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Summary

The scientific needs and computational limitations of the twentieth century fashioned classical
statistical methodology. Both the needs and limitations have changed in the twenty-first, and so
has the methodology. Large-scale prediction algorithms—neural nets, deep learning, boosting,
support vector machines, random forests—have achieved star status in the popular press. They
are recognizable as heirs to the regression tradition, but ones carried out at enormous scale and
on titanic datasets. How do these algorithms compare with standard regression techniques such as
ordinary least squares or logistic regression? Several key discrepancies will be examined, centering
on the differences between prediction and estimation or prediction and attribution (significance
testing). Most of the discussion is carried out through small numerical examples.
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1 Introduction

Statistical regression methods go back to Gauss and Legendre in the early 1800s, and espe-
cially to Galton in 1877. During the twentieth century, regression ideas were adapted to a variety
of important statistical tasks: the prediction of new cases, the estimation of regression surfaces,
and the assignment of significance to individual predictors, what I have called “attribution”
in the title of this article. Many of the most powerful ideas of twentieth century statistics are
connected with regression: least squares fitting, logistic regression, generalized linear models,
ANOVA, predictor significance testing, regression to the mean.

The twenty-first century has seen the rise of a new breed of what can be called “pure pre-
diction algorithms”—neural nets, deep learning, boosting, support vector machines, random
forests—recognizably in the Gauss–Galton tradition, but able to operate at immense scales,
with millions of data points and even more millions of predictor variables. Highly success-
ful at automating tasks like online shopping, machine translation, and airline information, the
algorithms (particularly deep learning) have become media darlings in their own right, gener-
ating an immense rush of interest in the business world. More recently, the rush has extended
into the world of science, a one-minute browser search producing “deep learning in biology”;
“computational linguistics and deep learning”; and “deep learning for regulatory genomics.”

How do the pure prediction algorithms relate to traditional regression methods? That
is the central question pursued in what follows. A series of salient differences will be
examined—differences of assumption, scientific philosophy, and goals. The story is a compli-
cated one, with no clear winners or losers; but a rough summary, at least in my mind, is that
the pure prediction algorithms are a powerful addition to the statistician’s armory, yet substan-
tial further development is needed for their routine scientific applicability. Such development
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is going on already in the statistical world, and has provided a welcome shot of energy into our
discipline.

This article, originally a talk, is written with a broad brush, and is meant to be descriptive of
current practice rather than normative of how things have to be. No previous knowledge of the
various prediction algorithms is assumed, though that will sorely underestimate many readers.

This is not a research paper, and most of the argumentation is carried out through numerical
examples. These are of small size, even miniscule by current prediction standards. A certain
giganticism has gripped the prediction literature, with swelling prefixes such as tera-, peta-, and
exabestowing bragging rights. But small datasets can be better for exposing the limitations of a
new methodology.

An excellent reference for prediction methods, both traditional and modern, is Hastie,
Tibshirani, and Friedman (2009). Very little will be said here about the mechanics of the pure
prediction algorithms: just enough, I hope, to get across the idea of how radically different they
are from their traditional counterparts.

2 Surface Plus Noise Models

For both the prediction algorithms and traditional regression methods, we will assume that
the data d available to the statistician has this structure:

d D f.xi ; yi /; i D 1; 2; : : : ; ngI (1)

here xi is a p-dimensional vector of predictors taking its value in a known space X contained in
R
p , and yi is a real-valued response. The n pairs are assumed to be independent of each other.

More concisely we can write
d D fx; yg; (2)

where x is the n � p matrix having xti as its ith row, and y D .y1; y2; : : : ; yn/
t . Perhaps the

most traditional of traditional regression models is

yi D x
t
iˇ C �i .i D 1; 2; : : : ; n/; (3)

�i
iid
� N.0; �2/, that is, “ordinary least squares with normal errors.” Here, ˇ is an unknown

p-dimensional parameter vector. In matrix notation,

y D xˇ C �: (4)

For any choice of x in X, model (3) says that the response y has expectation � D xtˇ, so
y � N.�; �2/. The linear surface Sˇ ,

Sˇ D f� D xtˇ; x 2 Xg; (5)

contains all the true expectations, but the truth is blurred by the noise terms �i .
More generally, we might expand (3) to

yi D s.xi ; ˇ/C �i .i D 1; 2; : : : ; n/; (6)

where s.x; ˇ/ is some known functional form that, for any fixed value of ˇ, gives expectation
� D s.x; ˇ/ as a function of x 2 X. Now the surface of true expectations, that is, the regression
surface, is

Sˇ D f� D s.x; ˇ/; x 2 Xg: (7)
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Figure 1. Black curve is OLS fitted regression to cholostyramine data (dots); vertical bars indicate˙ one standard error
estimation. [Colour figure can be viewed at wileyonlinelibrary.com]

Most traditional regression methods depend on some sort of surface plus noise formula-
tion (though “plus” may refer to, say, binomial variability). The surface describes the scientific
truths we wish to learn, but we can only observe points on the surface obscured by noise. The
statistician’s traditional estimation task is to learn as much as possible about the surface from
the data d.

Figure 1 shows a small example, taken from a larger dataset in Efron and Feldman (1991):
nD 164 male doctors volunteered to take the cholesterol-lowering drug cholostyramine. Two
numbers were recorded for each doctor,

xi D normalized compliance and

yi D observed cholesterol decrease:
(8)

Compliance, the proportion of the intended dose actually taken, ranged from 0% to 100%,
–2.25 to 1.97 on the normalized scale, and of course it was hoped to see larger cholesterol
decreases for the better compliers.

A normal regression model (6) was fit, with

s.xi ; ˇ/ D ˇ0 C ˇ1xi C ˇ2x
2
i C ˇ3x

3
i ; (9)

in other words, a cubic regression model. The black curve is the estimated surface

bS D fs.x; b̌/ for x 2 Xg; (10)

fit by maximum likelihood or, equivalently, by ordinary least squares (OLS). The vertical bars
indicate˙ one standard error for the estimated values s.x; b̌/, at 11 choices of x, showing how
inaccuratebS might be as an estimate of the true S.

That is the estimation side of the story. As far as attribution is concerned, only b̌0 and b̌1

were significantly nonzero. The adjusted R2 was 0.482, a traditional measure of the model’s
predictive power.

Another mainstay of traditional methodology is logistic regression. Table 1 concerns the
neonate data (Mediratta et al. 2019): nD 812 very sick babies at an African facility were
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Table 1. Logistic regression analysis of neonate data.

Estimate SE p-value

Intercept –1.549 0.457 0.001***
gest –0.474 0.163 0.004**
ap –0.583 0.110 0.000***
bwei –0.488 0.163 0.003**
resp 0.784 0.140 0.000***
cpap 0.271 0.122 0.027*
ment 1.105 0.271 0.000***
rate –0.089 0.176 0.612
hr 0.013 0.108 0.905
head 0.103 0.111 0.355
gen –0.001 0.109 0.994
temp 0.015 0.124 0.905

NOTE: Significant two-sided p-values indicated for 6 of
11 predictors; estimated logistic regression made 18%
prediction errors.

observed over the course of one year, 605 who lived and 207 who died. Eleven covariates
were measured at entry: gestational age, body weight, Apgar score, etc., so xi in (1) was 11-
dimensional, while yi equaled 0 or 1 as the baby lived or died. This is a surface plus noise
model, with a linear logistic surface and Bernoulli noise.

The 11 predictor variables were standardized to have mean 0 and variance 1, after which
logistic regression analysis was carried out. Table 1 shows some of the output. Columns 1 and 2
give estimates and standard errors for the regression coefficients (which amount to a description
of the estimated linear logistic surfacebS and its accuracy).

Column 3 shows standard two-sided p-values for the 11 variables, 6 of which are significantly
nonzero, 5 of them strongly so. This is the attribution part of the analysis. As far as prediction
is concerned, the fitted logistic regression model gave an estimated probability pi of death for
each baby. The prediction rule

pi > 0:25 dies

if predict

pi � 0:25 lives

(11)

had an empirical error rate of 18%. (Threshold 0.25 was chosen to compensate for the smaller
proportion of deaths.)

All of this is familiar stuff, serving here as a reminder of how traditional regression analyses
typically begin: a description of the underlying scientific truth (the “surface”) is formulated,
along with a model of the errors that obscure direct observation. The pure prediction algorithms
follow a different path, as described in Section 3.

The left panel of Figure 2 shows the surface representation of a scientific icon, Newton’s
second law of motion,

acceleration D
force

mass
: (12)

It is pleasing to imagine the second law falling full-born out of Newton’s head, but he was a
master of experimentation. The right panel shows a (fanciful) picture of what experimental data
might have looked like.1
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Figure 2. On left, a surface depicting Newton’s second law of motion, accelerationD force/mass; on right, a noisy version.
[Colour figure can be viewed at wileyonlinelibrary.com]

In the absence of genius-level insight, statistical estimation theory is intended as an instru-
ment for peering through the noisy data and discerning a smooth underlying truth. Neither the
cholostyramine nor the neonate examples is as fundamental as Newton’s second law but they
share the goal of extracting dependable scientific structure in a noisy environment. The noise is
ephemeral but the structure, hopefully, is eternal, or at least long-lasting (see Section 8).

