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Empirical Bayes

The constraints of slow mechanical computation molded classical statistics
into a mathematically ingenious theory of sharply delimited scope. Emerg-
ing after the Second World War, electronic computation loosened the com-
putational stranglehold, allowing a more expansive and useful statistical
methodology.

Some revolutions start slowly. The journals of the 1950s continued to
emphasize classical themes: pure mathematical development typically cen-
tered around the normal distribution. Change came gradually, but by the
1990s a new statistical technology, computer enabled, was firmly in place.
Key developments from this period are described in the next several chap-
ters. The ideas, for the most part, would not startle a pre-war statistician,
but their computational demands, factors of 100 or 1000 times those of
classical methods, would. More factors of a thousand lay ahead, as will be
told in Part III, the story of statistics in the twenty-first century.

Empirical Bayes methodology, this chapter’s topic, has been a particu-
larly slow developer despite an early start in the 1940s. The roadblock here
was not so much the computational demands of the theory as a lack of ap-
propriate data sets. Modern scientific equipment now provides ample grist
for the empirical Bayes mill, as will be illustrated later in the chapter, and
more dramatically in Chapters 15–21.

6.1 Robbins’ Formula

Table 6.1 shows one year of claims data for a European automobile insur-
ance company; 7840 of the 9461 policy holders made no claims during the
year, 1317 made a single claim, 239 made two claims each, etc., with Ta-
ble 6.1 continuing to the one person who made seven claims. Of course the
insurance company is concerned about the claims each policy holder will
make in the next year.

Bayes’ formula seems promising here. We suppose that xk , the number
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76 Empirical Bayes

Table 6.1 Counts yx of number of claims x made in a single year by
9461 automobile insurance policy holders. Robbins’ formula (6.7)
estimates the number of claims expected in a succeeding year, for instance
0:168 for a customer in the x D 0 category. Parametric maximum
likelihood analysis based on a gamma prior gives less noisy estimates.

Claims x 0 1 2 3 4 5 6 7

Counts yx 7840 1317 239 42 14 4 4 1
Formula (6.7) .168 .363 .527 1.33 1.43 6.00 1.75
Gamma MLE .164 .398 .633 .87 1.10 1.34 1.57

of claims to be made in a single year by policy holder k, follows a Poisson
distribution with parameter �k ,

Prfxk D xg D p�k .x/ D e
��k�xk =xŠ; (6.1)

for x D 0; 1; 2; 3; : : : ; �k is the expected value of xk . A good customer,
from the company’s point of view, has a small value of �k , though in any
one year his or her actual number of accidents xk will vary randomly ac-
cording to probability density (6.1).

Suppose we knew the prior density g.�/ for the customers’ � values.
Then Bayes’ rule (3.5) would yield

Ef� jxg D

R1
0
�p� .x/g.�/ d�R1

0
p� .x/g.�/ d�

(6.2)

for the expected value of � of a customer observed to make x claims in a
single year. This would answer the insurance company’s question of what
number of claims X to expect the next year from the same customer, since
Ef� jxg is also EfX jxg (� being the expectation of X ).

Formula (6.2) is just the ticket if the prior g.�/ is known to the company,
but what if it is not? A clever rewriting of (6.2) provides a way forward.
Using (6.1), (6.2) becomes

Ef� jxg D

R1
0

�
e���xC1=xŠ

�
g.�/ d�R1

0

�
e���x=xŠ

�
g.�/ d�

D
.x C 1/

R1
0

�
e���xC1=.x C 1/Š

�
g.�/ d�R1

0

�
e���x=xŠ

�
g.�/ d�

:

(6.3)
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The marginal density of x, integrating p� .x/ over the prior g.�/, is

f .x/ D

Z 1
0

p� .x/g.�/ d� D

Z 1
0

h
e���x=xŠ

i
g.�/ d�: (6.4)

Comparing (6.3) with (6.4) gives Robbins’ formula,

Ef� jxg D .x C 1/f .x C 1/=f .x/: (6.5)

The surprising and gratifying fact is that, even with no knowledge of the
prior density g.�/, the insurance company can estimate Ef� jxg (6.2) from
formula (6.5). The obvious estimate of the marginal density f .x/ is the
proportion of total counts in category x,

Of .x/ D yx=N; with N D
P
x yx; the total count; (6.6)

Of .0/ D 7840=9461, Of .1/ D 1317=9461, etc. This yields an empirical
version of Robbins’ formula,

OEf� jxg D .x C 1/ Of .x C 1/
ı
Of .x/ D .x C 1/yxC1=yx; (6.7)

the final expression not requiring N . Table 6.1 gives OEf� j0g D 0:168:
customers who made zero claims in one year had expectation 0.168 of a
claim the next year; those with one claim had expectation 0.363, and so on.

