Chapter 4

False Discovery Rate Control

Applied statistics is an inherently conservative enterprise, and appropriately so since the
scientific world depends heavily on the consistent evaluation of evidence. Conservative
consistency is raised to its highest level in classical significance testing, where the control
of Type I error is enforced with an almost religious intensity. A p-value of 0.06 rather
than 0.04 has decided the fate of entire pharmaceutical companies. Fisher’s scale of
evidence, Table 3.1, particularly the o = 0.05 threshold, has been used in literally
millions of serious scientific studies, and stakes a good claim to being the 20th century’s
most influential piece of applied mathematics.

All of this makes it more than a little surprising that a powerful rival to Type I error
control has emerged in the large-scale testing literature. Since its debut in Benjamini and
Hochberg’s seminal 1995 paper, false discovery rate control has claimed an increasing
portion of statistical research, both applied and theoretical, and seems to have achieved
“accepted methodology” status in scientific subject-matter journals.

False discovery rate control moves us away from the significance-testing algorithms
of Chapter 3, back toward the empirical Bayes context of Chapter 2. The language of
classical testing is often used to describe Fdr methods (perhaps in this way assisting
their stealthy infiltration of multiple testing practice), but, as the discussion here is
intended to show, both their rationale and results are quite different.

4.1 True and False Discoveries
We wish to test IV null hypotheses

Ho1,Hoo, ..., Hon (4.1)

on the basis of a data set X, and have in mind some decision rule D that will produce
a decision of “null” or “non-null” for each of the N cases. Equivalently," D accepts or
rejects each Hy;, 1 = 1,2,..., N, on the basis of X. X is the 6033 x 102 matrix of
expression values in the prostate data example of Section 2.1, giving the N z-values
(2.5), while D might be the rule that rejects Hy; if |z;| > 3 and accepts Hy; otherwise.

T am trying to avoid the term “significant” for the rejected cases as dubious terminology even in
single-case testing, and worse in the false discovery rate context, preferring instead “interesting”.
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Figure 4.1: A decision rule D has rejected R out of N null hypotheses (4.1); a of these decisions
were incorrect, i.e., they were “false discoveries”, while b of them were “true discoveries.” The
false discovery proportion Fdp equals a/R.

Figure 4.1 presents a hypothetical tabulation of D’s performance from the point of
view of an omniscient oracle: Ny of the N cases were actually null, of which D called a
non-null (incorrectly) and Ny — a null (correctly); likewise, N; were actually non-null,
with D deciding b of them correctly and Ny — b incorrectly. Of the R = a + b total
rejections, a were “false discoveries” and b “true discoveries”, in the current terminology.
The family-wise error rate of Section 2.2, FWER, equals Pr{a > 0} in terms of the figure.

N equals 1 in the classical single-case testing situation, so either Ny or N equals 1,
with the other 0. Then

Pr{a =1|Ny =1} = o, (4.2)

the Type I error rate, or size, of the decision rule, and
Pr{b = 1|N, = 1} = 3, (4.3)
the rule’s power.

Exercise 4.1. In a multiple testing situation with both Ny and Nj positive, show that

E{]\C;O}:a and E{]\Z}:B, (4.4)

a and (3 being the average size and power of the null and non-null cases, respectively.

Classical Fisherian significance testing is immensely popular because it requires so
little from the scientist: only the choice of a test statistic and specification of its prob-
ability distribution when the null hypothesis is true. Neyman—Pearson theory adds the
specification of a non-null distribution, the reward being the calculation of power as
well as size. Both of these are calculated horizontally in the figure, that is restricting
attention to either the null or non-null row, which is to say that they are frequentist
calculations.
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Large-scale testing, with N perhaps in the hundreds or thousands, opens the possi-
bility of calculating vertically in the figure, in the Bayesian direction, without requiring
Bayesian priors. The ratio a/R is what we called the false discovery proportion (2.28),
the proportion of rejected cases that are actually null. Benjamini and Hochberg’s test-
ing algorithm, the subject of the next section, aims to control the expected value of a/R
rather than that of a/Ny.

Exercise 4.2. Suppose that 21, z9, ..., zy are independent and identically distributed
observations from the two-groups model (2.7) and that the decision rule rejects Hy; for
zi € Z, as illustrated in Figure 2.3. Show that a/R has a scaled binomial distribution
given R (with R > 0),

a/R ~Bi(R,¢(2)) /R, (4.5)

with ¢(Z2) = Fdr(Z) as in (2.13).

4.2 Benjamini and Hochberg’s FDR Control Algorithm

We assume that our decision rule D produces a p-value p; for each case ¢, so that p; has
a uniform distribution if Hy; is correct,

Ho; = p; ~U(0,1). (4.6)
Denote the ordered p-values by
pa)y <pe) < <pe) < <Py (4.7)

as in (3.19). Following the notation in Figure 4.1, let Rp be the number of cases rejected,
ap the number of those that are actually null, and Fdpp the false discovery proportion

Fdpp = ap/Rp [=0if Rp =0]. (4.8)

The Benjamini-Hochberg (BH) algorithm uses this rule: for a fixed value of ¢ in
(0,1), let imax be the largest index for which

7
Py < N (4.9)

and reject Hy;), the null hypothesis corresponding to py;), if
7 < imax, (4.10)
accepting Ho(;) otherwise.