3 The Pure Prediction Algorithms

The twenty-first century2 has seen the rise of an extraordinary collection of prediction algo-
rithms: random forests, gradient boosting, support vector machines, neural nets (including deep
learning), and others. I will refer to these collectively as the “pure prediction algorithms” to
differentiate them from the traditional prediction methods illustrated in the previous section.
Some spectacular successes—machine translation, iPhone’s Siri, facial recognition, champi-
onship chess, and Go programs—have elicited a tsunami of public interest. If media attention
is the appropriate metric, then the pure prediction algorithms are our era’s statistical stars.

The adjective “pure” is justified by the algorithms’ focus on prediction, to the neglect of
estimation and attribution. Their basic strategy is simple: to go directly for high predictive
accuracy and not worry about surface plus noise models. This has some striking advantages
and some drawbacks, too. Both advantages and drawbacks will be illustrated in what follows.

A prediction algorithm is a general program for inputting a dataset d D f.xi ; yi /; i D
1; 2; : : : ; ng (1) and outputting a rule f .x;d/ that, for any predictor vector x, yields a prediction

Oy D f .x;d/: (13)

We hope that the apparent error rate of the rule, for classification problems the proportion
of cases where Oyi ¤ yi , cerr D #ff .xi ;d/ ¤ yig=n (14)

is small. More crucially, we hope that the true error rate

Err D Eff .X;d/ ¤ Y g (15)
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Figure 3. Classification tree for neonate data. Triangled terminal nodes predict baby lives, circled predict baby dies; the rule
has apparent prediction error rate 17% and cross-validated rate 18%. [Colour figure can be viewed at wileyonlinelibrary.
com]

is small, where (X, Y) is a random draw from whatever probability distribution gave the (xi, yi)
pairs in d; see Section 6. Random forests, boosting, deep learning, etc. are algorithms that have
well-earned reputations for giving small values of Err in complicated situations.

Besides being very different from traditional prediction methods, the pure prediction algo-
rithms are very different from each other. The least intricate and easiest to describe is random
forests (Breiman 2001). For dichotomous prediction problems, like that for the neonate babies,
random forests depends on ensembles of classification trees.

Figure 3 shows a single classification tree obtained by applying the R program Rpart33 to
the neonates. At the top of the tree all 812 babies were divided into two groups: those with
cpap (an airway blockage signifier) less than threshold 0.6654 were put into the more-favorable
prognosis group to the left; those with cpap � 0.6654 were shunted right into the less-favorable
prognosis group. The predictor cpap and threshold 0.6654 were chosen to maximize, among all
possible (predictor, threshold) choices, the difference in observed death rates between the two
groups.4 Next, each of the two groups was itself split in two, following the same Gini criterion.
The splitting process continued until certain stopping rules were invoked, involving very small
or very homogeneous groups.

At the bottom of Figure 3, the splitting process ended at eight terminal nodes: the node
at far left contained 412 of the original 812 babies, only 5% of which were deaths; the far
right node contained 41 babies, all of which were deaths. Triangles indicate the three terminal
nodes having death proportions less than the original proportion 25.5%, while circles indicate
proportions exceeding 25.5%. The prediction rule is “lives” at triangles, “dies” at circles. If a
new baby arrived at the facility with vector x of 11 measurements, the doctors could predict life
or death by following x down the tree to termination.

This prediction rule has apparent error rate 17%, taking the observed node proportions, 0.05,
etc., as true. Classification trees have a reputation for being greedy overfitters, but in this case a
10-fold cross-validation analysis gave error rate 18%, nearly the same. The careful “traditional”
analysis of the neonate data in Mediratta et al. (2019) gave a cross-validated error rate of 20%.
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Figure 4. Random forest prediction error rate for neonate data, as a function of number of bootstrapped trees; it has cross-
validated error rate 17%. [Colour figure can be viewed at wileyonlinelibrary.com]

It is worth noting that the splitting variables in Figure 3 agree nicely with those found significant
in Table 1.

So far so good for regression trees, but with larger examples they have earned a reputation for
poor predictive performance; see Section 9.2 of Breiman (2001). As an improvement, Breiman’s
random forest algorithm relies on averaging a large number of bootstrap trees, each generated
as follows:

1. Draw a nonparametric bootstrap sample d� from the original data d, that is, a random
sample of n pairs (xi , yi ) chosen with replacement from d.

2. Construct a classification tree from d� as before, but choose each split using only a random
subset of p� predictors chosen independently from the original p.p�

:
D
p
p/.

Having generated, say, B such classification trees, a newly observed x is classified by follow-
ing it down to termination in each tree; finally, Oy D f .x;d/ is determined by the majority of
the B votes. Typically, B is taken in the range 100–1000.

Random forests was applied to the neonate prediction problem, using the R program
randomForest, with the results graphed in Figure 4. The prediction error rate5 is shown as
a function of the number of bootstrap trees sampled. In all, BD 501 trees were used but there
was not much change after 200. The overall prediction error rate fluctuated around 17%, only a
small improvement over the 18% cross-validated rate in Figure 3. Random forests is shown to
better advantage in the microarray example of Section 4.

Random forests begins with the p columns of x as predictors, but then coins a host of new
predictors via the splitting process (e.g., “cpap less than or greater than 0.6654”). The new
variables bring a high degree of interaction to the analysis, for instance, between cpap and gest
in Figure 3. Though carried out differently, high interactivity and fecund coinage of predictor
variables are hallmarks of all pure prediction algorithms.

4 A Microarray Prediction Problem

Newsworthy breakthroughs for pure prediction algorithms have involved truly enormous
datasets. The original English/French translator tool on Google, for instance, was trained on
millions of parallel snippets of English and French obtained from Canadian and European
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Figure 5. Test set error rate for random forests applied to prostate cancer microarray study, as a function of number of
bootstrap trees. [Colour figure can be viewed at wileyonlinelibrary.com]

Table 2. Number of random forest test set errors in
100 random training/test splits of prostate data.

Errors 0 1 2 3 4 5 7
Frequency 3 26 39 12 5 4 1

Union legislative records. There is nothing of that size to offer here but, as a small step up from
the neonate data, we will consider a microarray study of prostate cancer.

The study involved nD 102 men, 52 cancer patients and 50 normal controls. Each man’s
genetic expression levels were measured on a panel of pD 6033 genes,

xij D activity of j th gene for i th man; (16)

i D 1; 2; : : : ; 102 and j D 1; 2; : : : ; 6033. The n � p matrix x is much wider than it is tall
in this case, “wide data” being the trendy name for p � n situations, as contrasted with the
p � n “tall” datasets traditionally favored.

Random forests was put to the task of predicting normal or cancer from a man’s microarray
measurements. Following standard procedure, the 102 men were randomly divided into training
and test sets of size 51,6 each having 25 normal controls and 26 cancer patients.

The training data dtrain consists of 51 (x, y) pairs, x a vector of pD 6033 genetic activity mea-
surements and y equal 0 or 1 indicating a normal or cancer patient. R program randomForest
yielded prediction rule f .x;dtrain/. This rule was applied to the test set, yielding predictions
Oyi D f .xi ;dtrain/ for the 51 test subjects.

Figure 5 graphs the test set error rate as the number of random forest trees increased. After
100 trees, the test set error rate was 2%. That is, Oyi agreed with yi , the actual outcome, for
50 of the 51 test set subjects: an excellent performance by anyone’s standards! This was not
a particularly lucky result. Subsequently, random training/test set splits were carried out 100
times, each time repeating the random forest calculations in Figure 5 and counting the number
of test set errors. The modal number of errors was 2, as seen in Table 2, with “1 prediction
error” occurring frequently.

A classification tree can be thought of as a function f(x) taking values 0 or 1 for x in its sample
space X. The tree in Figure 3 partitions the 11-dimensional space X into 8 rectangular regions,
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Figure 6. Test set error for boosting algorithm gbm applied to prostate cancer data. Thin curve is training set error, which
went to zero at step 86. [Colour figure can be viewed at wileyonlinelibrary.com]

three of which having yD 0 and five having yD 1. A simpler function is obtained by stopping
the division process after the first split, in which case X is divided into just two regions, cpap <
0.6654 and cpap � 0.6654. Such simple trees are picturesquely known as “stumps.”

This brings up another prominent pure prediction method, boosting. Figure 6 shows the
results of applying the R program gbm (for gradient boosting modeling) to the prostate cancer
prediction problem.7 Gbm sequentially fits a weighted sum of classification trees,

KX
kD1

wkfk.x/; (17)

at step kC 1 choosing tree fkC1.x/ to best improve the fit. The weights wk are kept small to
avoid getting trapped in a bad sequence. After 400 steps, Figure 6 shows a test sample error
of 4%, that is, two mistakes out of 51; once again, an impressive performance. (The examples
in Hastie, Tibshirani, and Friedman (2009) show gbm usually doing a little better than random
forests.)