Robbins’ formula came as a surprise1 to the statistical world of the
1950s: the expectationEf�kjxkg for a single customer, unavailable without
the prior g.�/, somehow becomes available in the context of a large study.
The terminology empirical Bayes is apt here: Bayesian formula (6.5) for a
single subject is estimated empirically (i.e., frequentistically) from a col-
lection of similar cases. The crucial point, and the surprise, is that large
data sets of parallel situations carry within them their own Bayesian in-
formation. Large parallel data sets are a hallmark of twenty-first-century
scientific investigation, promoting the popularity of empirical Bayes meth-
ods.

Formula (6.7) goes awry at the right end of Table 6.1, where it is destabi-
lized by small count numbers. A parametric approach gives more depend-
able results: now we assume that the prior density g.�/ for the customers’
�k values has a gamma form (Table 5.1)

g.�/ D
���1e��=�

���.�/
; for � � 0; (6.8)

but with parameters � and � unknown. Estimates . O�; O�/ are obtained by
1 Perhaps it shouldn’t have; estimation methods similar to (6.7) were familiar in the

actuarial literature.
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maximum likelihood fitting to the counts yx , yielding a parametrically es-
timated marginal density��1

Of .x/ D f O�; O� .x/; (6.9)

or equivalently Oyx D Nf O�; O� .x/.
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Figure 6.1 Auto accident data; log(counts) vs claims for 9461
auto insurance policies. The dashed line is a gamma MLE fit.

The bottom row of Table 6.1 gives parametric estimates E O�; O�f� jxg D
.xC1/ OyxC1= Oyx , which are seen to be less eccentric for large x. Figure 6.1
compares (on the log scale) the raw counts yx with their parametric cousins
Oyx .

6.2 The Missing-Species Problem

The very first empirical Bayes success story related to the butterfly data of
Table 6.2. Even in the midst of World War II Alexander Corbet, a leading
naturalist, had been trapping butterflies for two years in Malaysia (then
Malaya): 118 species were so rare that he had trapped only one specimen
each, 74 species had been trapped twice each, Table 6.2 going on to show
that 44 species were trapped three times each, and so on. Some of the more
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common species had appeared hundreds of times each, but of course Corbet
was interested in the rarer specimens.

Table 6.2 Butterfly data; number y of species seen x times each in two
years of trapping; 118 species trapped just once, 74 trapped twice each,
etc.

x 1 2 3 4 5 6 7 8 9 10 11 12

y 118 74 44 24 29 22 20 19 20 15 12 14

x 13 14 15 16 17 18 19 20 21 22 23 24

y 6 12 6 9 9 6 10 10 11 5 3 3

Corbet then asked a seemingly impossible question: if he trapped for one
additional year, how many new species would he expect to capture? The
question relates to the absent entry in Table 6.2, x D 0, the species that
haven’t been seen yet. Do we really have any evidence at all for answering
Corbet? Fortunately he asked the right man: R. A. Fisher, who produced a
surprisingly satisfying solution for the “missing-species problem.”

Suppose there are S species in all, seen or unseen, and that xk , the num-
ber of times species k is trapped in one time unit,2 follows a Poisson dis-
tribution with parameter �k as in (6.1),

xk � Poi.�k/; for k D 1; 2; : : : ; S: (6.10)

The entries in Table 6.2 are

yx D #fxk D xg; for x D 1; 2; : : : ; 24; (6.11)

the number of species trapped exactly x times each.
Now consider a further trapping period of t time units, t D 1=2 in Cor-

bet’s question, and let xk.t/ be the number of times species k is trapped in
the new period. Fisher’s key assumption is that

xk.t/ � Poi.�kt / (6.12)

independently of xk . That is, any one species is trapped independently over
time3 at a rate proportional to its parameter �k .

