
7

James–Stein Estimation and Ridge
Regression

If Fisher had lived in the era of “apps,” maximum likelihood estimation
might have made him a billionaire. Arguably the twentieth century’s most
influential piece of applied mathematics, maximum likelihood continues to
be a prime method of choice in the statistician’s toolkit. Roughly speaking,
maximum likelihood provides nearly unbiased estimates of nearly mini-
mum variance, and does so in an automatic way.

That being said, maximum likelihood estimation has shown itself to be
an inadequate and dangerous tool in many twenty-first-century applica-
tions. Again speaking roughly, unbiasedness can be an unaffordable luxury
when there are hundreds or thousands of parameters to estimate at the same
time.

The James–Stein estimator made this point dramatically in 1961, and
made it in the context of just a few unknown parameters, not hundreds or
thousands. It begins the story of shrinkage estimation, in which deliberate
biases are introduced to improve overall performance, at a possible danger
to individual estimates. Chapters 7 and 21 will carry on the story in its
modern implementations.

7.1 The James–Stein Estimator

Suppose we wish to estimate a single parameter � from observation x in
the Bayesian situation

� � N .M;A/ and xj� � N .�; 1/; (7.1)

in which case � has posterior distribution

�jx � N .M C B.x �M/;B/ ŒB D A=.AC 1/� (7.2)

as given in (5.21) (where we take �2 D 1 for convenience). The Bayes
estimator of �,

O�Bayes
DM C B.x �M/; (7.3)
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92 James–Stein Estimation and Ridge Regression

has expected squared error

E
n�
O�Bayes

� �
�2o
D B; (7.4)

compared with 1 for the MLE O�MLE D x,

E
n�
O�MLE

� �
�2o
D 1: (7.5)

If, say, A D 1 in (7.1) then B D 1=2 and O�Bayes has only half the risk of
the MLE.

The same calculation applies to a situation where we have N indepen-
dent versions of (7.1), say

� D .�1; �2; : : : ; �N /
0 and x D .x1; x2; : : : ; xN /

0; (7.6)

with

�i � N .M;A/ and xi j�i � N .�i ; 1/; (7.7)

independently for i D 1; 2; : : : ; N . (Notice that the �i differ from each
other, and that this situation is not the same as (5.22)–(5.23).) Let O�Bayes

indicate the vector of individual Bayes estimates O�Bayes
i DMCB.xi�M/,

O�Bayes
DM C B.x �M /;

�
M D .M;M; : : : ;M/0

�
; (7.8)

and similarly

O�MLE
D x:

Using (7.4) the total squared error risk of O�Bayes is

E
n

 O�Bayes

� �


2o D E ( NX

iD1

�
O�

Bayes
i � �i

�2)
D N � B (7.9)

compared with

E
n

 O�MLE

� �


2o D N: (7.10)

Again, O�Bayes has only B times the risk of O�MLE.
This is fine if we know M and A (or equivalently M and B) in (7.1). If

not, we might try to estimate them from x D .x1; x2; : : : ; xN /. Marginally,
(7.7) gives

xi
ind
� N .M;AC 1/: (7.11)

Then OM D Nx is an unbiased estimate of M . Moreover,

OB D 1 � .N � 3/=S

"
S D

NX
iD1

.xi � Nx/
2

#
(7.12)
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unbiasedly estimates B , as long as N > 3.� The James–Stein estimator is �1
the plug-in version of (7.3),

O�JS
i D

OM C OB
�
xi � OM

�
for i D 1; 2; : : : ; N; (7.13)

or equivalently O�JS D OM C OB.x � OM /, with OM D . OM; OM; : : : ; OM/0.
At this point the terminology “empirical Bayes” seems especially apt:

Bayesian model (7.7) leads to the Bayes estimator (7.8), which itself is
estimated empirically (i.e., frequentistically) from all the data x, and then
applied to the individual cases. Of course O�JS cannot perform as well as
the actual Bayes’ rule O�Bayes, but the increased risk is surprisingly modest.
The expected squared risk of O�JS under model (7.7) is� �2

E
n

 O�JS

� �


2o D NB C 3.1 � B/: (7.14)

If, say, N D 20 and A D 1, then (7.14) equals 11.5, compared with true
Bayes risk 10 from (7.9), much less than risk 20 for O�MLE.