Theorem 4.1. If the p-values corresponding to the correct null hypotheses are indepen-
dent of each other, then the rule BH(q) based on the BH algorithm controls the expected
false discovery proportion at q,

E {deBH(q)} =moq < gq where my = Ny/N. (4.11)
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Figure 4.2: Left panel: Solid line is rejection boundary (4.9) for FDR control rule BH(q);
dashed curve for Hochberg step-up FWER procedure, Exercise 3.8; « = ¢ = 0.1, N = 100.
Right panel: Stars indicate p-values for the 50 largest z;, prostate data (2.6); solid and dashed
lines are rejection boundaries, BH(q) and Hochberg, « = ¢ = 0.1, N = 6033.

A proof of Theorem 4.1 appears at the end of this section. The proportion of null
cases mg = Ny/N is unknown in practice though we will see that it can be estimated,
so ¢ is usually quoted as the control rate of BH(q).

There is a practical reason for the impressive popularity of BH(q): it is much more
liberal in identifying non-null cases than the FWER algorithms of Chapter 3. Figure 4.2
illustrates the point by comparison with Hochberg’s step-up procedure (3.30). BH(g) can
also be described in step-up form: decrease i starting from ¢ = N and keep accepting
Hy;) until the first time p;) < qi/N, after which all Hy;) are rejected. Hochberg’s
procedure instead uses p(;y < o/(N —i + 1), Exercise 3.8.

If we set ¢ = «, the ratio of the two thresholds is

B () )

Usually only small values of i/N will be interesting, in which case BH(q) is approxi-
mately ¢ times as liberal as Hochberg’s rule.

The left panel of Figure 4.2 makes the comparison for « = ¢ = 0.1 and N = 100.
The two threshold curves are equal at ¢ = 1 where both take the Bonferroni value
a/N, and at i = N where both equal . In between, BH(q) allows rejection at much
larger values of p(;. The right panel shows the 50 smallest p(; values for the prostate
data, pyy = Fioo(—t(;)) in (2.5), and also the two rejection boundaries, again with
a = ¢q = 0.1. Here imnax = 28 genes are declared non-null by BH(¢)(0.1) compared to 9
for the Hochberg 0.1 test.

Of course, rejecting more cases is only a good thing if they should be rejected.
False discovery rate control is a more liberal rejecter than FWER: can we still trust
its decisions? This is the question we will be trying to answer as we consider, in what
follows, the pros and cons of the BH(q) rule and its underlying rationale. Here are a
few preliminary comments:
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e Theorem 4.1 depends on independence among the p-values of the null cases (the
top row in Figure 4.1), usually an unrealistic assumption. This limitation can be
removed if the rejection boundary (4.9) is lowered to

1 q ‘1
Py < —= where [; = —. 4.13
(@) N li g Z j ( )
7j=1

However, (4.13) represents a severe penalty (log = 3.93 for instance) and is not
really necessary. The independence condition in Theorem 4.1 can be weakened to
positive regression dependence (PRD): roughly speaking, the assumption that the
null-case z-values have non-negative correlations, though even PRD is unlikely to

hold in practice. Fortunately, the empirical Bayes interpretation of BH(q) is not
directly affected by dependence, as discussed in the next section.

e Theorem 4.1 depends on taking a/R = 0 when R = 0, that is, defining 0/0 = 0
in Figure 4.1. Storey’s “positive false discovery rate” criterion avoids this by
only considering situations with R > 0, but doing so makes strict FDR, control
impossible: if Ny = N, that is, if there are no non-null cases, then all rejections
are false discoveries and F{Fdp|R > 0} = 1 for any rule D that rejects anything.

e Is it really satisfactory to control an error rate expectation rather than an error
rate probability as in classical significance testing? The next two sections attempt
to answer this question in empirical Bayes terms.

e How should ¢ be chosen? The literature hasn’t agreed upon a conventional choice,
such as a = 0.05 for single-case testing, though ¢ = 0.1 seems to be popular. The
empirical Bayes context of the next section helps clarify the meaning of ¢.

e The p-values in (4.9) are computed on the basis of an assumed null hypothesis
distribution, for example p(;y = Fioo(—t(;)) in the right panel of Figure 4.2, with
Fiop a Student-t cdf having 100 degrees of freedom. This is by necessity in classical
single-case testing, where theory is the only possible source for a null distribution.
Things are different in large-scale testing: empirical evidence may make it clear
that the theoretical null is unrealistic. Chapter 6 discusses the proper choice of
null hypotheses in multiple testing.

This last objection applies to all testing algorithms, not just to the Benjamini—
Hochberg rule. The reason for raising it here relates to Theorem 4.1: its statement is
so striking and appealing that it is easy to forget its limitations. Most of these turn out
to be not too important in practice, except for the proper choice of a null hypothesis,
which is crucial.