The probability that species k is not seen in the initial trapping period

2 One time unit equals two years in Corbet’s situation.
3 This is the definition of a Poisson process.
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but is seen in the new period, that is xk D 0 and xk.t/ > 0, is

e��k
�
1 � e��k t

�
; (6.13)

so that E.t/, the expected number of new species seen in the new trapping
period, is

E.t/ D

SX
kD1

e��k
�
1 � e��k t

�
: (6.14)

It is convenient to write (6.14) as an integral,

E.t/ D S

Z 1
0

e��
�
1 � e��t

�
g.�/ d�; (6.15)

where g.�/ is the “empirical density” putting probability 1=S on each of
the �k values. (Later we will think of g.�/ as a continuous prior density on
the possible �k values.)

Expanding 1 � e��t gives

E.t/ D S

Z 1
0

e��
�
� t � .� t/2=2ŠC .� t/3=3Š � � � �

�
g.�/ d�: (6.16)

Notice that the expected value ex of yx is the sum of the probabilities of
being seen exactly x times in the initial period,

ex D Efyxg D

SX
kD1

e��k�xk =xŠ

D S

Z 1
0

h
e���x=xŠ

i
g.�/ d�:

(6.17)

Comparing (6.16) with (6.17) provides a surprising result,

E.t/ D e1t � e2t
2
C e3t

3
� � � � : (6.18)

We don’t know the ex values but, as in Robbins’ formula, we can esti-
mate them by the yx values, yielding an answer to Corbet’s question,

OE.t/ D y1t � y2t
2
C y3t

3
� � � � : (6.19)

Corbet specified t D 1=2, so4

OE.1=2/ D 118.1=2/ � 74.1=2/2 C 44.1=2/3 � � � �

D 45:2:
(6.20)

4 This may have been discouraging; there were no new trapping results reported.
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Table 6.3 Expectation (6.19) and its standard error (6.21) for the number
of new species captured in t additional fractional units of trapping time.

t 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E.t/ 0 11.10 20.96 29.79 37.79 45.2 52.1 58.9 65.6 71.6 75.0bsd.t/ 0 2.24 4.48 6.71 8.95 11.2 13.4 15.7 17.9 20.1 22.4

Formulas (6.18) and (6.19) do not require the butterflies to arrive inde-
pendently. If we are willing to add the assumption that the xk’s are mutually
independent, we can calculate� �2

bsd.t/ D

 
24X
xD1

yxt
2x

!1=2
(6.21)

as an approximate standard error for OE.t/. Table 6.3 shows OE.t/ and bsd.t/
for t D 0; 0:1; 0:2; : : : ; 1; in particular,

OE.0:5/ D 45:2˙ 11:2: (6.22)

Formula (6.19) becomes unstable for t > 1. This is our price for sub-
stituting the nonparametric estimates yx for ex in (6.18). Fisher actually
answered Corbet using a parametric empirical Bayes model in which the
prior g.�/ for the Poisson parameters �k (6.12) was assumed to be of the
gamma form (6.8). It can be shown� that then E.t/ (6.15) is given by �3

E.t/ D e1 f1 � .1C  t/
��
g
ı
.�/; (6.23)

where  D �=.1 C �/. Taking Oe1 D y1, maximum likelihood estimation
gave

O� D 0:104 and O� D 89:79: (6.24)

Figure 6.2 shows that the parametric estimate of E.t/ (6.23) using Oe1,
O�, and O� is just slightly greater than the nonparametric estimate (6.19) over
the range 0 � t � 1. Fisher’s parametric estimate, however, gives reason-
able results for t > 1, OE.2/ D 123 for instance, for a future trapping period
of 2 units (4 years). “Reasonable” does not necessarily mean dependable.
The gamma prior is a mathematical convenience, not a fact of nature; pro-
jections into the far future fall into the category of educated guessing.

The missing-species problem encompasses more than butterflies. There
are 884,647 words in total in the recognized Shakespearean canon, of which
14,376 are so rare they appear just once each, 4343 appear twice each, etc.,
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Figure 6.2 Butterfly data; expected number of new species in t
units of additional trapping time. Nonparametric fit (solid)˙ 1
standard deviation; gamma model (dashed).

Table 6.4 Shakespeare’s word counts; 14,376 distinct words appeared
once each in the canon, 4343 distinct words twice each, etc. The canon
has 884,647 words in total, counting repeats.