A defender of maximum likelihood might respond that none of this is
surprising: Bayesian model (7.7) specifies the parameters�i to be clustered
more or less closely around a central point M , while O�MLE makes no such
assumption, and cannot be expected to perform as well. Wrong! Removing
the Bayesian assumptions does not rescue O�MLE, as James and Stein proved
in 1961:

James–Stein Theorem Suppose that

xi j�i � N .�i ; 1/ (7.15)

independently for i D 1; 2; : : : ; N , with N � 4. Then

E
n

 O�JS

� �


2o < N D E n

 O�MLE

� �


2o (7.16)

for all choices of � 2 RN . (The expectations in (7.16) are with � fixed
and x varying according to (7.15).)

In the language of decision theory, equation (7.16) says that O�MLE is
inadmissible: � its total squared error risk exceeds that of O�JS no matter �3
what � may be. This is a strong frequentist form of defeat for O�MLE, not
depending on Bayesian assumptions.

The James–Stein theorem came as a rude shock to the statistical world
of 1961. First of all, the defeat came on MLE’s home field: normal observa-
tions with squared error loss. Fisher’s “logic of inductive inference,” Chap-
ter 4, claimed that O�MLE D x was the obviously correct estimator in the uni-
variate case, an assumption tacitly carried forward to multiparameter linear
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regression problems, where versions of O�MLE were predominant. There are
still some good reasons for sticking with O�MLE in low-dimensional prob-
lems, as discussed in Section 7.4. But shrinkage estimation, as exemplified
by the James–Stein rule, has become a necessity in the high-dimensional
situations of modern practice.

7.2 The Baseball Players

The James–Stein theorem doesn’t say by how much O�JS beats O�MLE. If the
improvement were infinitesimal nobody except theorists would be inter-
ested. In favorable situations the gains can in fact be substantial, as sug-
gested by (7.14). One such situation appears in Table 7.1. The batting av-
erages1 of 18 Major League players have been observed over the 1970 sea-
son. The column labeled MLE reports the player’s observed average over
his first 90 at bats; TRUTH is the average over the remainder of the 1970
season (370 further at bats on average). We would like to predict TRUTH
from the early-season observations.

The column labeled JS in Table 7.1 is from a version of the James–
Stein estimator applied to the 18 MLE numbers. We suppose that each
player’s MLE value pi (his batting average in the first 90 tries) is a binomial
proportion,

pi � Bi.90; Pi /=90: (7.17)

Here Pi is his true average, how he would perform over an infinite number
of tries; TRUTHi is itself a binomial proportion, taken over an average of
370 more tries per player.

At this point there are two ways to proceed. The simplest uses a normal
approximation to (7.17),

pi P�N .Pi ; �20 /; (7.18)

where �20 is the binomial variance

�20 D Np.1 � Np/=90; (7.19)

with Np D 0:254 the average of the pi values. Letting xi D pi=�0, applying
(7.13), and transforming back to OpJS

i D �0 O�
JS
i , gives James–Stein estimates

OpJS
i D Np C

�
1 �

.N � 3/�20P
.pi � Np/2

�
.pi � Np/: (7.20)

1 Batting averageD # hits =# at bats, that is, the success rate. For example, Player 1 hits
successfully 31 times in his first 90 tries, for batting average 31=90 D 0:345. This data
is based on 1970 Major League performances, but is partly artificial; see the endnotes.
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Table 7.1 Eighteen baseball players; MLE is batting average in first 90 at
bats; TRUTH is average in remainder of 1970 season; James–Stein
estimator JS is based on arcsin transformation of MLEs. Sum of squared
errors for predicting TRUTH: MLE .0425, JS .0218.