Proof of Theorem 4.1. For t in (0, 1] define
R(t) = #{pi < t}, (4.14)
a(t) the number of null cases with p; < ¢, false discovery proportion

Fdp(t) = a(t)/ max {R(t),1}, (4.15)
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and
Q(t) = Nt/ max {R(t),1}. (4.16)
Also let
tq = sup {Q) <q}. (4.17)

Since R(p(;)) = i we have Q(p(;)) = Np(;)/i. This implies that the BH rule (4.9) can be
re-expressed as
Reject HO(z) for Py < tg- (4.18)

Let A(t) = a(t)/t. Tt is easy to see that
E{A(s)|A(t)} = A(t) for s <t, (4.19)

and in fact F{A(s)|A(t') for t' > t} = A(t). In other words, A(¢) is a martingale as ¢
decreases from 1 to 0. Then by the optional stopping theorem,

E{A(ty)} = E{A(1)} = E{a(1)/1} = No, (4.20)

the actual number of null cases.
Finally, notice that (4.16) implies

max {R(ty),1} = Nt,/Q(ty) = Nty/q, (4.21)
S0
q a(tq)

Fdp(ty) = —= . 4.22
plts) = (1:22)

Then (4.20) gives
E{Fdp(ty)} = moq [0 = No/N] (4.23)
which, together with (4.18), verifies Theorem 4.1. [

Exercise 4.3. Verify (4.19).

4.3 Empirical Bayes Interpretation

Benjamini and Hochberg’s BH(g) procedure has an appealing empirical Bayes interpre-
tation. Suppose that the p-values p; correspond to real-valued test statistics z;,

pi:FO(Zi) 1= 1,2,...,N, (424)

where Fj(z) is the cdf of a common null distribution applying to all N null hypotheses
Hy;, for example, Fy the standard normal cdf in (2.6). We can always take z; to be p;
itself, in which case Fy is the ¢(0,1) distribution.
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Let z(;) denote the ith ordered value,
2y Sz < <2 < < - (4.25)

Then py = Fo(z(;)) in (4.7), if we are interested in left-tailed p-values, or p; = 1 —
Fo(z(;)) for right-tailed p-values.
Notice that the empirical cdf of the z; values,

F(z) = #{z < 2}/N (4.26)
satisfies
F(z) =i/N. (4.27)

This means we can write the threshold condition for the BH rule (4.9) as

F0<z(i))/F(Z(i)) <gq (4.28)

or

moFo(2() [ F(21)) < moa. (4.29)

However, moFy(z)/F(z) is the empirical Bayes false discovery rate estimate Fdr(z) (from
(2.21) with Z = (—00, 2)).
We can now re-express Theorem 4.1 in empirical Bayes terms.

Corollary 4.2. Let imax be the largest index for which
Fdr(z) < ¢ (4.30)

and reject Hy;y for all i < imax, accepting Hy;) otherwise. Then, assuming that the z;
values are independent, the expected false discovery proportion of the rule equals q.

Exercise 4.4. Use Theorem 4.1 to verify Corollary 4.2.

Note. With mp unknown it is usual to set it to its upper bound 1, giving W(Z(i)) =
Fo(23))/F(2¢;))- This makes rule (4.30) conservative, with E{Fdp} < ¢. But see Sec-
tion 4.5.

Returning to the two-groups model (2.7), Bayes rule gives
Fdr(z) = moFo(z)/F(z) (4.31)

as the posterior probability that case ¢ is null given z; < z (2.13). Section 2.4 shows
Fdr(z;) to be a good estimate of Fdr(z;) under reasonable conditions. A greedy empirical
Bayesian might select

Zmax = Sgp {Fdr(z) < ¢} (4.32)

and report those cases having z; < zmax as “having estimated probability ¢ of being

null.” Corollary 4.2 justifies the greedy algorithm in frequentist terms: if the z; values
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Figure 4.3: Left-sided and right-sided values of Fdr(z) for the DTT data of Section 2.5; triangles

indicate values of z having ﬁ(c) (2) (4.33) equal 0.5, 0.25 and 0.1; 192 voxels have z(;) exceeding
3.02, the ¢ = 0.1 threshold.

are independent, then the expected null proportion of the reported cases will equal ¢g. It
is always a good sign when a statistical procedure enjoys both frequentist and Bayesian
support, and the BH algorithm passes the test.

Figure 4.3 graphs Fdr(z) and the analogous right-sided quantity

Far'(z) = mF9(2) / FO(2) (4.33)

for the DTI data of Section 2.5 (setting 7o to 1 in (4.29) and (4.33)), where F(9)(z)
indicates the complementary cdf 1 — F(z). There is just the barest hint of anything
interesting on the left, but on the right, Fdr(®)(z) gets quite small. For example, 192 of
the voxels reject their null hypotheses, those having z; > 3.02 at the ¢ = 0.1 threshold.

Exercise 4.5. I set mp = 1 in (4.33). How does that show up in Figure 4.3?