In the evocative language of boosting, the stumps going into Figure 6’s construction are
called “weak learners”: any one of them by itself would barely lower prediction errors below
50%. That a myriad of weak learners can combine so effectively is a happy surprise and a
central advance of the pure prediction enterprise. In contrast, traditional methods focus on
strong individual predictors, as with the asterisks in Table 1, a key difference to be discussed in
subsequent sections.

The light curve in Figure 6 traces the gbm rule’s error rate on its own training set. It went to
zero at step 86 but training continued on, with some improvement in test error. Cross-validation
calculations give some hint of when to stop the fitting process—here we would have done better
to stop at step 200—but it’s not a settled question.

The umbrella package keras was used to apply neural nets/deep learning to the prostate data.
Results were poorer than for random forests or gbm: 7 or 8 errors on the test set depending on
the exact stopping rule. A support vector machine algorithm did worse still, with 11 test set
errors.

The deep learning algorithm is much more intricate than the others, reporting “780,736
parameters used,” these being internally adjusted tuning parameters set by cross-validation.

International Statistical Review (2020), 88, S1, S28–S59
© 2020 International Statistical Institute.

wileyonlinelibrary.com


Prediction, Estimation, and Attribution S37

That this is possible at all is a tribute to modern computing power, the underlying enabler of the
pure prediction movement.

5 Advantages and Disadvantages of Prediction

For those of us who have struggled to find “significant” genes in a microarray study,8 the
almost perfect prostate cancer predictions of random forests and gbm have to come as a discon-
certing surprise. Without discounting the surprise, or the ingenuity of the prediction algorithms,
a contributing factor might be that prediction is an easier task than either attribution or estima-
tion. This is a difficult suspicion to support in general, but a couple of examples help make the
point.

Regarding estimation, suppose that we observe 25 independent replications from a normal
distribution with unknown expectation �,

x1; x2; : : : ; x25
ind
� N.�; 1/; (18)

and consider estimating � with either the sample mean Nx or the sample median Mx. As far as
squared error is concerned, the mean is an overwhelming winner, being more than half again
more efficient,

Ef. Mx � �/2g=Ef. Nx � �/2g
:
D 1:57: (19)

Suppose instead that the task is to predict the value of a new, independent realization X �
N.�; 1/. The mean still wins, but now by only 2%,

Ef.X � Mx/2g=Ef.X � Nx/2g D 1:02: (20)

The reason, of course, is that most of the prediction error comes from the variability of X,
which neither Nx nor Mx can cure.9

Prediction is easier than estimation, at least in the sense of being more forgiving. This allows
for the use of inefficient estimators like the gbm stumps, that are convenient for mass deploy-
ment. The pure prediction algorithms operate nonparametrically, a side benefit of not having to
worry much about estimation efficiency.

For the comparison of prediction with attribution we consider an idealized version of a
microarray study involving n subjects, n=2 healthy controls and n=2 sick patients: any one
subject provides a vector of measurements on N genes, X D .X1; X2; : : : ; XN /

t , with

Xj
ind
� N.˙ıj =2c; 1/ .c D

p
n=4/; (21)

for j D 1; 2; : : : ; N , “plus” for the sick and “minus” for the healthy; ıj is the effect size for
gene j. Most of the genes are null, ıj D 0, say N0 of them, but a small number N1 have ıj equal
a positive value �,

N0 W ıj D 0 and N1 W ıj D �: (22)

A new person arrives and produces a microarray of measurements X D .X1; X2; : : : ; XN /
t

satisfying (21) but without us knowing the person’s healthy/sick status; that is, without
knowledge of the˙ value. Question: How small can N1=N0 get before prediction becomes
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Figure 7. Random forest importance measures for prostate cancer prediction rule of Figure 5, plotted in order of declining
importance. [Colour figure can be viewed at wileyonlinelibrary.com]

impossible? The answer, motivated in Appendix A, is that asymptotically asN0 !1, accurate
prediction is possible if

N1 D O.N
1=2
0 /; (23)

but not below that.
By contrast, Appendix A shows that effective attribution requires

N1 D O.N0/: (24)

In terms of “needles in haystacks” (Johnstone and Silverman 2004), attribution needs an
order of magnitude more needles than prediction. The prediction tactic of combining weak
learners is not available for attribution, which, almost by definition, is looking for strong indi-
vidual predictors. At least in this example, it seems fair to say that prediction is much easier
than attribution.

The three main regression categories can usefully be arranged in order

prediction 	 	 	 estimation 	 	 	 attribution ; (25)

with estimation in a central position and prediction and attribution more remote from each other.
Traditionally, estimation is linked to attribution through p-values and confidence intervals, as
in Table 1. Looking in the other direction, good estimators, when they are available, are usually
good predictors. Both prediction and estimation focus their output on the n side of the n � p
matrix x, while attribution focuses on the p side. Estimation faces both ways in (25).

The randomForest algorithm does attempt to connect prediction and attribution. Along
with the predictions, an importance measure10 is computed for each of the p predictor variables.
Figure 7 shows the ordered importance scores for the prostate cancer application of Figure 5.
Of the pD 6033 genes, 348 had positive scores, these being the genes that ever were chosen as
splitting variables. Gene 1031 achieved the most importance, with about 25 others above the
sharp bend in the importance curve. Can we use the importance scores for attribution, as with
the asterisks in Table 1?
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Table 3. Number of test set errors for prostate cancer random forest
predictions, removing top predictors shown in Figure 7.

# removed 0 1 5 10 20 40 80 160 348
# errors 1 0 3 1 1 2 2 2 0

In this case, the answer seems to be no. I removed gene 1031 from the dataset, reducing the
data matrix x to 102� 6032, and reran the randomForest prediction algorithm. Now the
number of test set prediction errors was zero. Removing the most important five genes, the most
important 10; : : : ; the most important 348 genes had similarly minor effects on the number of
test set prediction errors, as shown in Table 3.

At the final step, all of the genes involved in constructing the original prediction rule of
Figure 5 had been removed. Now x was 102� 5685, but the random forest rule based on the
reduced dataset d D fx; yg still gave excellent predictions. As a matter of fact, there were zero
test set errors for the realization shown in Table 3. The prediction rule at the final step yielded
364 “important” genes, disjoint from the original 348. Removing all 712D 348C 364 genes
from the prediction set—so now x was 102� 5321—still gave a random forest prediction rule
that made only one test set error.

The “weak learners” model of prediction seems dominant in this example. Evidently there are
a great many genes weakly correlated with prostate cancer, which can be combined in different
combinations to give near-perfect predictions. This is an advantage if prediction is the only
goal, but a disadvantage as far as attribution is concerned. Traditional methods of attribution
operate differently, striving as in Table 1 to identify a small set of causal covariates (even if
strict causality cannot be inferred).

The pure prediction algorithms’ penchant for coining weakly correlated new predictors
moves them in the opposite direction from attribution. Section 9 addresses sparsity—a work-
ing assumption of there being only a few important predictors—which is not at all the message
conveyed by Table 3.

6 The Training/Test Set Paradigm

A crucial ingredient of modern prediction methodology is the training/test set paradigm: the
data d (1) is partitioned into a training set dtrain and a test set dtest; a prediction rule f .x;dtrain/
is computed using only the data dtrain; finally, f .x;dtrain/ is applied to the cases in dtest, yielding
an honest estimate of the rule’s error rate. But honest does not mean perfect.

This paradigm was carried out in Section 4 for the prostate cancer microarray study, pro-
ducing an impressively small error rate estimate of 2% for random forests.11 This seemed
extraordinary to me. Why not use this rule to diagnose prostate cancer based on the vector of a
new man’s 6033 gene expression measurements? The next example suggests how this might go
wrong.

The training and test sets for the prostate cancer data of Section 4 were obtained by randomly
dividing the 102 men into two sets of 51, each with 25 normal controls and 26 cancer patients.
Randomization is emphasized in the literature as a guard against bias. Violating this advice,
I repeated the analysis, this time selecting for the training set the 25 normal controls and 26
cancer patients with the lowest ID numbers. The test set was the remaining 51 subjects, those
with the highest IDs, and again contained 25 normal controls and 26 cancer patients.

In the reanalysis randomForest did not perform nearly as well as in Figure 5: f .x;dtrain/
made 12 wrong predictions on dtest with error rate 24%, rather than the previous 2%, as graphed
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Figure 8. randomForest test set error for prostate cancer microarray study, now with training/test sets determined by
early/late ID number. Results are much worse than in Figure 5. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 9. gbm test set error, early/late division; compare with Figure 6. Going on to 800 trees decreased error estimate to
26%. Training set error rate, thin curve, was zero after step 70 but test error rate continued to decline. See the brief discussion
in Criterion 5 of Section 8. [Colour figure can be viewed at wileyonlinelibrary.com]

in Figure 8. The boosting algorithm gbm was just as bad, producing prediction error rate 28%
(14 wrong predictions) as shown in Figure 9.