1 2 3 4 5 6 7 8 9 10

0C 14376 4343 2292 1463 1043 837 638 519 430 364
10C 305 259 242 223 187 181 179 130 127 128
20C 104 105 99 112 93 74 83 76 72 63
30C 73 47 56 59 53 45 34 49 45 52
40C 49 41 30 35 37 21 41 30 28 19
50C 25 19 28 27 31 19 19 22 23 14
60C 30 19 21 18 15 10 15 14 11 16
70C 13 12 10 16 18 11 8 15 12 7
80C 13 12 11 8 10 11 7 12 9 8
90C 4 7 6 7 10 10 15 7 7 5

as in Table 6.4, which goes on to the five words appearing 100 times each.
All told, 31,534 distinct words appear (including those that appear more
than 100 times each), this being the observed size of Shakespeare’s vocab-
ulary. But what of the words Shakespeare knew but didn’t use? These are
the “missing species” in Table 6.4.
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Suppose another quantity of previously unknown Shakespeare manu-
scripts was discovered, comprising 884647 � t words (so t D 1 would rep-
resent a new canon just as large as the old one). How many previously
unseen distinct words would we expect to discover?

Employing formulas (6.19) and (6.21) gives

11430˙ 178 (6.25)

for the expected number of distinct new words if t D 1. This is a very con-
servative lower bound on how many words Shakespeare knew but didn’t
use. We can imagine t rising toward infinity, revealing ever more unseen
vocabulary. Formula (6.19) fails for t > 1, and Fisher’s gamma assump-
tion is just that, but more elaborate empirical Bayes calculations give a firm
lower bound of 35; 000C on Shakespeare’s unseen vocabulary, exceeding
the visible portion!

Missing mass is an easier version of the missing-species problem, in
which we only ask for the proportion of the total sum of �k values corre-
sponding to the species that went unseen in the original trapping period,

M D
X

unseen

�k

�X
all

�k: (6.26)

The numerator has expectationX
all

�ke
��k D S

Z 1
0

�e��g.�/ D e1 (6.27)

as in (6.17), while the expectation of the denominator isX
all

�k D
X

all

Efxsg D E

(X
all

xs

)
D EfN g; (6.28)

where N is the total number of butterflies trapped. The obvious missing-
mass estimate is then

OM D y1=N: (6.29)

For the Shakespeare data,

OM D 14376=884647 D 0:016: (6.30)

We have seen most of Shakespeare’s vocabulary, as weighted by his usage,
though not by his vocabulary count.

All of this seems to live in the rarefied world of mathematical abstrac-
tion, but in fact some previously unknown Shakespearean work might have
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been discovered in 1985. A short poem, “Shall I die?,” was found in the
archives of the Bodleian Library and, controversially, attributed to Shake-
speare by some but not all experts.

The poem of 429 words provided a new “trapping period” of length only

t D 429=884647 D 4:85 � 10�4; (6.31)

and a prediction from (6.19) of

Eftg D 6:97 (6.32)

new “species,” i.e., distinct words not appearing in the canon. In fact there
were nine such words in the poem. Similar empirical Bayes predictions
for the number of words appearing once each in the canon, twice each,
etc., showed reasonable agreement with the poem’s counts, but not enough
to stifle doubters. “Shall I die?” is currently grouped with other canonical
apocrypha by a majority of experts.

6.3 A Medical Example

The reader may have noticed that our examples so far have not been par-
ticularly computer intensive; all of the calculations could have been (and
originally were) done by hand.5 This section discusses a medical study
where the empirical Bayes analysis is more elaborate.

Cancer surgery sometimes involves the removal of surrounding lymph
nodes as well as the primary target at the site. Figure 6.3 concernsN D 844
surgeries, each reporting

n D # nodes removed and x D # nodes found positive; (6.33)

“positive” meaning malignant. The ratios

pk D xk=nk; k D 1; 2; : : : ; N; (6.34)

are described in the histogram. A large proportion of them, 340=844 or
40%, were zero, the remainder spreading unevenly between zero and one.
The denominators nk ranged from 1 to 69, with a mean of 19 and standard
deviation of 11.