The empirical Bayes viewpoint clarifies some of the questions raised in the previous
section.

e Choice of ¢ Now ¢ is an estimate of the Bayes probability that a rejected null hy-
pothesis Hy; is actually correct. It is easy to explain to a research colleague that ¢ = 0.1
means an estimated 90% of the rejected cases are true discoveries. The uncomfortable
moment in single-case testing, where it has to be confessed that v = 0.05 rejection does
not imply a 95% chance that the effect is genuine, is happily avoided.

e Independence assumption Fdr(z) = moFy(z)/F(z) is an accurate estimate of the
Bayes false discovery rate Fdr(z) = moFy(2)/F(z) (2.13) whenever F(z), the empirical
cdf, is close to F'(z). This does not require independence of the z-values, as shown in
Section 2.4. Fdr(z) is upwardly biased for estimating Fdr(z), and also for estimating the
expected false discovery proportion, and in this sense it is always conservative. Lemma
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2.2 shows that the upward bias is small under reasonable conditions. Roughly speaking,
Fdr(z) serves as an unbiased estimate of Fdr(z), and of FDR= E{Fdp}, even if the z;
are correlated.
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Figure 4.4: Left panel: Solid histogram Fdp for BH rule, ¢ = 0.1, 1000 simulations of model
(4.34) with z; values independent; line histogram for z; values correlated, root mean square
correlation = 0.1. Right panel: Fdp values for correlated simulations plotted against ¢, the
empirical standard deviation of the null z; values; smooth curve is quadratic regression.

The price for correlation is paid in the variability of Fdr(z) as an estimate of Fdr(z),
as illustrated in Figure 4.4. Our simulation model involved N = 3000 z-values, with

zi ~ N(0,1), i=1,2,...,2850

4.34
and z ~N(25,1), i=2851,...,3000 (4:34)

so mp = 0.95. Two runs of 1000 simulations each were made, the first with the z; values
independent and the second with substantial correlation: the root mean square value
of all 3000 - 2999/2 pairs of correlations equaled 0.1.2 For each simulation, the rule
BH(q), ¢ = 0.1, was applied (right-sided) and the actual false discovery proportion Fdp
observed.

The left panel of Figure 4.4 compares a histogram of the 1000 Fdp values under
independence with that for the correlated simulations. The expected Fdp is controlled
below ¢ = 0.1 in both cases, averaging 0.095 under independence and 0.075 under cor-
relation (see Table 4.1). Control is achieved in quite different ways, though: correlation
produces a strongly asymmetric Fdp distribution, with more very small or very large
values. The BH algorithm continues to control the expectation of Fdp under correlation,
but Fdr becomes a less accurate estimator of the true Fdr.

In Figure 4.4’s right panel, the Fdp values for the 1000 correlated simulations are
plotted versus 6, the empirical standard deviation of the 2850 null z-values. Correlation
greatly increases the variability of &, as discussed in Chapter 7. Fdp tends to be greater
or less than the nominal value 0.1 as ¢ is greater or less than 1.0, varying by a factor
of 10.

2The correlation structure is described in Section 8.2.
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Table 4.1: Means and standard deviations (in parentheses) for the simulation experiments of
Figure 4.4.

Fdp 60 # rejected

Uncorrelated: .095 (.038) 1.00 (.014) 64.7 (3.7)
Correlated: .075 (.064) .97 (.068) 63.1 (7.5)

In practice, &g isn’t observable. However, it is “almost observable” in some situa-
tions, in which case the overall control level ¢ can be misleading: if we know that &¢
is much greater than 1 then there is good reason to believe that Fdp is greater than q.
This point in investigated in Chapter 6 in terms of the empirical null distribution.

e FDR control as a decision criterton The BH algorithm only controls the expec-
tation of Fdp. Is this really sufficient for making trustworthy decisions? Part of the
answer must depend upon the accuracy of Fdr as an estimate of Fdr (4.31) or of FDR
= E{Fdp}. This same question arises in single-case testing where the concept of power
is used to complement Type I error control. Chapters 5 and 7 discuss accuracy and
power considerations for false discovery rate control methods.

o Left-sided, right-sided, and two-sided inferences For the DTI data of Figure 4.3,
BH(¢)(0.1) rejects 0 voxels on the left and 192 voxels on the right. However, if we use
two-sided p-values, p; = 2 - ®(—|z]|), only 110 voxels are rejected by BH(g)(0.1), all
from among the 192. From a Bayesian point of view, two-sided testing only blurs the
issue by making posterior inferences over larger, less precise rejection regions Z. The
local false discovery rate (2.14) provides the preferred Bayesian inference. Chapter 5
concerns estimation of the local fdr.

Exercise 4.6. For the prostate data, the left-tailed, right-tailed, and two-tailed BH(q)
rules reject 32, 28, and 60 genes at the ¢ = 0.1 level. The rejection regions are z; < —3.26
on the left, z; > 3.36 on the right, and |z;| > 3.29 two-sided. Why is two-sided testing
less wasteful here than in the DTI example?

e Fulse negative rates  Looking at Figure 4.1, it seems important to consider the false
negative proportion
Fnp = (N1 —b)/(N — R) (4.35)

as well as Fdp. The expectation of Fnp is a measure of Type II error for D, indicating
the rule’s power. It turns out that the Bayes/empirical Bayes interpretation of the false
discovery rate applies to both Fdp and Fnp.

Suppose that rule D rejects Hy; for z; € R, and accepts Hy; for z; in the comple-
mentary region A. Following notation (2.13),

1 — ¢(A) = Pr{non-null|z € A} (4.36)
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is the Bayes posterior probability of a Type II error. The calculations in Section 2.3 and
Section 2.4 apply just as well to Fdr(A) as Fdr(R): under the conditions stated there,
for instance in Lemma 2.2, 1 — Fdr(A) will accurately estimate 1 — ¢(.A), the Bayesian
false negative rate. Chapter 5 uses this approach to estimate power in multiple testing
situations.