Why are the predictions so much worse now? It is not obvious from inspection but the
prostate study subjects might have been collected in the order listed,12 with some small method-
ological differences creeping in as time progressed. Perhaps all those weak learners going into
randomForest and gbm were vulnerable to such differences. The prediction literature uses
concept drift as a label for this kind of trouble, a notorious example being the Google flu pre-
dictor, which beat the CDC for a few years before failing spectacularly.13 Choosing one’s test
set by random selection sounds prudent but it is guaranteed to hide any drift effects.

Concept drift gets us into the question of what our various regression methods, new and
old, are supposed to be telling us. Science, historically, has been the search for the underlying
truths that govern our universe: truths that are supposed to be eternal, like Newton’s laws.
The eternal part is clear enough in physics and astronomy—the speed of light, E D mc2,
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Table 4. Comparing logistic regression coefficients for neonate data for year 1 (as in Table 1) and year 2;
correlation coefficient 0.79.

gest ap bwei resp cpap ment rate hr head gen temp

Year 1 –0.47 –0.58 –0.49 0.78 0.27 1.10 –0.09 0.01 0.1 0.00 0.02
Year 2 –0.65 –0.27 –0.19 1.13 0.15 0.41 –0.47 –0.02 –0.2 –0.04 0.16

Hubble’s law—and perhaps in medicine and biology, too, for example, DNA and the circulation
of blood. But modern science has moved on to fields where truth may be more contingent, such
as economics, sociology, and ecology.

Without holding oneself to Newtonian standards, traditional estimation and attribution usu-
ally aim for long-lasting results that transcend the immediate datasets. In the surface plus noise
paradigm of Section 2, the surface plays the role of truth—at least eternal enough to justify
striving for its closest possible estimation.

In the neonate example of Table 1 we would hope that starred predictors like gest and ap
would continue to show up as important in future studies. A second year of data was in fact
obtained, but with only nD 246 babies. The same logistic regression model was run for the year
2 data and yielded coefficient estimates reasonably similar to the year 1 values; see Table 4.
Newton would not be jealous, but something of more than immediate interest seems to have
been discovered.

Nothing rules out eternal truth-seeking for the pure prediction algorithms, but they have been
most famously applied to more ephemeral phenomena: credit scores, Netflix movie recom-
mendations, facial recognition, Jeopardy! competitions. The ability to extract information from
large heterogeneous data collections, even if just for short-term use, is a great advantage of the
prediction algorithms. Random selection of the test set makes sense in this setting, as long as
one does not accept the estimated error rate as applying too far outside the limited range of the
current data.

Here is a contrived microarray example where all the predictors are ephemeral: nD 400
subjects participate in the study, arriving one per day in alternation between Treatment and
Control; each subject is measured on a microarray of pD 200 genes. The 400� 200 data matrix
x has independent normal entries

xij
ind
�N.�ij ; 1/ for i D 1; 2; : : : ; 400 and

j D 1; 2; : : : ; 200:
(26)

Most of the �ij are null, �ij D 0, but occasionally a gene will have an active episode of 30
days during which

�ij D 2 for Treatment and � 2 for Control (27)

for the entire episode, or

�ij D 2 for Control and � 2 for Treatment (28)

for the entire episode. The choice between (27) and (28) is random, as is the starting date for
each episode. Each gene has expected number of episodes equal 1. The black line segments in
Figure 10 indicate all the active time periods.

The 400 hypothetical subjects were randomly divided into a training set of 320 and a test set
of 80. A randomForest analysis gave the results seen in the left panel of Figure 11, with
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Figure 10. Black line segments indicate active episodes in the hypothetical microarray study. (Matrix transposed for
typographical convenience.) [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 11. randomForest prediction applied to contrived microarray study pictured in Figure 10. Left panel: Test set of
size 80, selected randomly from 400 days; heavy black curve shows final estimated test error rate of 19%. Right panel: Test
set days 321–400; now error rate estimate is 45%. Light dotted curves in both panels are training set errors. [Colour figure
can be viewed at wileyonlinelibrary.com]

test set error rate 19%. A second randomForest analysis was carried out, using the subjects
from days 1 to 320 for the training set and from days 321 to 400 for the test set. The right panel
of Figure 11 now shows test set error about 45%.

In this case, it is easy to see how things go wrong. From any one day’s measurements it is
possible to predict Treatment or Control from the active episode responses on nearby days (even
without knowledge of the activity map in Figure 10). This works for the random training/test
division, where most of the test days will be intermixed with training days. Not so for the
early/late division, where most of the test days are far removed from training set episodes. To
put it another way, prediction is easier for interpolation than extrapolation.14
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What in general can we expect to learn from training/test set error estimates? Going back to
formulation (1), the usual assumption is that the pairs (xi , yi ) are independent and identically
distributed (iid) from some probability distribution F on .p C 1/-dimensional space,

.xi ; yi /
iid
� F for i D 1; 2; : : : ; n: (29)

A training set d0 of size n0 and a test set d1 of size n1 D n� n0 are chosen (how is irrelevant
under model (29)), rule f .x;d0/ is computed and applied to d1, generating an error estimate

cErrn0 D
1

n1

X
d1

L.yi ; f .xi ;d0//; (30)

L some loss function like squared error or counting error. Then, under model (29), cErrn0 is
an unbiased estimate of

Errn0.F / D EF fcErrn0g; (31)

the average prediction error of a rule15 f .x;d0/ formed from n0 draws from F.
Concept drift can be interpreted as a change in the data-generating mechanism (29), say F

changing to some new distribution QF , as seems the likely culprit in the prostate cancer example
of Figures 8 and 9.16 Traditional prediction methods are also vulnerable to such changes. In the
neonate study, the logistic regression rule based on the year 1 data had a cross-validated error
rate of 20% which increased to 22% when applied to the year 2 data.

The story is more complicated for the contrived example of Figures 10 and 11, where model
(29) does not strictly apply. There the effective predictor variables are ephemeral, blooming
and fading over short time periods. A reasonable conjecture (but no more than that) would
say the weak learners of the pure prediction algorithms are prone to ephemerality, or at least
are more prone than the “main effects” kind of predictors favored in traditional methodology.
Whether or not this is true, I feel there is some danger in constructing training/test sets by
random selection, and that their error estimates must be taken with a grain of statistical salt. To
put things operationally, I’d worry about recommending the random forests prediction rule in
Figure 5 to a friend concerned about prostate cancer.

This is more than a hypothetical concern. In their 2019 article, “Deep Neural Networks are
Superior to Dermatologists in Melanoma Image Classification,” Brinker et al. demonstrate just
what the title says; the authors are justifiably cautious, recommending future studies for valida-
tion. Moreover, they acknowledge the limitations of using a randomly selected test set, along
with the possible ephemerality of some of the algorithm’s predictor variables. Frequent updat-
ing would be necessary for serious use of any such diagnostic algorithm, along with studies to
show that certain subpopulations were not being misdiagnosed.17

7 Smoothness

It was not just a happy coincidence that Newton’s calculus accompanied Newton’s laws of
motion. The Newtonian world, as fleshed out by Laplace, is an infinitely smooth one in which
small changes in cause yield small changes in effect; a world where derivatives of many orders
make physical sense. The parametric models of traditional statistical methodology enforce the
smooth-world paradigm. Looking back at Figure 1 in Section 2, we might not agree with the
exact shape of the cholostyramine cubic regression curve but the smoothness of the response
seems unarguable: going from, say, 1 to 1.01 on the compliance scale should not much change
the predicted cholesterol decrease.
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Figure 12. randomForest and gbm fits to the cholostyramine data of Figure 1 in Section 2. Heavy curve is cubic OLS;
dashed curve in right panel is 8th degree OLS fit. [Colour figure can be viewed at wileyonlinelibrary.com]

Smoothness of response is not built into the pure prediction algorithms. The left panel of
Figure 12 shows a randomForest estimate of cholesterol decrease as a function of normal-
ized compliance. It roughly follows the OLS cubic curve but in a jagged, definitely unsmooth
fashion. Algorithm gbm, in the right panel, gave a less jagged “curve” but still with substantial
local discontinuity.

The choice of cubic in Figure 1 was made on the basis of a Cp comparison of polynomial
regressions degrees 1 through 8, with cubic best. Both randomForest and gbm in Figure 12
began by taking x to be the 164� 8 matrix poly(c,8) (in R notation), with c the vector of adjusted
compliances—an 8th degree polynomial basis. The light dashed curve in the right panel is the
8th degree polynomial OLS fit, a pleasant surprise being how the gbm predictions follow it over
much of the compliance range. Perhaps this is a hopeful harbinger of how prediction algorithms
could be used as nonparametric regression estimates, but the problems get harder in higher
dimensions.

