

Y j ,

n∑
j=1

(Y j − Y )(Y j − Y )T

is a minimal sufficient statistic for µ and �, and give equivariant estimators of them. Use
these estimators to find the maximal invariant.

9 Show that the model in Example 4.5 is an exponential family. Is it steep? What happens
when R j = 0 whenever x j < a and R j = m j otherwise?
Find its minimal representation when all the x j are equal.

10 Independent observations y1, . . . , yn from the exponential density λ exp(−λy), y > 0,
λ > 0, are subject to Type II censoring stopping at the r th failure. Show that a minimal
sufficient statistic for λ is S = Y(1) + · · · + Y(r ) + (n − r )Y(r ), where 0 < Y(1) < Y(2) < · · ·
are order statistics of the Y j , and that 2λS has a chi-squared distribution on 2r degrees of
freedom.
A Type II censored sample was 0.2, 0.8, 1.1, 1.4, 2.1, 2.4, 2.4+, 2.4+, 2.4+, where + denotes
censoring. On the assumption that the sample is from the exponential distribution, find a
90% confidence interval for λ. How would you check whether the data are exponential?

11 Let X1, . . . , Xn be an exponential random sample with density λ exp(−λx), x > 0, λ > 0.
For simplicity suppose that n = mr . Let Y1 be the total time at risk from time zero to the
r th failure, Y2 be the total time at risk between the r th and the 2r th failure, Y3 the total
time at risk between the 2r th and 3r th failures, and so forth.
(a) Let X (1) ≤ X (2) ≤ · · · ≤ X (n) be the ordered values of the X j . Show that the joint
density of the order statistics is

fX(1),...,X(n) (x1, . . . , xn) = n! f (x1) f (x2) · · · f (xn), x1 < x2 < · · · < xn,

and by writing X (1) = Z1, X (2) = Z1 + Z2, . . ., X (n) = Z1 + · · · + Zn , where the Z j are
the spacings between the order statistics X ( j), show that the Z j are independent exponential
random variables with hazard rates (n + 1 − j)λ.
(b) Hence show that the Y j have independent gamma distributions with means r/λ and
variances r/λ2. Deduce that the variables log Y j are independently distributed with con-
stant variance.
(c) Now suppose that the hazard rate is not constant, but is a slowly-varying smooth
function of time, λ(t). Explain how a plot of log Y j against the midpoint of the time
interval between the (r − 1) j th and the r j th failures can be used to estimate log λ(t).
(Cox, 1979)

12 Let Y1, . . . , Yn be independent exponential variables with hazard λ subject to Type I
censoring at time c. Show that the observed information for λ is D/λ2, where D is
the number of the Y j that are uncensored, and deduce that the expected information is
i(λ | c) = n{1 − exp(−λc)}/λ2 conditional on c.
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Now suppose that the censoring time c is a realization of a random variable C , whose
density is gamma with index ν and parameter λα:

f (c) = (λα)νcν−1

�(ν)
exp(−cλα), c > 0, α, ν > 0.

Show that the expected information for λ after averaging over C is

i(λ) = n{1 − (1 + 1/α)−ν}/λ2.

Consider what happens when (i) α → 0, (ii) α → ∞, (iii) α = 1, ν = 1, (iv) ν → ∞ but
µ = ν/α is held fixed. In each case explain qualitatively the behaviour of i(λ).

13 In a competing risks model with k = 2, write

Pr(Y ≤ y) = Pr(Y ≤ y | I = 1)Pr(I = 1) + Pr(Y ≤ y | I = 2)Pr(I = 2)
= pF1(y) + (1 − p)F2(y),

say. Hence find the cause-specific hazard functions h1 and h2, and express F1, F2 and p
in terms of them.
Show that the likelihood for an uncensored sample may be written

pr (1 − p)n−r
r∏

j=1

f1(y j )
n∏

j=r+1

f2(y j )

and find the likelihood when there is censoring.
If f( y1 | y2) and f (y2 | y1) be arbitrary densities with support [y2, ∞) and [y1, ∞), then
show that the joint density

f (y1, y2) =
{ p f1(y1) f (y2 | y1), y1 ≤ y2,

(1 − p) f2(y2) f (y1 | y2), y1 > y2,

produces the same likelihoods. Deduce that the joint density is not identifiable.