4.4 Is Fdr Control “Hypothesis Testing”?

The Benjamini-Hochberg BH(¢q) rule is usually presented as a multiple hypothesis test-
ing procedure. This was our point of view in Section 4.2, but not in Section 4.3, where
the estimation properties of Fdr were emphasized. It pays to ask in what sense false
discovery rate control is actually hypothesis testing.
Here we will fix attention on a given subset R of the real line, e.g., R = [3,00). We
compute
Fdr(R) = eo(R)/R, (4.37)

where ep(R) is the expected number of null cases falling in R and R is the observed
number of z; in R. We might then follow the rule of rejecting all the null hypotheses
Hy; corresponding to z; in R if Fdr(R) < ¢, and accepting all of them otherwise.
Equivalently, we reject all the Hy; for z; in R if

R > ey(R)/q. (4.38)

It is clear that (4.38) cannot be a test of the FWER-type null hypothesis that at
least one of the R hypotheses is true,

Hp(union) = U Hy;. (4.39)

Rejecting Ho(union) implies we believe all the Ho; for z; in R to be incorrect (that is,
all should be rejected). But if, say, R = 50 then Fdr(R) = 0.1 suggests that about 5 of
the R Hy,; are correct.

Exercise 4.7. Calculate the probability that Hy(union) is correct if R = 50 and ¢(R) =
0.1, under the assumptions of Lemma 2.2.

In other words, the Fdr rule (4.38) is too liberal to serve as a test of Hp(union).
Conversely, it is too conservative as a test of

Hy(intersection) = ﬂ Hy; (4.40)

which is the hypothesis that all of the R null hypotheses are correct. Rejecting Hy(intersection)
says we believe at least one of the R cases is non-null.
Under the Poisson-independence assumptions of Lemma 2.2, Hj(intersection) im-
plies
R ~ Poi(eg(R)) . (4.41)
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The obvious level-a test? rejects Hg(intersection) for
R > Qa, (4.42)

the upper 1 — «a quantile of a Poi(eyp(R)) variate. A two-term Cornish-Fisher expansion
gives the approximation

Qo = €0(R) + veo(R)za + (25 — 1) /6 (4.43)

with z, the standard normal quantile ®~!'(1 — ). (Increasing (4.43) to the nearest
integer makes test (4.42) conservative.) Table 4.2 compares the minimum rejection
values of R from (4.38) and (4.42) for ¢ = o = 0.1. It is clear that (4.38) is far more
conservative.

The inference of Fdr outcome (4.32) lies somewhere between “all R cases are true
discoveries” and “at least one of the R is a true discovery.” I prefer to think of Fdr as
an estimate rather than a test statistic: a quantitative assessment of the proportion of
false discoveries among the R candidates.

Table 4.2: Rejection thresholds for R, Fdr test (4.38) and Hy(intersection) test (4.42); ¢ = o =
0.1. As a function of eg(R), the expected number of null cases in R. (Rounding Hy(intersection)
upward gives conservative level-a tests.)

eo®R: 1 2 3 4 6 8

Hy(intersection): 2.39 3.92 533 6.67 9.25 11.73
Fdr: 10 20 30 40 60 80

Exercise 4.8. For the DTI data of Figure 4.3, 26 of the 15443 z-values are less than
—3.0. How strong is the evidence that at least one of the 26 is non-null? (Assume
independence and set 7y to its upper bound 1.)

4.5 Variations on the Benjamini—-Hochberg Algorithm

The BH algorithm has inspired a great deal of research and development in the statistics
literature, including some useful variations on its original form. Here we will review just
two of these.

e Estimation of 1o The estimated false discovery rate Fdr(z) = moFp(z) /F(z) ap-
pearing in Corollary 4.2 requires knowing g, the actual proportion of null cases. Rather
than setting 7y equal to its upper bound 1 as in the original BH procedure, we can at-
tempt to estimate it from the collection of observed z-values.

3This test is a form of Tukey’s “higher criticism.”
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Returning to the two-groups model (2.7), suppose we believe that f;(z) is zero for
a certain subset Ag of the sample space, perhaps those points near zero,

fi(z)=0 for z € Ag; (4.44)

that is, all the non-null cases must give z-values outside of Ay (sometimes called the zero
assumption). Then the expected value of N (Ap), the observed number of z; values in

AUa is

E{Ny(Ag)} = moN - Fo(Ay), (4.45)
suggesting the estimators
o = N4(Ao)/ (N - Fo(Ao)) (4.46)
and
Fdr(z) = #oFp(2) / F(2). (4.47)

Using F/‘cﬁ"(z) in place of Fdr(z) = Fy(z)/F(z) in Corollary 4.2 increases the number
of discoveries (i.e., rejections). It can be shown that the resulting rule still satisfies
E{Fdp} < ¢ under the independence assumption even if (4.44) isn’t valid.

We might take Ay to be the central ag proportion of the fy distribution on the
grounds that all the “interesting” non-null cases should produce z-values far from the
central region of fo. If fo is AN(0,1) in (2.7) then Ay is the interval

Ao =[@71(0.5 - ap/2), 27" (0.5 + ap/2)] (4.48)

with ® the standard normal cdf. Figure 4.5 graphs 7y as a function of « for the prostate
and DTI data.
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central percentage alpha0

Figure 4.5: Estimated values of 7y (4.46) for the prostate and DTT data sets; A as in (4.48);
ap ranging from 0.1 to 0.9.