Consider the supernova data: absolute brightness yi has been recorded for each of nD 75
supernovas, as well as xi a vector of spectral energy measurements at pD 25 different
wavelengths, so the dataset is

d D fx; yg; (32)

with x75 � 25 and y a 75-vector. After some preprocessing, a reasonable model is

yi
ind
� N.�i ; 1/: (33)

It is desired to predict �i from xi .
Our data d is unusually favorable in that the 75 supernovas occurred near enough to Earth

to allow straightforward determination of yi without the use of xi . However, this kind of

International Statistical Review (2020), 88, S1, S28–S59
© 2020 International Statistical Institute.

wileyonlinelibrary.com


Prediction, Estimation, and Attribution S45

determination is not usually available, while xi is always observable; an accurate prediction
rule

Oyi D f .xi ;d/ (34)

would let astronomers better use Type 1a supernovas as “standard candles” in determining the
distances to remote galaxies.18 In this situation, the smoothness of f .x;d/ as a function of x
would be a given.

Figure 13. Interpolation between pairs of points in supernova data. Left side is randomForest, right side is gbm.
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Algorithms randomForest and gbm were fit to the supernova data (32). How smooth
or jagged were they? For any two of the 75 cases, say i1 and i2, let fx˛g be the straight line
connecting xi1 and xi2 in R25,

fx˛ D ˛xi1 C .1 � ˛/xi2 for ˛ 2 Œ0; 1�g; (35)

and f Oy˛g the corresponding predictions. A linear model would yield linear interpolation, y˛ D
˛yi1 C .1 � ˛/yi2 .

Figure 13 graphs fy˛g for three cases: i1 D 1 and i2 D 3; i1 D 1 and i2 D 39, and i1 D 39
and i2 D 65. The randomForest traces are notably eccentric, both locally and globally; gbm
less so, but still far from smooth.19

There is no need for model smoothness in situations where the target objects are naturally
discrete: movie recommendations, credit scores, chess moves. For scientific applications, at
least for some of them, smoothness will be important to a model’s plausibility. As far as I know,
there is no inherent reason that a pure prediction algorithm must give jagged results. Neural
networks, which are essentially elaborate logistic regression programs, might be expected to
yield smoother output.

8 A Comparison Checklist

Prediction is not the same as estimation, though the two are often conflated. Much of this
article has concerned the differences. As a summary of what has gone before as well as a
springboard for broader discussion, this section presents a checklist of important distinctions
and what they mean in terms of statistical practice.

The new millennium got off to a strong start on the virtues of prediction with Leo Breiman’s
(2001) Statistical Science publication, “Statistical Modeling: The Two Cultures.” An energetic
and passionate argument for the “algorithmic culture”—what I have been calling the pure pre-
diction algorithms—in this work Leo excoriated the “data modeling culture” (i.e., traditional
methods) as of limited utility in the dawning world of Big Data. Professor David Cox, the lead
discussant, countered with a characteristically balanced defense of mainstream statistics, not
rejecting prediction algorithms but pointing out their limitations. I was the second discussant,
somewhat skeptical of Leo’s claims (which were effusive toward random forests, at that time
new) but also somewhat impressed.

Breiman turned out to be more prescient than me: pure prediction algorithms have seized the
statistical limelight in the twenty-first century, developing much along the lines Leo suggested.
The present paper can be thought of as a continued effort on my part to answer the question of
how prediction algorithms relate to traditional regression inference.

Table 5 displays a list of six criteria that distinguish traditional regression methods from the
pure prediction algorithms. My previous “broad brush” warning needs to be made again: I am
sure that exceptions can be found to all six distinctions, nor are the listed properties written in
stone, the only implication being that they reflect current usage.

Criterion 1. Surface plus noise models are ubiquitous in traditional regression methodology,
so much so that their absence is disconcerting in the pure prediction world. Neither surface nor
noise is required as input to randomForest, gbm, or their kin. This is an enormous advantage
for easy usage. Moreover, you cannot be using a wrong model if there is no model.

A clinician dealing with possible prostate cancer cases will certainly be interested in effective
prediction, but the disease’s etiology will be of greater interest to an investigating scientist, and
that’s where traditional statistical methods come into their own. If random forests had been
around since 1908 and somebody just invented regression model significance testing, the news
media might now be heralding an era of “sharp data.”
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Table 5. A comparison checklist of differences between traditional regression methods and pure prediction algorithms.

Traditional regressions methods Pure prediction algorithms

1. Surface plus noise models (continuous, smooth) Direct prediction (possibly discrete, jagged)
2. Scientific truth (long-term) Empirical prediction accuracy (possibly short-term)
3. Parametric modeling (causality) Nonparametric (black box)
4. Parsimonious modeling (researchers choose covariates) Anti-parsimony (algorithm chooses predictors)
5. xp � n: with p� n (homogeneous data) p� n, both possibly enormous (mixed data)
6. Theory of optimal inference (mle, Neyman–Pearson) Training/test paradigm (Common Task Framework)

NOTE: See commentary in the text.

Eliminating surface-building from inference has a raft of downstream consequences, as dis-
cussed in what follows. One casualty is smoothness (Section 7). Applications of prediction
algorithms have focused, to sensational effect, on discrete target spaces—Amazon recommen-
dations, translation programs, driving directions—where smoothness is irrelevant. The natural
desire to use them for scientific investigation may hasten development of smoother, more
physically plausible algorithms.

Criterion 2. The two sides of Table 5 use similar fitting criteria—some version of least
squares for quantitative responses—but they do so with different paradigms in mind. Following
a 200-year-old scientific path, traditional regression methods aim to extract underlying truth
from noisy data: perhaps not eternal truth but at least some takeaway message transcending
current experience.

Without the need to model surface or noise mechanisms, scientific truth fades in importance
on the prediction side of the table. There may not be any underlying truth. Prediction meth-
ods can be comfortable with ephemeral relationships that need only remain valid until the next
update. To quote Breiman, “The theory in this field shifts focus from data models to the proper-
ties of algorithms,” that is, from the physical world to the computer. Research in the prediction
community, which is an enormous enterprise, is indeed heavily focused on computational prop-
erties of algorithms—in particular, how they behave as n and p become huge—and less on how
they relate to models of data generation.

Criterion 3. Parametric modeling plays a central role in traditional methods of inference,
while the prediction algorithms are nonparametric, as in (29). (“Nonparametric,” however, can
involve hosts of tuning parameters, millions of them in the case of deep learning, all relating
to the algorithm rather than to data generation.) Lurking behind a parametric model is usually
some notion of causality. In the cholostyramine example of Figure 1 in Section 2, we are likely
to believe that increased ingestion of the drug cholostyramine causes cholesterol to decrease in
a sigmoidal fashion, even if strict causality is elusive.20

Abandoning mathematical models comes close to abandoning the historic scientific goal of
understanding nature. Breiman states the case bluntly:

Data models are rarely used in this community [the algorithmic culture]. The approach is that
nature produces data in a black box whose insides are complex, mysterious, and at least partly
unknowable.21

The black-box approach has a scientifically anti-intellectual feeling but, on the other hand,
scientific understanding may be beside the point if prediction is the only goal. Machine trans-
lation offers a useful case study, where there has been a several-decade conflict between
approaches based on linguistic analysis of language structure and more-or-less pure predic-
tion methods. Under the umbrella name of statistical machine translation (SMT), this latter
approach has swept the field, with Google Translate, for example, currently using a deep
learning prediction algorithm.
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Traditional statistical education involves a heavy course of probability theory. Probability
occupies a smaller portion of the nonparametric pure-prediction viewpoint, with probabilis-
tically simple techniques such as cross-validation and the bootstrap shouldering the method-
ological burden. Mosteller and Turkey’s (1977) book, Data Analysis and Regression: A Second
Course in Statistics, favored a nonprobabilistic approach to inference that would be congenial
to a modern course in machine learning.

Criterion 4. The 11 neonate predictor variables in Table 1 were winnowed down from an ini-
tial list of 81, following a familiar path of preliminary testing and discussions with the medical
scientists. Parsimonious modeling is a characteristic feature of traditional methodology. It can
be crucial for estimation and, especially, for attribution, where it is usually true that the power
of discovery decreases as the list of predictors grows.

The pure prediction world is anti-parsimonious. Control of the predictor set, or the “features”
as they are called, passes from the statistician to the algorithm, which can coin highly interactive
new features such as random forests’ tree variables. “The more predictor variables, the more
information,” said Breiman, an especially accurate forecast of the deep learning era.

I was doubtful. My commentary on Breiman’s paper began: “At first glance Leo Breiman’s
stimulating paper looks like an argument against parsimony and scientific insight, and in favor
of black boxes with lots of knobs to twiddle. At second glance it still looks that way, but the
paper is stimulating . . . .” Impressive results like the randomForest and gbm predictions
for the prostate cancer data, Figures 5 and 6 in Section 4, certainly back up Leo’s claim. But it
is still possible to have reservations. The coined features seem here to be of the weak learner
variety, perhaps inherently more ephemeral than the putative strong learners of Table 1.

This is the suggestion made in Section 6. If the prediction algorithms work by clever combi-
nations of armies of weak learners, then they will be more useful for prediction than estimation
or, especially, for attribution (as suggested in Section 5). “Short-term science” is an oxymoron.
The use of prediction algorithms for scientific discovery will depend on demonstrations of their
longer-term validity.