Player MLE JS TRUTH x

1 .345 .283 .298 11.96
2 .333 .279 .346 11.74
3 .322 .276 .222 11.51
4 .311 .272 .276 11.29
5 .289 .265 .263 10.83
6 .289 .264 .273 10.83
7 .278 .261 .303 10.60
8 .255 .253 .270 10.13
9 .244 .249 .230 9.88

10 .233 .245 .264 9.64
11 .233 .245 .264 9.64
12 .222 .242 .210 9.40
13 .222 .241 .256 9.39
14 .222 .241 .269 9.39
15 .211 .238 .316 9.14
16 .211 .238 .226 9.14
17 .200 .234 .285 8.88
18 .145 .212 .200 7.50

A second approach begins with the arcsin transformation

xi D 2.nC 0:5/
1=2 sin�1

"�
npi C 0:375

nC 0:75

�1=2#
; (7.21)

n D 90 (column labeled x in Table 7.1), a classical device that produces
approximate normal deviates of variance 1,

xi P�N .�i ; 1/; (7.22)

where �i is transformation (7.21) applied to TRUTHi . Using (7.13) gives
O�JS
i , which is finally inverted back to the binomial scale,

OpJS
i D

1

n

"
nC 0:75

nC 0:5

�
sin O�JS

i

2

�2
� 0:375

#
: (7.23)

Formulas (7.20) and (7.23) yielded nearly the same estimates for the
baseball players; the JS column in Table 7.1 is from (7.23). James and
Stein’s theorem requires normality, but the James–Stein estimator often
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works perfectly well in less ideal situations. That is the case in Table 7.1:
18X
iD1

.MLEi�TRUTHi /
2
D 0:0425 while

18X
iD1

.JSi�TRUTHi /
2
D 0:0218:

(7.24)
In other words, the James–Stein estimator reduced total predictive squared
error by about 50%.

0.15 0.20 0.25 0.30 0.35
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● ●● ●● ● ●●● ●●● ● ● ●● ●●TRUE

Batting averages

Figure 7.1 Eighteen baseball players; top line MLE, middle
James–Stein, bottom true values. Only 13 points are visible, since
there are ties.

The James–Stein rule describes a shrinkage estimator, each MLE value
xi being shrunk by factor OB toward the grand mean OM D Nx (7.13). ( OB D
0:34 in (7.20).) Figure 7.1 illustrates the shrinking process for the baseball
players.

To see why shrinking might make sense, let us return to the original
Bayes model (7.8) and take M D 0 for simplicity, so that the xi are
marginally N .0; A C 1/ (7.11). Even though each xi is unbiased for its
parameter �i , as a group they are “overdispersed,”

E

(
NX
iD1

x2i

)
D N.AC 1/ compared with E

(
NX
iD1

�2i

)
D NA: (7.25)

The sum of squares of the MLEs exceeds that of the true values by expected
amount N ; shrinkage improves group estimation by removing the excess.
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In fact the James–Stein rule overshrinks the data, as seen in the bottom
two lines of Figure 7.1, a property it inherits from the underlying Bayes
model: the Bayes estimates O�Bayes

i D Bxi have

E

(
NX
iD1

�
O�

Bayes
i

�2)
D NB2.AC 1/ D NA

A

AC 1
; (7.26)

overshrinking E.
P
�2i / D NA by factor A=.A C 1/. We could use the

less extreme shrinking rule Q�i D
p
Bxi , which gives the correct expected

sum of squares NA, but a larger expected sum of squared estimation errors
Ef
P
. Q�i � �i /

2jxg.
The most extreme shrinkage rule would be “all the way,” that is, to

O�NULL
i D Nx for i D 1; 2; : : : ; N; (7.27)

NULL indicating that in a classical sense we have accepted the null hy-
pothesis of no differences among the �i values. (This gave

P
.Pi � Np/

2 D

0:0266 for the baseball data (7.24).) The James–Stein estimator is a data-
based rule for compromising between the null hypothesis of no differences
and the MLE’s tacit assumption of no relationship at all among the �i
values. In this sense it blurs the classical distinction between hypothesis
testing and estimation.