Nothing in Figure 4.5 suggests an easy way to select the appropriate Ay region,
particularly not for the prostate data. Part of the problem is the assumption that
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fo(z) is the theoretical null A(0,1) density. The central peak of the prostate data
seen in Figure 2.1 is slightly wider, about A/(0,1.062), which affects calculation (4.46).
Chapter 6 discusses methods that estimate my in conjunction with estimation of the
mean and variance of fy.

Exercise 4.9. How would the prostate data 7y values in Figure 4.5 change if we took
fo to be N(0,1.06%)?

The exact choice of 7y in (4.47) is not crucial: if we are interested in values of
Fdr near ¢ = 0.1 then the difference between 7y = 0.9 and g = 1 is quite small. A
much more crucial and difficult issue is the appropriate choice of the null density fjy,
the subject of Chapter 6.

e Significance analysis of microarrays SAM, the significance analysis of microar-
rays, is a popular Fdr-like program originally intended to identify interesting genes
in microarray experiments. Microarray studies have nothing in particular to do with
SAM’s workings, but we will use them for illustration here. Suppose that X isan N xn
matrix of expression levels as in Section 2.1 that we have used to produce an N-vector
of z-values z = (21, 29, ..., 2n) . For the sake of definiteness, assume that X represents
a two-sample study, say healthy versus sick subjects, and that the z; are normalized ¢-
values as in (2.2)—(2.5). (SAM actually handles more general experimental layouts and
summary statistics: in particular, there need be no theoretical null assumption (2.6).)

1. The algorithm begins by constructing some number B of N X n matrices X*, each
of which is a version of X in which the columns have been randomly permuted as
in (3.40). Each X* yields an N-vector z* of z-values calculated in the same way
as z.

2. Let Z be the ordered version of z, and likewise Z** the ordered version of z*?,
the bth z* vector, b=1,2,...,B. Define

B
Zi=Y 7 / B (4.49)
b=1

so Z; is the average of the ith largest values of z*’.

3. Plot Z; versus Z; for i = 1,2,...,N. The upper panel of Figure 4.6 shows the
(Zi, Z;) plot for the prostate data of Figure 2.1. (This amounts to a QQ-plot of
the actual z-values versus the permutation distribution.)

4. For a given choice of a positive constant A, define

Cup(A) = min{Zi : Zi — Zz > A}

_ 4.50
and co(A) =max{Z;: Z;, — Z; > A}. ( )

In words, cup(A) is the first Z; value at which the (Z;, Z;) curve exits the band
Zi+ A, and similarly for ¢j,(A). In the top panel of Figure 4.6, A = 0.7, cyp(A) =
3.29, and ¢o(A) = —3.34.



4.5. VARIATIONS ON THE BENJAMINI-HOCHBERG ALGORITHM 95

5. Let R(A) be the number of z; values outside of [cjo(A), cup(A)],
R(A) = # {2 = cap(A)} + # {2 < (D)}, (4.51)

and likewise

R*(A) = # {z;b > cup(A)} 4 {z;.*b < qo(A)} , (4.52)
the sums in (4.52) being over all N - B permutation z-values.

6. Finally, define the false discovery rate corresponding to A as

R*(A)/NB 1 R*(A)

Fdr(4) = R(A)/N ~ B R(A)"

(4.53)

actual z-values
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Figure 4.6: SAM plots for the prostate data (top) and the leukemia data (bottom). Starred
points indicate “significant” genes at the ¢ = 0.1 level: 60 in the top panel, 1660 in the bottom.

The SAM program calculates @) for a range of A values in a search for the
A that produces a pre-chosen value Fdr(A) = ¢. For the prostate data, A = 0.7 gave
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Fdr(A) = 0.1. R(A) = 60 genes were identified as significant, 28 on the right and 32
on the left.

Definition (4.53) of Fdr(A) is equivalent to our previous usage at (4.28) or (2.21):
the rejection region

R(A) = {2 ¢ [c0(A), cap(A)]} (4.54)
has empirical probability F(A) = R(A)/N; similarly, R*(A)/NB is the null estimate
Fy(A), the proportion of the N - B z}*-values in R(A), so

Fdr(A) = Fy(A) / F(A), (4.55)

which is (4.28), setting mp = 1 and using the permutation z}-values instead of a theo-
retical distribution to define the nulls.

Despite the disparaged “significance” terminology, the output of SAM is closer to
empirical Bayes estimation than hypothesis testing; that is, the statistician gets more
than a simple yes/no decision for each gene. The two-sided nature of the procedure
is unfortunate from a Bayesian perspective, but this can be remedied by choosing A
separately for positive and negative z-values.

The bottom panel of Figure 4.6 concerns the leukemia data, another microarray
study featured in Chapter 6. Here there are N = 7128 genes whose expression levels
are measured on n = 72 patients, 47 with a less severe and 25 with a more severe form
of leukemia. Two-sample t-tests have led to z-values as in (2.1)—(2.5) (now with 70
degrees of freedom rather than 100). The SAM plot reveals a serious problem: unlike
the prostate panel, the leukemia plot doesn’t match the solid 45° line near z = 0,
crossing it instead at a sharp angle.