14 Find the cause-specific hazard functions for the bivariate survivor functions

F(y1, y2) = exp[1 − θ1 y1 − θ2 y2 − exp{β(θ1 y1 + θ2 y2)}],

F∗(y1, y2) = exp

[
1 − θ1 y1 − θ2 y2 −

2∑
i=1

θi

θ1 + θ2
exp {β(θ1 + θ2)yi }

]
,

where y1, y2 > 0, θ1, θ2 > 0 and β > −1. Under what condition doesF yield independent
variables?
Write down the likelihoods based on random samples (y1, i1, d1), . . . , (yn, in, dn) from
these two models. Discuss the interpretation of β̂ � 0 in the absence of external evidence
for F over F∗.
(Prentice et al., 1978)

15 (a) Let Z = X1 + · · · + X N , where N is Poisson with mean µ and the Xi are independent
identically distributed variables with moment-generating function M(t). Show that the
cumulant-generating function of Z is K Z (t) = µ{M(t) − 1} and that Pr(Z = 0) = e−µ.
If the Xi are gamma variables, show that K Z (t) may be written as

α

(α − 1)δ
[{1 − αt/(γ δ)}1−α − 1], γ, δ > 0, (5.43)

where α > 1, show that E(Z ) = γ and var(Z )/E(Z )2 = δ, and find Pr(Z = 0) in terms of
α, δ and γ . Show that as α → 1 the limiting distribution of Z is gamma, and explain why.Z is a continuous variable

for 0 < α < 1, but you
need not show this.

(b) For a frailty model, set γ = 1 and suppose that an individual has hazard Zh(y), y > 0.
Compute the population cumulative hazard HY (y) and show that if α > 1 then

lim
y→∞

HY (y) < ∞.
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222 5 · Models

Give an interpretation of this in terms of the distribution of the lifetime Y . (Are all the
individuals in the population liable to fail?)
(c) Obtain the population hazard rate hY (y), take h(y) = y2, and graph hY (y) for δ =
0, 0.5, 1, 2.5. Discuss this in relation to the divorce rate example on page 201.
(d) Now suppose that there are two groups of individuals, the first with individual hazards
h(y) and the second with individual hazards rh(y), where r > 1. Thus the effect of trans-
ferring an individual from group 1 to group 2, if this were possible, would be to increase
his hazard by a factor r . If frailties in the two groups have the same cumulant-generating
function (5.43), show that the ratio of group hazard functions is

h2(y)

h1(y)
= r

{
1 + α−1δH (y)

1 + rα−1δH (y)

}α

.

Establish that this is a decreasing function of y, and explain why its limiting value is less
than one, that is, the risk is eventually lower in group 2, if α > 1. What difficulties does
this pose for the interpretation of group differences in survival?
(Aalen, 1994; Hougaard, 1984)

16 (a) Show that when data (X, Y ) are available, but with values of Y missing at random, the
log likelihood contribution can be written

�(θ ) ≡ I log f (Y | X ; θ ) + log f (X ; θ ),

and deduce that the expected information for θ depends on the missingness mechanism
but that the observed information does not.
(b) Consider binary pairs (X, Y ) with indicator I equal to zero when Y is missing; X is
always seen. Their joint distribution is given by

Pr(Y = 1 | X = 0) = θ0, Pr(Y = 1 | X = 1) = θ1, Pr(X = 1) = λ,

while the missingness mechanism is

Pr(I = 1 | X = 0) = η0, Pr(I = 1 | X = 1) = η1.

(i) Show that the likelihood contribution from (X, Y, I ) is

[{
θY

1 (1 − θ1)1−Y
}X {

θY
0 (1 − θ0)1−Y

}1−X
]I

× {
η I

0(1 − η0)1−I
}1−X {

η I
1(1 − η1)1−I

}X × λX (1 − λ)1−X .

Deduce that the observed information for θ1 based on a random sample of size n is

−∂2�(θ0, θ1)

∂θ 2
1

=
n∑

j=1

I j X j

{
Y j

θ2
1

+ 1 − Y j

(1 − θ1)2

}
.

Give corresponding expressions for ∂2�(θ0, θ1)/∂θ2
0 and ∂2�(θ0, θ1)/∂θ0∂θ1.

(ii) Statistician A calculates the expected information treating I1, . . . , In as fixed and
thereby ignores the missing data mechanism. Show that he gets i A(θ1, θ1) = Mλ/{θ1(1 −
θ1)}, where M = ∑

I j , and find the corresponding quantities iA(θ0, θ1) and i A(θ0, θ0). If
he uses this procedure for many sets of data, deduce that on average M is replaced by
nPr(I = 1) = n{λη1 + (1 − λ)η0}.
(iii) Statistician B calculates the expected information taking into account the missingness
mechanism. Show that she gets iB(θ1, θ1) = nλη1/{θ1(1 − θ1)}, and obtain iB(θ0, θ1) and
iB(θ0, θ0).
(iv) Show that A and B get the same expected information matrices only if Y is missing
completely at random. Does this accord with the discussion above?
(c) Statistician C argues that expected information should never be used in data analysis:
even if the data actually observed are complete, unless it can be guaranteed that data
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could not be missing at random for any reason, every expected information calculation
should involve every potential missingness mechanism. Such a guarantee is impossible
in practice, so no expected information calculation is ever correct. Do you agree?
(Kenward and Molenberghs, 1998)