7.3 Ridge Regression

Linear regression, perhaps the most widely used estimation technique, is
based on a version of O�MLE. In the usual notation, we observe an n-dimen-
sional vector y D .y1; y2; : : : ; yn/0 from the linear model

y D Xˇ C �: (7.28)

HereX is a known n�p structure matrix, ˇ is an unknown p-dimensional
parameter vector, while the noise vector � D .�1; �2; : : : ; �n/0 has its com-
ponents uncorrelated and with constant variance �2,

� � .0; �2I/; (7.29)

where I is the n � n identity matrix. Often � is assumed to be multivariate
normal,

� � Nn.0; �
2I/; (7.30)

but that is not required for most of what follows.
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The least squares estimate Ǒ, going back to Gauss and Legendre in the
early 1800s, is the minimizer of the total sum of squared errors,

Ǒ D arg min
ˇ

˚
ky �Xˇk2

	
: (7.31)

It is given by
Ǒ D S�1X 0y; (7.32)

where S is the p � p inner product matrix

S D X 0X I (7.33)

Ǒ is unbiased for ˇ and has covariance matrix �2S�1,

Ǒ �
�
ˇ; �2S�1

�
: (7.34)

In the normal case (7.30) Ǒ is the MLE of ˇ. Before 1950 a great deal
of effort went into designing matrices X such that S�1 could be feasibly
calculated, which is now no longer a concern.

A great advantage of the linear model is that it reduces the number of
unknown parameters to p (or p C 1 including �2), no matter how large n
may be. In the kidney data example of Section 1.1, n D 157 while p D 2.
In modern applications, however, p has grown larger and larger, sometimes
into the thousands or more, as we will see in Part III, causing statisticians
again to confront the limitations of high-dimensional unbiased estimation.

Ridge regression is a shrinkage method designed to improve the estima-
tion of ˇ in linear models. By transformations� we can standardize (7.28)�4
so that the columns of X each have mean 0 and sum of squares 1, that is,

Si i D 1 for i D 1; 2; : : : ; p: (7.35)

(This puts the regression coefficients ˇ1; ˇ2; : : : ; ˇp on comparable scales.)
For convenience, we also assume Ny D 0. A ridge regression estimate Ǒ.�/
is defined, for � � 0, to be

Ǒ.�/ D .S C �I/�1X 0y D .S C �I/�1S Ǒ (7.36)

(using (7.32)); Ǒ.�/ is a shrunken version of Ǒ, the bigger � the more
extreme the shrinkage: Ǒ.0/ D Ǒ while Ǒ.1/ equals the vector of zeros.

Ridge regression effects can be quite dramatic. As an example, con-
sider the diabetes data, partially shown in Table 7.2, in which 10 prediction
variables measured at baseline—age, sex, bmi (body mass index), map
(mean arterial blood pressure), and six blood serum measurements—have
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Table 7.2 First 7 of n D 442 patients in the diabetes study; we wish to
predict disease progression at one year “prog” from the 10 baseline
measurements age, sex, . . . , glu.

age sex bmi map tc ldl hdl tch ltg glu prog

59 1 32.1 101 157 93.2 38 4 2.11 87 151
48 0 21.6 87 183 103.2 70 3 1.69 69 75
72 1 30.5 93 156 93.6 41 4 2.03 85 141
24 0 25.3 84 198 131.4 40 5 2.12 89 206
50 0 23.0 101 192 125.4 52 4 1.86 80 135
23 0 22.6 89 139 64.8 61 2 1.82 68 97
36 1 22.0 90 160 99.6 50 3 1.72 82 138
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

been obtained for n D 442 patients. We wish to use the 10 variables to pre-
dict prog, a quantitative assessment of disease progression one year after
baseline. In this case X is the 442 � 10 matrix of standardized predictor
variables, and y is prog with its mean subtracted off.