Criterion 5. Traditional applications ask that the n � p data matrix x (n subjects, p predictors)
have n substantially greater than p, perhaps n > 5	p, in what is now called “tall data.” The
neonate data with nD 812 and pD 12 (counting the intercept) is on firm ground; less firm is
the supernova data of Section 7, with nD 75 and pD 25. On the other side of Table 5 the pure
prediction algorithms allow, and even encourage, “wide data,” with p � n. The prostate cancer
microarray study is notably wide, with nD 102 and pD 6033. Even if we begin with tall data,
as with the cholostyramine example, the prediction algorithms widen it by the coining of new
features.

How do the prediction algorithms avoid overfitting in a p � n situation? There are various
answers, none of them completely convincing: first of all, using a test set guarantees an hon-
est assessment of error (but see the discussion of Criterion 6). Second, most of the algorithms
employ cross-validation checks during the training phase. Finally, there is an active research
area that purports to show a “self-regularizing” property of the algorithms such that even run-
ning one of them long past the point where the training data are perfectly fit, as in Figure 9 of
Section 6, will still produce reasonable predictions.22

Estimation and, particularly, attribution work best with homogeneous datasets, where the
(x, y) pairs come from a narrowly defined population. A randomized clinical trial, where the
subjects are chosen from a specific disease category, exemplifies strict homogeneity. Not requir-
ing homogeneity makes prediction algorithms more widely applicable, and is a virtue in terms
of generalizability of results, but a defect for interpretability.

The impressive scalability of pure prediction algorithms, which allows them to produce
results even for enormous values of n and p, is a dangerous virtue. It has led to a lust for ever
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larger training sets. This has a good effect on prediction, making the task more interpolative and
less extrapolative (i.e., more like Figures 5 and 6, and less like Figures 8 and 9) but muddies
attempts at attribution.23

Traditional regression methods take the matrix of predictions x as a fixed ancillary statistic.
This greatly simplifies the theory of parametric regression models; x is just as random as y in
the pure prediction world, the only probability model being the iid nature of the pairs .x; y/ �
F . Theory is more difficult in this world, encouraging the empirical emphasis discussed in
Criterion 6. Bayesian statistics is diminished in the a-probabilistic prediction world, leaving a
tacit frequentist basis as the theoretical underpinning.

Criterion 6. Traditional statistical practice is based on a century of theoretical development.
Maximum likelihood estimation and the Neyman–Pearson lemma are optimality criteria that
guide applied methodology. On the prediction side of Table 5, theoretical efficiency is replaced
by empirical methods, particularly training/test error estimates.

This has the virtue of dispensing with theoretical modeling, but the lack of a firm theoretical
structure has led to “many flowers blooming”: the popular pure prediction algorithms are com-
pletely different from each other. During the past quarter-century, first neural nets then support
vector machines, boosting, random forests, and a reprise of neural nets in their deep learning
form have all enjoyed the prediction spotlight. In the absence of theoretical guidance we can
probably expect more.

In place of theoretical criteria, various prediction competitions have been used to grade algo-
rithms in the so-called “Common Task Framework.” The common tasks revolve around some
well-known datasets, that of the Netflix movie recommendation data being best known. None
of this is a good substitute for a so-far nonexistent theory of optimal prediction.24

Test sets are an honest vehicle for estimating prediction error, but choosing the test set by
random selection from the full set d (1) may weaken the inference. Even modest amounts
of concept drift can considerably increase the actual prediction error, as in the prostate data
microarray example of Section 6. In some situations there are alternatives to random selection,
for example, by selecting training and test according to early and late collection dates, as in
Figures 8 and 9. In the supernova data of Section 7, the goal is to apply a prediction rule to
supernovas much farther from Earth, so choosing the more distant cases for the test set could
be prudent.

In 1914 the noted astronomer Arthur Eddington,25 an excellent statistician, suggested that
mean absolute deviation rather than root mean square would be more efficient for estimating
a standard error from normally distributed data. Fisher responded in 1920 by showing that not
only was root mean square better than mean absolute deviation, it was better than any other
possible estimator, this being an early example of his theory of sufficiency.

Traditional methods are founded on these kinds of parametric insights. The two sides of
Table 5 are playing by different rules: the left side functions in a Switzerland of inference,
comparatively well ordered and mapped out, while Wild West exuberance thrives on the right.
Both sides have much to gain from commerce. Before the 1920s, statisticians did not really
understand estimation, and after Fisher’s work, we did. We are in the same situation now with
the large-scale prediction algorithms: lots of good ideas and excitement, without principled
understanding, but progress may be in the air.

9 Traditional Methods in the Wide Data Era

The success of the pure prediction algorithms has had a stimulating effect on traditional
theory and practice. The theory, forged in the first half of the twentieth century, was tall-data
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oriented: small values of n, but even smaller p, often just pD 1 or 2. Whether or not one likes
prediction algorithms, parts of modern science have moved into the wide-data era. In response,
traditional methods have been stretching to fit this new world. Three examples follow.

Big data is not the sole possession of prediction algorithms. Computational genetics can go
very big, particularly in the form of a GWAS, genome-wide association study. An impressive
example was given by Ikram et al. (2009), in a study concerning the narrowing of blood vessels
in the eye.26 The amount of narrowing was measured for n D 15; 358 individuals; each individ-
ual had their genome assessed for about p D 106 SNPs (single-nucleotide polymorphisms), a
typical SNP having a certain choice of ATCG value that occurs in a majority of the population
or a minor, less prevalent alternative value. The goal was to find SNPs associated with vascular
narrowing.

With x D 15; 356�106 we are definitely in big data and wide data territory. Surface plus noise
models seem out of the question here. Instead, each SNP was considered separately: a linear
regression was carried out, with the predictor variable the number of minor polymorphisms
in the chromosome pair at that location—0, 1, or 2 for each individual—and response his or
her narrowing measure. This gave a p-value pi against the null hypothesis: polymorphism at
location i has no effect on narrowing, i D 1; 2; : : : ; 106. The Bonferroni threshold for 0.05
significance is

pi � 0:05=106: (36)

Ikram et al. (2009) displayed their results in a “Manhattan plot” with ´i D � log 10.pi /
graphed against location on the genome. Threshold (36) corresponds to ´i � 7:3; 179 of the
106 SNPs had ´i > 7:3, rejecting the null hypothesis of no effect. These were bunched into
five locations on the genome, one of which was borderline insignificant. The authors claimed
credit for discovering four novel loci. These might represent four genes implicated in vascular
narrowing (though a spike in chromosome 12 is shown to spread over a few adjacent genes).

Instead of performing a traditional attribution analysis with p D 106 predictors, the GWAS
procedure performed 106 analyses with pD 1 and then used a second layer of inference to inter-
pret the results of the first layer. My next example concerns a more elaborate implementation
of the two-layer strategy.

While not 106, the pD 6033 features of the prostate cancer microarray study in Section 4
are enough to discourage an overall surface plus noise model. Instead we begin with a separate
pD 1 analysis for each of the genes, as in the GWAS example. The data (16) for the jth gene is

dj D fxij W i D 1; 2; : : : ; 102g; (37)

with i D 1; 2; : : : ; 50 for the normal controls and i D 51; 52; : : : ; 102 for the cancer patients.
Under normality assumptions, we can compute statistics zj comparing patients with controls

which satisfy, to a good approximation,27

´j � N.ıj ; 1/; (38)

where ıj is the effect size for gene j W ıj equals 0 for “null genes,” genes that show the same
genetic activity in patients and controls, while jıj j is large for the kinds of genes being sought,
namely, those having much different responses for patients versus controls.

Inferences for the individual genes by themselves are immediate. For instance,

pj D 2ˆ.�´j / (39)
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is the two-sided p-value for testing ıj D 0. However, this ignores having 6033 p-values to
interpret simultaneously. As with the GWAS, a second layer of inference is needed.

A Bayesian analysis would hypothesize a prior “density” g.ı/ for the effect size, where g
includes an atom of probability �0 at ıD 0 to account for the null genes. Probably, most of the
genes have nothing to do with prostate cancer so �0 is assumed to be near 1. The local false
discovery rate fdr(z)—that is, the probability of a gene being null given z-value z—is, according
to Bayes rule,

fdr.´/ D �0�.´ � ı/=f .´/
:
D �.´ � ı/=f .´/; (40)

where �.´/ D exp f�´2=2g=
p

2� , and f(z) is the marginal density of z,

f .´/ D

Z 1
�1

�.´ � ı/g.ı/ dı: (41)

The prior g.ı/ is most often unknown. An empirical Bayes analysis supposes f(z) to be in
some parametric family fˇ .´/; the MLE Ǒ is obtained by fitting fˇ .	 / to f´1; ´2; : : : ; ´pg, the
observed collection of all 6033 z-values, giving an estimated false discovery ratecfdr.´/ D �.´ � ı/=f Ǒ.´/: (42)

The dashed curve in Figure 14 shows cfdr.´/ based on a fifth-degree log-polynomial model
for fˇ ,

log ffˇ .´/g D ˇ0 C

5X
kD1

ˇk´
kI (43)

cfdr.´/ is seen to be near 1.0 for j´j � 2 (i.e., gene almost certainly null) and declines to zero as
j´j grows large, for instance, equaling 0.129 at zD 4. The conventional threshold for attributing
significance is cfdr.´/ � 0:20; 29 genes achieved this, as indicated by the triangles in Figure 14.