We suppose that each patient has some true probability of a node being

5 Not so collecting the data. Corbet’s work was pre-computer but Shakespeare’s word
counts were done electronically. Twenty-first-century scientific technology excels at the
production of the large parallel-structured data sets conducive to empirical Bayes
analysis.
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Figure 6.3 Nodes study; ratio p D x=n for 844 patients; n D
number of nodes removed, x D number positive.

positive, say probability �k for patient k, and that his or her nodal results
occur independently of each other, making xk binomial,

xk � Bi.nk; �k/: (6.35)

This gives pk D xk=nk with mean and variance

pk � .�k; �k.1 � �k/=nk/ ; (6.36)

so that �k is estimated more accurately when nk is large.
A Bayesian analysis would begin with the assumption of a prior density

g.�/ for the �k values,

�k � g.�/; for k D 1; 2; : : : ; N D 844: (6.37)

We don’t know g.�/, but the parallel nature of the nodes data set—844
similar cases—suggests an empirical Bayes approach. As a first try for the
nodes study, we assume that logfg.�/g is a fourth-degree polynomial in � ,

log fg˛.�/g D a0 C
4X
jD1

˛j �
j
I (6.38)



86 Empirical Bayes

g˛.�/ is determined by the parameter vector ˛ D .˛1; ˛2; ˛3; ˛4/ since,
given ˛, a0 can be calculated from the requirement thatZ 1

0

g˛.�/ d� D 1 D

Z 1

0

exp

(
a0 C

4X
1

˛j �
j

)
d�: (6.39)

For a given choice of ˛, let f˛.xk/ be the marginal probability of the
observed value xk for patient k,

f˛.xk/ D

Z 1

0

 
nk

xk

!
�xk .1 � �/nk�xkg˛.�/ d�: (6.40)

The maximum likelihood estimate of ˛ is the maximizer

Ǫ D arg max
˛

(
NX
kD1

logf˛.xk/

)
: (6.41)
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Figure 6.4 Estimated prior density g.�/ for the nodes study;
59% of patients have � � 0:2, 7% have � � 0:8.

Figure 6.4 graphs g Ǫ .�/, the empirical Bayes estimate for the prior dis-
tribution of the �k values. The huge spike at zero in Figure 6.3 is now
reduced: Prf�k � 0:01g D 0:12 compared with the 38% of the pk values



6.3 A Medical Example 87

less than 0.01. Small � values are still the rule though, for instanceZ 0:20

0

g Ǫ .�/ d� D 0:59 compared with
Z 1:00

0:80

g Ǫ .�/ d� D 0:07: (6.42)

The vertical bars in Figure 6.4 indicate ˙ one standard error for the es-
timation of g.�/. The curve seems to have been estimated very accurately,
at least if we assume the adequacy of model (6.37). Chapter 21 describes
the computations involved in Figure 6.4.

The posterior distribution of �k given xk and nk is estimated according
to Bayes’ rule (3.5) to be

Og.� jxk; nk/ D g Ǫ .�/

 
nk

xk

!
�xk .1 � �/nk�xk

�
f Ǫ .xk/; (6.43)

with f Ǫ .xk/ from (6.40).
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Figure 6.5 Empirical Bayes posterior densities of � for three
patients, given x D number of positive nodes, n D number of
nodes.

Figure 6.5 graphs Og.� jxk; nk/ for three choices of .xk; nk/: .7; 32/, .3; 6/,
and .17; 18/. If we take � � 0:50 as indicating poor prognosis (and sug-
gesting more aggressive follow-up therapy), then the first patient is almost
surely on safe ground, the third patient almost surely needs more follow-up
therapy and the situation of the second is uncertain.
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6.4 Indirect Evidence 1

A good definition of a statistical argument is one in which many small
pieces of evidence, often contradictory, are combined to produce an overall
conclusion. In the clinical trial of a new drug, for instance, we don’t expect
the drug to cure every patient, or the placebo to always fail, but eventually
perhaps we will obtain convincing evidence of the new drug’s efficacy.

The clinical trial is collecting direct statistical evidence, in which each
subject’s success or failure bears directly upon the question of interest. Di-
rect evidence, interpreted by frequentist methods, was the dominant mode
of statistical application in the twentieth century, being strongly connected
to the idea of scientific objectivity.

Bayesian inference provides a theoretical basis for incorporating indi-
rect evidence, for example the doctor’s prior experience with twin sexes in
Section 3.1. The assertion of a prior density g.�/ amounts to a claim for
the relevance of past data to the case at hand.