−
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Figure 7.2 Ridge coefficient trace for the standardized diabetes
data.
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Table 7.3 Ordinary least squares estimate Ǒ.0/ compared with ridge
regression estimate Ǒ.0:1/ with � D 0:1. The columns sd(0) and sd(0.1)
are their estimated standard errors. (Here � was taken to be 54.1, the
usual OLS estimate based on model (7.28).)

Ǒ.0/ Ǒ.0:1/ sd(0) sd(0.1)

age �10.0 1.3 59.7 52.7
sex �239.8 �207.2 61.2 53.2
bmi 519.8 489.7 66.5 56.3
map 324.4 301.8 65.3 55.7
tc �792.2 �83.5 416.2 43.6
ldl 476.7 �70.8 338.6 52.4
hdl 101.0 �188.7 212.3 58.4
tch 177.1 115.7 161.3 70.8
ltg 751.3 443.8 171.7 58.4
glu 67.6 86.7 65.9 56.6

Figure 7.2 vertically plots the 10 coordinates of Ǒ.�/ as the ridge pa-
rameter � increases from 0 to 0.25. Four of the coefficients change rapidly
at first. Table 7.3 compares Ǒ.0/, that is the usual estimate Ǒ, with Ǒ.0:1/.
Positive coefficients predict increased disease progression. Notice that ldl,
the “bad cholesterol” measurement, goes from being a strongly positive
predictor in Ǒ to a mildly negative one in Ǒ.0:1/.

There is a Bayesian rationale for ridge regression. Assume that the noise
vector � is normal as in (7.30), so that

Ǒ � Np

�
ˇ; �2S�1

�
(7.37)

rather than just (7.34). Then the Bayesian prior

ˇ � Np

�
0;
�2

�
I

�
(7.38)

makes

E
n
ˇj Ǒ

o
D .S C �I/�1S Ǒ; (7.39)

the same as the ridge regression estimate Ǒ.�/ (using (5.23) with M D 0,
A D .�2=�/I , and † D .S=�2/�1). Ridge regression amounts to an
increased prior belief that ˇ lies near 0.

The last two columns of Table 7.3 compare the standard deviations� of�5
Ǒ and Ǒ.0:1/. Ridging has greatly reduced the variability of the estimated
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regression coefficients. This does not guarantee that the corresponding es-
timate of � D Xˇ,

O�.�/ D X Ǒ.�/; (7.40)

will be more accurate than the ordinary least squares estimate O� D X Ǒ.
We have (deliberately) introduced bias, and the squared bias term coun-
teracts some of the advantage of reduced variability. The Cp calculations
of Chapter 12 suggest that the two effects nearly offset each other for the
diabetes data. However, if interest centers on the coefficients of ˇ, then
ridging can be crucial, as Table 7.3 emphasizes.

By current standards, p D 10 is a small number of predictors. Data sets
with p in the thousands, and more, will show up in Part III. In such situa-
tions the scientist is often looking for a few interesting predictor variables
hidden in a sea of uninteresting ones: the prior belief is that most of the ˇi
values lie near zero. Biasing the maximum likelihood estimates Ǒi toward
zero then becomes a necessity.

There is still another way to motivate the ridge regression estimator
Ǒ.�/:

Ǒ.�/ D arg min
ˇ

fky �Xˇk2 C �kˇk2g: (7.41)

Differentiating the term in brackets with respect to ˇ shows that Ǒ.�/ D
.S C �I/�1X 0y as in (7.36). If � D 0 then (7.41) describes the ordinary
least squares algorithm; � > 0 penalizes choices of ˇ having kˇk large,
biasing Ǒ.�/ toward the origin.

Various terminologies are used to describe algorithms such as (7.41): pe-
nalized least squares; penalized likelihood; maximized a-posteriori proba-
bility (MAP);�and, generically, regularization describes almost any method �6
that tamps down statistical variability in high-dimensional estimation or
prediction problems.

A wide variety of penalty terms are in current use, the most influential
one involving the “`1 norm” kˇk1 D

Pp
1 jˇj j,

Q̌.�/ D arg min
ˇ

fky �Xˇk2 C �kˇk1g; (7.42)

the so-called lasso estimator, Chapter 16. Despite the Bayesian provenance,
most regularization research is carried out frequentistically, with various
penalty terms investigated for their probabilistic behavior regarding esti-
mation, prediction, and variable selection.