We will see in Chapter 6 that the histogram of the 7128 leukemia z-values, unlike
Figure 2.1, is much wider at the center than a N(0,1) distribution. However, the
permutation null distributions are almost perfectly N'(0,1) in both cases, a dependable
phenomenon it turns out. This casts doubt on the appropriateness of Fy(A) in the
numerator of Fdr(A) (4.55) and the identification of 1660 “significant” leukemia genes.
The appropriate choice of a null distribution is the crucial question investigated in
Chapter 6.

Exercise 4.10. Suppose the z-value histogram is approximately N(0,03) near z = 0
while the permutation distribution is N'(0,1). What will be the angle of crossing of the
SAM plot?

4.6 Fdr and Simultaneous Tests of Correlation

When dealing with t-statistics, as in the prostate study (2.2), the false discovery rate
estimator Fdr (2.21) has a nice geometrical interpretation in terms of clustering on the
hypersphere. This interpretation allows us to use the BH algorithm to answer a different
kind of question: Given a case of interest, say gene 610 in the prostate study, which of
the other IV —1 cases is unusually highly correlated with it? “Unusual” has the meaning
here of being in the rejection set of a simultaneous testing procedure.
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It is easier to describe the main idea in terms of one-sample rather than two-sample
t-tests. Suppose that X is an N x n matrix with entries z;;. For each row x; of X we
compute t;, the one-sample t-statistic,

= - L T = Zl :Z:l]’ a_ZQ —_ Zl (‘TU xl) ) (456)
ai/\/n n n—1

t;

We wish to test which if any of the N t;-values are unusually large. (X might arise in
a paired comparison microarray study where x;; is the difference in expression levels,
Treatment minus Placebo, for gene ¢ in the jth pair of subjects.)

Let

u:(l,l,...,l)’/\/ﬁ (4.57)

be the unit vector lying along the direction of the main diagonal in n-dimensional space.
The angle 0; between u and

T = (.732‘1, T2y -« - 7:17in)/ (458)

has cosine

cos(6;) = Tiu (4.59)

where 1/
3 = wif @il = @i [ (S o3) (4.60)

is the scale multiple of x; having unit length. A little bit of algebra shows that ¢; is a
monotonically decreasing function of 6;,

ti=+vn—1 cos(ﬂ,-)/ [1- cos(9¢)2]1/2. (4.61)

Exercise 4.11. Verify (4.61).
The unit sphere in n dimensions,
n
S, = {U:va—l} (4.62)
i=1
can be shown to have area (i.e., (n — 1)-dimensional Lebesgue measure)
A, =272 /T(n/2). (4.63)
With n = 3 this gives the familiar result A3 = 4. Under the null hypothesis,
Hoit i, M N(0,02)  j=1,2,...,n, (4.64)

the vector x; is known to have spherical symmetry around the origin 0; that is, x; is
randomly distributed over S,,, with its probability of falling into any subset R on S,
being proportional to the (n — 1)-dimensional area A(R) of R.
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Putting this together, we can calculate? p;, the one-sided p-value of the one-sample
t-test for Hy;, in terms of 6;:

pi = A(Ry,)/An = A(6;). (4.65)

Here Ry indicates a spherical cap of angle 6§ on S, centered at u, while fl(@z) is the
cap’s area relative to the whole sphere. (Taking u as the north pole on a globe of the
Earth, Ry with 6§ = 23.5° is the region north of the arctic circle.)

Small values of ; correspond to small p-values p;. If 8(n, ) defines a cap having rel-
ative area «, perhaps a = 0.05, then the usual a-level t-test rejects Hy; for 6; < 0(n, a).
Intuitively, under the alternative hypothesis x;; Y (pi,o8) for j =1,2,...,n, &; will
tend to fall nearer w if p; > 0, rejecting Hy; with probability greater than o.

Exercise 4.12. Calculate 0(n,0.05) for n = 5, 10,20, and 40. Hint: Work backwards
from (4.61), using a table of critical values for the ¢-test.

Getting back to the simultaneous inference problem, we observe N points &1, €3, ..., LN
on S, and wonder which of them, if any, lie unusually close to u. We can rephrase the
Benjamini-Hochberg procedure BH(gq) to provide an answer. Define Fdr(6) to be Fdr(Z)
in (2.21) with Z = Ry and let N4 (6) denote the number of points &; in Ry. Then

Fdr(0) = NmoA(0) / N, (0) (4.66)

as in (2.24).
Corollary 4.2 now takes this form: ordering the 6; values from smallest to largest,

Oy <O < <Oy < - <Oy, (4.67)
let imax be the largest index for which

Albw) _
Ny (0)) /N

and reject Hy) for i < imax. Assuming independence of the points, the expected
proportion of null cases among the imnax rejectees will be less than ¢ (actually equaling
m0q). The empirical Bayes considerations of Section 4.3 suggest the same bound, even
under dependence.

Let

(4.68)

0(q) = O(inny»  Rlg) = Ny (é(q)> , and R(q)=R (9(61)) : (4.69)

The BH algorithm BH(q) rejects the R(q) cases having 6; < 6(q), that is, those having
@; within the spherical cap R(q), as illustrated in Figure 4.7.