We can also estimate the expected effect size. Tweedie’s formula (Efron 2011) gives a simple
expression for the posterior expectation,

Efıj´g D ´C
d

d´
log f .´/; (44)

f(z) the marginal density (41). Substituting f Ǒ for f gave the estimate Efıj´g in Figure 14. It is
nearly zero for j´j � 2, rising to 2.30 at zD 4.

By using a two-level hierarchical model, the empirical Bayes analysis reduces the situa-
tion from pD 6033 to pD 5. We are back in the comfort zone for traditional methods, where
parametric modeling for estimation and attribution works well. Both are illustrated in Figure 14.

Sparsity offers another approach to wide-data estimation and attribution: we assume that
most of the p predictor variables have no effect and concentrate effort on finding the few impor-
tant ones. The lasso (Tibshirani 1996) provides a key methodology. In an OLS type problem we
estimate ˇ, the p-vector of regression coefficients, by minimizing

1

n

nX
iD1

.yi � x
t
iˇ/

2 C 	jjˇjj1; (45)

where jjˇjj1 D
Pp
jD1 jˇj j.
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Figure 14. Estimated local false discovery curve cfdr.´/ and posterior effect size estimate OEfıj´g from empirical Bayes
analysis of prostate cancer data (the latter divided by 4 for display purposes). Triangles indicate 29 genes having cfdr.´/ �
0:20; circles are 29 most significant genes from glmnet analysis. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 15. First 6 steps of the lasso algorithm applied to the supernova data; coefficients of various predictors are plotted
as a function of step size. Predictor 15 was chosen first, followed by 16, 18, 22, 8, and 6. Stopping at step 4 gives the lowest
Cp estimate of estimation error. [Colour figure can be viewed at wileyonlinelibrary.com]

Here 	 is a fixed tuning parameter: 	D 0 corresponds to the ordinary least squares solution
for ˇ (if p � n) while 	 D1makes Ǒ D 0. For large values of 	, only a few of the coordinates
Ǒ
j will be nonzero. The algorithm begins at 	 D 1 and decreases 	, admitting one new

nonzero coordinate Ǒj at a time. This works even if p > n.
The lasso was applied to the supernova data of Section 7, where x has nD 75 and pD 25.

Figure 15 shows the first six steps, tracking the nonzero coefficients Ǒj as new variables were
added. Predictor 15 was selected first, then 16, 18, 22, 8, and 6, going on to the full OLS solution
Ǒ at step 25. An accuracy formula suggested step 4, with the only nonzero coefficients 15, 16,

18, and 22, as giving the best fit. (These correspond to energy measurements in the iron portion
of the spectrum.)
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Sparsity and the lasso take us in a direction opposite to the pure prediction algorithms.
Rather than combining a myriad of weak predictors, inference is based on a few of the strongest
explanatory variables. This is well suited to attribution but less so for prediction.

An R program for the lasso, glmnet, was applied to the prostate cancer prediction problem
of Section 4, using the same training/test split as that for Figure 5. It performed much worse
than randomForest, making 13 errors on the test set. Applied to the entire dataset of 102
men, however, glmnet gave useful indications of important genes: the circles in Figure 14
show z-values for the 29 genes it ranked as most influential. These have large values of j´i j,
even though the algorithm did not “know” ahead of time to take t-statistics between the cancer
and control groups.

The lasso produced biased estimates of ˇ, with the coordinate values Ǒj shrunk toward zero.
The criticism leveled at prediction methods also applies here: biased estimation is not yet on a
firm theoretical footing.

10 Two Hopeful Trends

This was not meant to be an “emperor has no clothes” kind of story, rather “the emperor
has nice clothes but they’re not suitable for every occasion.” Where they are suitable, the pure
prediction algorithms can be stunningly successful. When one reads an enthusiastic AI-related
story in the press, there’s usually one of these algorithms, operating in enormous scale, doing
the heavy lifting. Regression methods have come a long and big way since the time of Gauss.

Much of this article has been concerned with what the prediction algorithms cannot do, at
least not in their present formulations. Their complex “black box” nature makes the algorithms
difficult to critique. Here I have tried to use relatively small datasets (by prediction literature
standards) to illustrate their differences from traditional methods of estimation and attribution.
The criticisms, most of which will not come as a surprise to the prediction community, were
summarized in the six criteria of Table 5 in Section 8.

Some time around the year 2000 a split opened up in the world of statistics.28 For the discus-
sion here we can call the two branches “pure prediction” and “GWAS”: both accommodating
huge datasets, but with the former having become fully algorithmic while the latter stayed on a
more traditional math-modeling path. The “two hopeful trends” in the title of this section refer
to attempts at reunification, admittedly not yet very far along.

Trend 1 aims to make the output of a prediction algorithm more interpretable, that is, more
like the output of traditional statistical methods. Interpretable surfaces, particularly those of
linear models, serve as the ideal for this achievement. Something like attribution is also desired,
though usually not in the specific sense of statistical significance.

One tactic is to use traditional methods for the analysis of a prediction algorithm’s output;
see Hara and Hayashi (2016) and Efron and Hastie (2016, p. 346). Wager, Hastie, and Efron
(2014) used bootstrap and jackknife ideas to develop standard error calculations for random
forest predictions. Murdoch et al. (2019) and Vellido, Martín-Guerrero, and Lisboa (2012)
provided overviews of interpretability, though neither focused on pure prediction algorithms.
Using information theoretic ideas, Achille and Soatto (2018) discussed statistical sufficiency
measures for prediction algorithms.

Going in the other direction, Trend 2 moves from left to right in Table 5, hoping to achieve
at least some of the advantages of prediction algorithms within a traditional framework. An
obvious target is scalability. Qian et al. (2019) provided a glmnet example with n D 500; 000
and p D 800; 000. Hastie, Tibshirani, and Friedman (2009) successfully connected boosting to
logistic regression. The traditional parametric model that has most currency in the prediction
world is logistic regression, so it is reasonable to hope for reunification progress in that area.
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“Aspirational” might be a more accurate word than “hopeful” for this section’s title. The gulf
seen in Table 5 is wide and the reunification project, if going at all, is just underway. In my
opinion, the impediments are theoretical ones. Maximum likelihood theory provides a lower
bound on the accuracy of an estimate, and a practical way of nearly achieving it. What can we
say about prediction? The Common Task Framework often shows just small differences in error
rates among the contestants, but with no way of knowing whether some other algorithm might
do much better. In short, we do not have an optimality theory for prediction.

The talks I hear these days, both in statistics and biostatistics, bristle with energy and interest
in prediction algorithms. Much of the current algorithmic development has come from outside
the statistics discipline but I believe that future progress, especially in scientific applicability,
will depend heavily on us.

Appendix A

A1 Out-of-Bag (OOB) Estimates, Section 3

A random forest application involves B nonparametric bootstrap samples from the original
dataset d (1), say d�1;d�2; : : : ;d�B . Let

Oyik D f .xi ;d
�k/; i D 1; 2; : : : ; n and k D 1; 2; : : : ; B; (A1)

be the estimate for the ith case obtained from the prediction rule based on the kth bootstrap
sample. Also, let

Nik D number of times case .xi ; yi / appears in d�k : (A2)

The OOB estimate of prediction errors is

cErr0 D

BX
kD1

X
i WNikD0

L.yi ; Oyik/

,
BX
kD1

X
i WNikD0

1; (A3)

where L.yi ; Oyik/ is the loss function; that is, cErr0 is the average loss over all cases in all
bootstrap samples where the sample did not include the case.

“Bagging” stands for “bootstrap aggregation,” the averaging of the true predictors employed
in random forests. The intuition behind (A.3) is that cases having Nik D 0 are “out of the bag”
of d�k , and so form a natural cross-validation set for error estimation.

A2 Prediction Is Easier Than Attribution

We wish to motivate (23)–(24), beginning with model (21)–(22). Let Nx0j be the average of
the n=2 healthy control measurements for gene j, and likewise Nx1j for the n=2 sick patient
measurements. Then we can compute z values

´j D c. Nx1j � Nx0j /
ind
� N.ıj ; 1/ (A4)
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for j D 1; 2; : : : ; N . Letting �0 D N0=N and �1 D N1=N be the proportions of null and
nonnull genes, (22) says that the zj take on two possible densities, in proportions �0 and �1,

�0 W ´ � f0.´/ or �1 W ´ � f1.´/; (A5)

where f0.´/ is the standard normal density f(z), and f1.´/ D �.´ ��/. With both N0 and N1

going to infinity, we can and will think of �0 and �1 as prior probabilities for null and nonnull
genes.