If we apply the James–Stein rule to the normal model (7.37), we get a
different shrinkage rule� for Ǒ, say Q̌JS, �7
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Q̌JS
D

"
1 �

.p � 2/�2

Ǒ0S Ǒ

#
Ǒ: (7.43)

Letting Q�JS D X Q̌JS be the corresponding estimator of � D Efyg in
(7.28), the James–Stein Theorem guarantees that

E
n

 Q�JS

� �


2o < p�2 (7.44)

no matter what ˇ is, as long as p � 3.2 There is no such guarantee for
ridge regression, and no foolproof way to choose the ridge parameter �.
On the other hand, Q̌JS does not stabilize the coordinate standard devia-
tions, as in the sd(0.1) column of Table 7.3. The main point here is that at
present there is no optimality theory for shrinkage estimation. Fisher pro-
vided an elegant theory for optimal unbiased estimation. It remains to be
seen whether biased estimation can be neatly codified.

7.4 Indirect Evidence 2

There is a downside to shrinkage estimation, which we can examine by
returning to the baseball data of Table 7.1. One thousand simulations were
run, each one generating simulated batting averages

p�i � Bi.90;TRUTHi /=90 i D 1; 2; : : : ; 18: (7.45)

These gave corresponding James–Stein (JS) estimates (7.20), with �20 D
Np�.1 � Np�/=90.

Table 7.4 shows the root mean square error for the MLE and JS estimates
over 1000 simulations for each of the 18 players,241000X

jD1

.p�ij � TRUTHi /
2

351=2 and

241000X
jD1

. Op� JS
ij � TRUTHi /

2

351=2 :
(7.46)

As foretold by the James–Stein Theorem, the JS estimates are easy victors
in terms of total squared error (summing over all 18 players). However,
Op� JS
i loses to Op�MLE

i D p�i for 4 of the 18 players, losing badly in the case
of player 2.

Histograms comparing the 1000 simulations of p�i with those of Op� JS
i

for player 2 appear in Figure 7.3. Strikingly, all 1000 of the Op� JS
2j values lie

2 Of course we are assumimg �2 is known in (7.43); if it is estimated, some of the
improvement erodes away.
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Table 7.4 Simulation study comparing root mean square errors for MLE
and JS estimators (7.20) as estimates of TRUTH. Total mean square errors
.0384 (MLE) and .0235 (JS). Asterisks indicate four players for whom
rmsJS exceeded rmsMLE; these have two largest and two smallest
TRUTH values (player 2 is Clemente). Column rmsJS1 is for the limited
translation version of JS that bounds shrinkage to within one standard
deviation of the MLE.

Player TRUTH rmsMLE rmsJS rmsJS1

1 .298 .046 .033 .032
2 .346* .049 .077 .056
3 .222 .044 .042 .038
4 .276 .048 .015 .023
5 .263 .047 .011 .020
6 .273 .046 .014 .021
7 .303 .047 .037 .035
8 .270 .049 .012 .022
9 .230 .044 .034 .033

10 .264 .047 .011 .021
11 .264 .047 .012 .020
12 .210* .043 .053 .044
13 .256 .045 .014 .020
14 .269 .048 .012 .021
15 .316* .048 .049 .043
16 .226 .045 .038 .036
17 .285 .046 .022 .026
18 .200* .043 .062 .048

below TRUTH2 D 0:346. Player 2 could have had a legitimate complaint if
the James–Stein estimate were used to set his next year’s salary.

The four losing cases for Op� JS
i are the players with the two largest and

two smallest values of the TRUTH. Shrinkage estimators work against cases
that are genuinely outstanding (in a positive or negative sense). Player 2
was Roberto Clemente. A better informed Bayesian, that is, a baseball fan,
would know that Clemente had led the league in batting over the previ-
ous several years, and shouldn’t be thrown into a shrinkage pool with 17
ordinary hitters.