Exercise 4.13. Show that R<q)/~N1 the observed proportion of points in R(q), is at
least 1/¢ times the relative area A(0(q)). (So if ¢ = 0.1 there are at least 10 times as
many points in R(q) as there would be if all the null hypotheses were correct.)

“We are following Fisher’s original derivation of the Student ¢-distribution.
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Figure 4.7: Spherical cap rejection region R(q) for BH procedure BH(q); Hy; is rejected since
0; < 6(q). Dots indicate the other rejected cases. The number of points in R(g) is at least 1/¢
times larger than the expected number if all N null hypotheses were correct.

The same procedure can be used for the simultaneous testing of correlations. Sup-
pose we are interested in a particular case ig and wonder which if any of the other NV —1
cases are unusually highly correlated with case ig. Define wl-Lj to be the centered version
of Z;,

al =1 -3 j=1,2,...n, (4.70)
]

and let &; play the role of 1 in Figure 4.7. Then

cos(;) = 33;[ 5'3;[0 [HSDI” ' ||5'310H} (4.71)

the Pearson sample correlation coefficient between x; and x;,.
Following through definitions (4.67)-(4.68) gives a BH(q) simultaneous test for the
N — 1 null hypotheses
H()i : cor(i,io) = 0, ) 7'5 io. (4.72)

Thinking of the vectors a:;r / HwIH as points on the (n — 1)-dimensional sphere
n n
Sllz{v:Zvi:(), Zv?zl}, (4.73)
1 1

the test amounts to checking for high-density clusters near szo / Hmjo ||. Different choices

of ig let us check for clusters all over Sl_l, i.e., for groups of correlated cases. (Note:
The test can be carried out conveniently by first computing

t = ﬁc/\or(i,z'o)/ [1—cor(i,io)?]” and pi=1—F,(t) (4.74)
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with v = n — 2, the degrees of freedom, and F, the Student-t cdf, and then applying
BH(q) to the p; values. Using p; = F,(t;) checks for large negative correlations.)

Correlation testing was applied to the prostate data of Section 2.1. Definition (4.70)
was now modified to subtract either the control or cancer patient mean for gene i, as
appropriate, with v = n — 3 = 99 in (4.74). Gene 610 had the largest z-value (2.5)
among the N = 6033 genes, zg19 = 5.29, with estimated W(C)(Zﬁlo) = 0.0007 (using
(4.33) with m9 = 1). Taking ip = 610 in tests (4.72) produced only gene 583 as highly
correlated at level ¢ = 0.10; taking 79 = 583 gave genes 637 and 610, in that order,
as highly correlated neighbors; ig = 637 gave 14 near neighbors, etc. Among the cases
listed in Table 4.3 only genes 610 and 637 had FTirw (z;) < 0.50. One might speculate
that gene 637, which has low W(C) and a large number of highly correlated neighbors,
is of special interest for prostate cancer involvement, even though its z-value 3.29 is not
overwhelming, W(C)(2637) = 0.105.

Table 4.3: Correlation clusters for prostate data using BH(g) with ¢ = 0.10. Taking iy = 610
gave only gene 583 as highly correlated; ig = 583 gave genes 637 and 610, etc. Genes are listed

in order of ¢or(i,ig), largest values first. Gene 637 with z; = 3.29 and W(C)(Zi) = 0.105 is the
only listed gene besides 610 with W(C) < 0.50.

610 — 583 — (637*,610%)
!
(583,837,878, 5674, 1048, 1618, 1066, 610*, and 5 others)

!
(878,637*,1963,376,5674)

The two-sample t-test has almost the same “points on a sphere” description as the
one-sample test: x; is replaced by mj = (zi; — ;) (4.70), S, replaced by S;[hl (4.73),
and 1,, the vector of n 1’s, by

1" = (=1,,/n1, 1, /n2). (4.75)

Everything then proceeds as in (4.65) forward, as illustrated in Figure 4.7 (remembering
that A(6) now refers to the relative areas on an (n — 1)-dimensional sphere). The
same picture applies to more general regression z-values, as mentioned at the end of
Section 3.1.

Notes

The true and false discovery terminology comes from Soric (1989) along with a sugges-
tion of the evocative table in Figure 4.1. Benjamini and Hochberg credit Simes (1986)
with an early version of the BH algorithm (4.9) and (3.29), but the landmark FDR con-
trol theorem (Theorem 4.1) is original to the 1995 BH paper. The neat martingale proof
of Theorem 4.1 comes from Storey, Taylor and Siegmund (2004), as does the result that

F/‘(E(z) (4.47) can be used to control FDR. Efron et al. (2001) presented an empirical
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Bayes interpretation of false discovery rates (emphasizing local fdr) while Storey (2002)
developed a more explicitly Bayes approach. The Positive Regression Dependence jus-
tification for the BH(q) algorithm appears in Benjamini and Yekutieli (2001). Lehmann
and Romano (2005a) develop an algorithm that controls the probability that Fdp ex-
ceeds a certain threshold, rather than E{Fdp}. False Negative Rates are extensively
investigated in Genovese and Wasserman (2002). Section 1 of Efron (1969) discusses the
geometric interpretation of the one-sample ¢-test. Donoho and Jin (2009) apply Tukey’s
higher criticism to large-scale selection problems where genuine effects are expected to
be very rare.