The posterior moments of ıj given zj, obtained by applying Bayes rule to model (A.4), have
simple expressions in terms of the log derivatives of the marginal density

f .´/ D �0f0.´/C �1f1.´/; d.´/ 
 Efıj´g D ´C
d

d´
log f .´/; (A6)

and

v.´/ 
 var fıj´g D 1C
d 2

d´2
log f .´/: (A7)

See Efron (2011). That is,

ıj j´j � .dj ; vj /; (A8)

where the parenthetical notation indicates the mean and variance of a random quantity and
dj D d.´j /; vj D v.´j /. Then Xj � N.ıj =2c; 1/ for the sick subjects in (21) gives

Xj j´j
ind
�

�
dj

2c
;
vj

4c2
C 1

�
: (A9)

(The calculations which follow continue to focus on the “plus” case of (21).)
A linear combination

S D

NX
jD1

wjXj (A10)

has posterior mean and variance

S �

0@ NX
jD1

w0A0;

NX
jD1

w2
jBj

1A ; (A11)

with

Aj D
dj

2c
and Bj D

vj

4c2
C 1:

For the “minus” arm of (21) (the healthy controls), S � .�
PN

1 wjAj ;
PN

1 B2
j /. We can

use S as a prediction statistic, predicting sick for S> 0 and healthy for S< 0.
The probability of a correct prediction depends on

R2 D mean .S/2=var.S/ D

 
NX
1

wjAj

!2

=

 
NX
1

w2
jBj

!
: (A12)
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This is maximized forwj D Aj =Bj (as with Fisher’s linear discriminant function), yielding

S �

 
NX
1

A2
j =Bj ;

NX
1

A2
j =Bj

!
and R2 D

NX
1

A2
j =Bj : (A13)

A normal approximation for the distribution of S gives

ˆ.�R/ (A14)

as the approximate probability of a prediction error of either kind; see Efron (2009).
It remains to calculate R2.

Lemma 1. A continuous approximation to the sum R2 D
PN

1 A2
j =Bj is

R2 D
N 2

1

N0

Z 1
�1

�2

4c2

N0=N1

1C N0
N1

f0.´/
f1.´/

1

1C v.´/

4c2

f1.´/d´: (A15)

Before verifying the lemma, we note that it implies (23): lettingN0 !1withN1 D O.N0/,
and using (A.4), gives

R2 D
N 2

1

N0

Z 1
�1

�2

4c2

exp f�.´2=2/C 2�´ � .�2=2/g
p

2�.1C v.´/=4c2/
d´: (A16)

The variance v(z) is a bounded quantity under (A.4)—it equals 0.25 for � D 1, for
instance—so the integral is a finite positive number, say I.�/. If N1 D 
N

1=2
0 , then the pre-

diction error probabilities are approximately ˆ.�
I .�/1=2/ according to (A.14). However,
N1 D o.N

1=2
0 / gives R2 ! 0 and error probabilities! 1=2.

It remains to verify the lemma. Since any ıj equals either 0 or � (22),

d.´/ D Efıj´g D Pr fı ¤ 0j´g� D tdr .´/�; (A17)

where tdr.´/ is the true discovery rate Prfı ¤ 0j´g,

tdr .´/ D
�1f1.´/

�0f0.´/C �1f1.´/
D

1

1C �0
�1

f0.´/
f1.´/

D
1

1C N0
N1

f0.´/
f1.´/

: (A18)

From (A.11) and (A.13), we get

R2 D

NX
1

A2
j

Bj
D

NX
1

d 2
j

4c2 C vj
D

NX
1

tdr2
j

4c2 C vj
D N

Z 1
�1

tdr.´/2�2

4c2 C v.´/
f .´/d´; (A19)

the last equality being the asymptotic limit of the discrete sum.
Since tdr.´/f .´/ D �1f1.´/ D .N1=N0/f1.´/, (A.18) becomes

R2 D N1

Z 1
�1

tdr.´/�2

4c2 C v.´/
f1.´/d´: (A20)

Then (A.17) gives the lemma. Moreover, unless N1 D O.N0/, (A.17) shows that tdr.´/! 0
for all z, supporting (24).
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Notes
1A half-century earlier, Galileo famously used inclined planes and a water clock to estimate

the acceleration of falling objects.
2Actually, the “long twenty-first century,” much of the activity beginning in the 1990s.
3A knockoff of CART (Breiman et al. 1984).
4More precisely: if nL and nR are the numbers in the left and right groups, and OpL and OpR

the proportions of deaths, then the algorithm minimized the Gini criterion nL OpL.1 � OpL/ C
nR OpR.1 � OpR/. This equals n Op.1 � Op/ � .nLnR=n/. OpL � OpR/

2, where n D nL C nR and Op D
.nL OpLCnR OpR/=n, so that minimizing Gini’s criterion is equivalent to maximizing . OpL � OpR/

2,
for any given values of nL and nR.

5These are “out-of-bag” estimates of prediction error, a form of cross-validation explained in
Appendix A.

6It would be more common to choose, say, 81 training and 21 test, but for the comparisons
that follow it will be helpful to have larger test sets.

7Applied with dD 1, that is, fitting stumps, and shrinkage factor 0.1.
8See Figure 15.5 of Efron and Hastie (2016).
9This imagines that we have a single new observation to predict. Suppose instead that we have

m new observations X1; X2; : : : ; Xm
ind
� N.�; 1/, and that we wish to predict their mean NX .

With m D 10 the efficiency ratio is Ef. NX � Mx/2g=Ef. NX � Nx/2g D 1:16; with mD 100, 1.46;
and with m D1; 1:57. One can think of estimation as the prediction of future mean values.

10There are several such measures. The one in Figure 7 relates to Gini’s criterion, Section 3.
At the conclusion of the algorithm we have a long list of all the splits in all the bootstrap trees;
a single predictor’s importance score is the sum of the decreases in the Gini criterion over all
splits where that predictor was the splitting variable.

11Taking account of the information in Table 2, a better error rate estimate is 3.7%.
12A singular value decomposition of the normal-subject data had second principal vector

sloping upward with ID number, but this was not true for the cancer patient data.
13The CDC itself now sponsors annual Internet-based flu forecasting challenges (Schmidt

2019); see their past results at predict.cdc.gov.
14Yu and Kumbier (2019) proposed the useful distinction of “internal testing” versus

“external testing.”
15An important point is that “a rule” means one formed according to the algorithm of interest

and the data-generating mechanism, not the specific rule f .x;d0/ at hand; see Figure 12.3 of
Efron and Hastie (2016).

16Cox, in his discussion of Breiman (2001), says of the applicability of model (29): “However,
much prediction is not like this. Often the prediction is under quite different : : : conditions
: : : [for example] what would be the effect on annual incidence of cancer in the United States
of reducing by 10% the medical use of x-rays? etc.”

17Facial recognition algorithms have been shown to possess gender, age, and race biases.
18The discovery of dark energy and the cosmological expansion of the universe involved

treating Type 1a supernovas as always having the same absolute brightness, that is, as being
perfect standard candles. This is not exactly true. The purpose of this analysis is to make
the candles more standard by regression methods, and so improve the distance measurements
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underlying cosmic expansion. Efron and Hastie (2016) discussed a subset of this data in their
Chapter 12.

19The relatively smoother results from gbm have to be weighed against the fact that it gave
much worse predictions for the supernova data, greatly overshrinking the Oyi toward zero.

20Efron and Feldman (1991) struggled to make a causality argument, one not accepted
uncritically by subsequent authors.

21Cox counters: “Formal models are useful and often almost, if not quite, essential for incisive
thinking.”

22For instance, in an OLS fitting problem with p > n where the usual estimate b̌ D
.xtx/�1xty is not available, the algorithm should converge to the b̌ that fits the data perfectly,
y D xb̌, and has minimum norm jjb̌jj; see Hastie et al. (2019).

23An experienced statistician will stop reading an article that begins, “Over one million peo-
ple were asked : : : ,” knowing that a random sample of 1000 would be greatly preferable. This
bit of statistical folk wisdom is in danger of being lost in the Big Data era. In an otherwise infor-
mative popular book titled, of course, Big Data, the authors lose all equilibrium on the question
of sample size, advocating for n D all: all the flu cases in the country, all the books on Ama-
zon.com, all possible dog/cat pictures. “Reaching for a random sample in the age of big data is
like clutching at a horsewhip in the era of the motor car.” In fairness, the book’s examples of
n D all are actually narrowly defined, for example, all the street manholes in Manhattan.

24Bayes’ rule offers such a theory, but at a cost in assumptions far outside the limits of the
current prediction environment.

25Later famous for his astronomical verification of Einstein’s theory of relativity.
26Microvascular narrowing is thought to contribute to heart attacks, but it is difficult to

observe in the heart; observation is much easier in the eye.
27If tj is the two-sample t-statistic comparing patients with controls, we take ´j D

ˆ�1F100.tj /, where F100 is the cdf of a t-statistic with 100 degrees of freedom andˆ is the stan-
dard normal cdf. Effect size ıj is a monotone function of the difference in expectations between
patients and controls; see Section 7.4 of Efron (2010).

28See the triangle diagram in the epilogue of Efron and Hastie (2016).
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