Of course the James–Stein estimates were more accurate for 14 of the
18 players. Shrinkage estimation tends to produce better results in general,
at the possible expense of extreme cases. Nobody cares much about Cold
War batting averages, but if the context were the efficacies of 18 new anti-
cancer drugs the stakes would be higher.
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Figure 7.3 Comparing MLE estimates (solid) with JS estimates
(line) for Clemente; 1000 simulations, 90 at bats each.

Compromise methods are available. The rmsJS1 column of Table 7.4
refers to a limited translation version of OpJS

i in which shrinkage is not al-
lowed to diverge more than one �0 unit from Opi ; in formulaic terms,

OpJS1
i D min

˚
max

�
OpJS
i ; Opi � �0

�
; Opi C �0

	
: (7.47)

This mitigates the Clemente problem while still gaining most of the shrink-
age advantages.

The use of indirect evidence amounts to learning from the experience
of others, each batter learning from the 17 others in the baseball exam-
ples. “Which others?” is a key question in applying computer-age methods.
Chapter 15 returns to the question in the context of false-discovery rates.

7.5 Notes and Details

The Bayesian motivation emphasized in Chapters 6 and 7 is anachronistic:
originally the work emerged mainly from frequentist considerations and
was justified frequentistically, as in Robbins (1956). Stein (1956) proved
the inadmissibility of O�MLE, the neat version of O�JS appearing in James
and Stein (1961) (Willard James was Stein’s graduate student); O�JS is it-
self inadmissable, being everywhere improvable by changing OB in (7.13)
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to max. OB; 0/. This in turn is inadmissable, but further gains tend to the
minuscule.

In a series of papers in the early 1970s, Efron and Morris emphasized
the empirical Bayes motivation of the James–Stein rule, Efron and Morris
(1972) giving the limited translation version (7.47). The baseball data in its
original form appears in Table 1.1 of Efron (2010). Here the original 45 at
bats recorded for each player have been artificially augmented by adding
45 binomial draws, Bi.45;TRUTHi / for player i . This gives a somewhat
less optimistic view of the James–Stein rule’s performance.

“Stein’s paradox in statistics,” Efron and Morris’ title for their 1977 Sci-
entific American article, catches the statistics world’s sense of discomfort
with the James–Stein theorem. Why should our estimate for Player A go
up or down depending on the other players’ performances? This is the
question of direct versus indirect evidence, raised again in the context of
hypothesis testing in Chapter 15. Unbiased estimation has great scientific
appeal, so the argument is by no means settled.

Ridge regression was introduced into the statistics literature by Hoerl
and Kennard (1970). It appeared previously in the numerical analysis liter-
ature as Tikhonov regularization.

�1 [p. 93] Formula (7.12). If Z has a chi-squared distribution with � degrees
of freedom,Z � �2� (that is,Z � Gam.�=2; 2/ in Table 5.1), it has density

f .z/ D
z�=2�1e�z=2

2�=2�.�=2/
for z � 0; (7.48)

yielding

E

�
1

z

�
D

Z 1
0

z�=2�2e�z=2

2�=2�.�=2/
dz D

2�=2�1

2�=2
�.�=2 � 1/

�.�=2/
D

1

� � 2
: (7.49)

But standard results, starting from (7.11), show that S � .A C 1/�2N�1.
With � D N � 1 in (7.49),

E

�
N � 3

S

�
D

1

AC 1
; (7.50)

verifying (7.12).
�2 [p. 93] Formula (7.14). First consider the simpler situation where M in

(7.11) is known to equal zero, in which case the James–Stein estimator is

O�JS
i D

OBxi with OB D 1 � .N � 2/=S; (7.51)

where S D
PN
1 x

2
i . For convenient notation let

OC D 1 � OB D .N � 2/=S and C D 1 � B D 1=.AC 1/: (7.52)
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The conditional distribution �i jx � N .Bxi ; B/ gives