17 (a) In Example 5.34, suppose that n patients are divided randomly into control and treat-
ment groups of equal sizes nC = nT = n/2, with death rates λC and λT . If the numbers
of deaths RC and RT are small, use a Poisson approximation to the binomial to show that
the difference in log rates is roughly µ̂ = log RC − log RT . What would you conclude if
µ̂

.= 0?
(b) Show that if λC

.= λT = λ, then var(µ̂)
.= 4/(nλ), and use the estimates λ̂C = RC/nC ,

λ̂T = RT /nT and λ̂ = (RC + RT )/(nC + nT ) to check a few values of µ̂ and the standard
errors in Table 5.9.
(c) In practice the variance in (b) is typically too small, because it does not allow for
inter-trial variability. Different studies are performed with different populations, in which
the treatment may have different effects. We can imagine two stages: we first choose a
population in which the treatment effect is µ + η, where η is random with mean zero
and variance σ 2; then we perform a trial with n subjects and produce an estimator µ̂ of
µ + η with variance v/n. Show that µ̂ may be written µ + η + ε, give the variance of ε,
and deduce that when both stages of the trial are taken into account, µ̂ has mean µ and
variance σ 2 + v/n.
How would this affect the calculations in Example 5.34?

18 (a) Show that the t density of Example 4.39 may be obtained by supposing that the
conditional density of Y given U = u is N (µ, νσ 2/u) and that U ∼ χ2

ν . Show that
U

D= V/{ν + (y − µ)2/σ 2} conditional on Y , where V ∼ χ2
ν+1, and with θ = (µ, σ 2) de-

duce that

E(U | Y ; θ ) = ν + 1

ν + (y − µ)2/σ 2
.

(b) Consider the EM algorithm for estimation of θ when ν is known. Show that the
complete-data log likelihood contribution from (y, u) may be written

−1

2
σ 2 − 1

2
u(y − µ)2/2(νσ 2),

and hence give the M-step. Write down the algorithm in detail.
(c) Show that the result of the EM algorithm satisfies the self-consistency relation θ = g(θ ),
and given the form of g when σ 2 is both known and unknown.
(d) The Cauchy log likelihood shown in the right panel of Figure 4.2 corresponds to setting
ν = σ 2 = 1. In this case explain why µ† converges to a local or a global maximum or a
local minimum, depending on the initial value for µ.

19 Suppose that U1, . . . , Uq have a multinomial distribution with denominator m and proba-
bilities π1, . . . , πq that depend on a parameter θ , and that the maximum likelihood estima-
tor of θ based on the Us has a simple form. Some of the categories are indistinguishable,
however, so the observed data are Y1, . . . , Yp , where Yr = ∑

s∈Ar
Us ;A1, . . . ,Ap partition

{1, . . . , q} and none is empty.
(a) Show that the E-step of the EM algorithm for estimation of θ involves

E(Us | Y = y; θ ′) = yrπ
′
s∑

t∈Ar
π ′

t

, s ∈ Ar ,

and say how the M-step is performed.
(b) Let (π1, . . . , π5) = (1/2, θ/4, (1 − θ )/4, (1 − θ )/4, θ/4), and suppose that y1 = u1 +
u2 = 125, y2 = u3 = 18, y3 = u4 = 20 and y4 = u5 = 34. These data arose in a genetic
linkage problem and are often used to illustrate the EM algorithm. Show that

θ † = y4 + y1θ
′/(2 + θ ′)

m − 2y1/(2 + θ ′)
,
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and find the maximum likelihood estimate starting with θ ′ = 0.5.
(c) Show that the maximum likelihood estimator of λ̂A in the single-locus model of
Example 4.38 may be written λ̂A = (2u1 + u2 + u5)/m and establish that

E(U1 | Y ; λ′) = y1λ
′
A/(2 − 2λ′

B − λ′
A).

Give the corresponding expressions for λ̂B and E(U2 | Y ; λ′). Hence give the M-step for
this model. Apply the EM algorithm to the data in Table 4.3, using starting-values obtained
from categories with probabilities 2λAλB and λ2

O .
(d) Compute standard errors for your estimates in (b) and (c).
(Rao, 1973, p. 369)
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