E
n�
O�JS
i � �i

�2 ˇ̌̌
x
o
D B C . OC � C/2x2i ; (7.53)

and, adding over the N coordinates,

E
n

 O�JS

� �


2 ˇ̌̌xo D NB C . OC � C/2S: (7.54)

The marginal distribution S � .A C 1/�2N and (7.49) yields, after a little
calculation,

E
n
. OC � C/2S

o
D 2.1 � B/; (7.55)

and so

E
n

 O�JS

� �


2o D NB C 2.1 � B/: (7.56)

By orthogonal transformations, in situation (7.7), where M is not as-
sumed to be zero, O�JS can be represented as the sum of two parts: a JS
estimate in N � 1 dimensions but with M D 0 as in (7.51), and a MLE
estimate of the remaining one coordinate. Using (7.56) this gives

E
n

 O�JS

� �


2o D .N � 1/B C 2.1 � B/C 1
D NB C 3.1 � B/;

(7.57)

which is (7.14).
�3 [p. 93] The James–Stein Theorem. Stein (1981) derived a simpler proof of

the JS Theorem that appears in Section 1.2 of Efron (2010).
�4 [p. 98] Transformations to form (7.35). The linear regression model (7.28)

is equivariant under scale changes of the variables xj . What this means
is that the space of fits using linear combinations of the xj is the same as
the space of linear combinations using scaled versions Qxj D xj=sj , with
sj > 0. Furthermore, the least squares fits are the same, and the coefficient

estimates map in the obvious way: OQ̌j D sj Ǒj .
Not so for ridge regression. Changing the scales of the columns of X

will generally lead to different fits. Using the penalty version (7.41) of
ridge regression, we see that the penalty term kˇk2 D

P
j ˇ

2
j treats all the

coefficients as equals. This penalty is most natural if all the variables are
measured on the same scale. Hence we typically use for sj the standard
deviation of variable xj , which leads to (7.35). Furthermore, with ridge
regression we typically do not penalize the intercept. This can be achieved
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by centering and scaling each of the variables, Qxj D .xj �1 Nxj /=sj , where

Nxj D

nX
iD1

xij=n and sj D
hX

.xij � Nxj /
2
i1=2

; (7.58)

with 1 the n-vector of 1s. We now work with QX D . Qx1; Qx2; : : : ; Qxp/ rather
than X , and the intercept is estimated separately as Ny.

�5 [p. 100] Standard deviations in Table 7.3. From the first equality in (7.36)
we calculate the covariance matrix of Ǒ.�/ to be

Cov� D �2.S C �I/�1S .S C �I/�1: (7.59)

The entries sd(0.1) in Table 7.3 are square roots of the diagonal elements
of Cov�, substituting the ordinary least squares estimate O� D 54:1 for �2.

�6 [p. 101] Penalized likelihood and MAP. With �2 fixed and known in the
normal linear model y � Nn.Xˇ; �

2I/, minimizing ky � Xˇk2 is the
same as maximizing the log density function

logfˇ .y/ D �
1

2
ky �Xˇk2 C constant: (7.60)

In this sense, the term �kˇk2 in (7.41) penalizes the likelihood logfˇ .y/
connected with ˇ in proportion to the magnitude kˇk2. Under the prior
distribution (7.38), the log posterior density of ˇ given y (the log of (3.5))
is

�
1

2�2

˚
ky �Xˇk2 C �kˇk2

	
; (7.61)

plus a term that doesn’t depend on ˇ. That makes the maximizer of (7.41)
also the maximizer of the posterior density of ˇ given y , or the MAP.

�7 [p. 101] Formula (7.43). Let 
 D .S 1=2=�/ˇ and O
 D .S 1=2=�/ Ǒ in
(7.37), where S 1=2 is a matrix square root of S , .S 1=2/2 D S . Then

O
 � Np.
; I/; (7.62)

and the M D 0 form of the James–Stein rule (7.51) is

O
 JS
D

�
1 �

p � 2

k O
k
2

�
O
: (7.63)

Transforming back to the ˇ scale gives (7.43).