Empirical Bayes removes the Bayes scaffolding. In place of a reassuring
prior g.�/, the statistician must put his or her faith in the relevance of the
“other” cases in a large data set to the case of direct interest. For the second
patient in Figure 6.5, the direct estimate of his � value is O� D 3=6 D 0:50.
The empirical Bayes estimate is a little less,

O�EB
D

Z 1

0

� Og.� jxk D 3; nk D 6/ D 0:446: (6.44)

A small difference, but we will see bigger ones in succeeding chapters.
The changes in twenty-first-century statistics have largely been demand

driven, responding to the massive data sets enabled by modern scientific
equipment. Philosophically, as opposed to methodologically, the biggest
change has been the increased acceptance of indirect evidence, especially
as seen in empirical Bayes and objective (“uninformative”) Bayes appli-
cations. False-discovery rates, Chapter 15, provide a particularly striking
shift from direct to indirect evidence in hypothesis testing. Indirect evi-
dence in estimation is the subject of our next chapter.

6.5 Notes and Details

Robbins (1956) introduced the term “empirical Bayes” as well as rule (6.7)
as part of a general theory of empirical Bayes estimation. 1956 was also the
publication year for Good and Toulmin’s solution (6.19) to the missing-
species problem. Good went out of his way to credit his famous Bletchley
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colleague Alan Turing for some of the ideas. The auto accident data is taken
from Table 3.1 of Carlin and Louis (1996), who provide a more complete
discussion. Empirical Bayes estimates such as 11430 in (6.25) do not de-
pend on independence among the “species,” but accuracies such as ˙178
do; and similarly for the error bars in Figures 6.2 and 6.4.

Corbet’s enormous efforts illustrate the difficulties of amassing large
data sets in pre-computer times. Dependable data is still hard to come by,
but these days it is often the statistician’s job to pry it out of enormous
databases. Efron and Thisted (1976) apply formula (6.19) to the Shake-
speare word counts, and then use linear programming methods to bound
Shakespeare’s unseen vocabulary from below at 35,000 words. (Shake-
speare was actually less “wordy” than his contemporaries, Marlow and
Donne.) “Shall I die,” the possibly Shakespearean poem recovered in 1985,
is analyzed by a variety of empirical Bayes techniques in Thisted and Efron
(1987). Comparisons are made with other Elizabethan authors, none of
whom seem likely candidates for authorship.

The Shakespeare word counts are from Spevack’s (1968) concordance.
(The first concordance was compiled by hand in the mid 1800s, listing
every word Shakespeare wrote and where it appeared, a full life’s labor.)

The nodes example, Figure 6.3, is taken from Gholami et al. (2015).
�1 [p. 78] Formula (6.9). For any positive numbers c and d we haveZ 1

0

�c�1e��=d d� D d c�.c/; (6.45)

so combining gamma prior (6.8) with Poisson density (6.1) gives marginal
density

f�;� .x/ D

R1
0
��Cx�1e��= d�

���.�/xŠ

D
�Cx�.� C x/

���.�/xŠ
;

(6.46)

where  D �=.1 C �/. Assuming independence among the counts yx
(which is exactly true if the customers act independently of each other and
N , the total number of them, is itself Poisson), the log likelihood function
for the accident data is

xmaxX
xD0

yx log ff�;� .x/g : (6.47)

Here xmax is some notional upper bound on the maximum possible number
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of accidents for a single customer; since yx D 0 for x > 7 the choice of
xmax is irrelevant. The values . O�; O�/ in (6.8) maximize (6.47).

�2 [p. 81] Formula (6.21). IfN D
P
yx , the total number trapped, is assumed

to be Poisson, and if the N observed values xk are mutually independent,
then a useful property of the Poisson distribution implies that the counts yx
are themselves approximately independent Poisson variates

yx
ind
� Poi.ex/; for x D 0; 1; 2; : : : ; (6.48)

in notation (6.17). Formula (6.19) and varfyxg D ex then give

var
n
OE.t/

o
D

X
x�1

ext
2x: (6.49)

Substituting yx for ex produces (6.21). Section 11.5 of Efron (2010) shows
that (6.49) is an upper bound on varf OE.t/g if N is considered fixed rather
than Poisson.

�3 [p. 81] Formula (6.23). Combining the case x D 1 in (6.17) with (6.15)
yields

E.t/ D
e1
�R1
0
e��g.�/ d� �

R1
0
e��.1Ct/g.�/ d�

�R1
0
�e��g.�/ d�

: (6.50)

Substituting the gamma prior (6.8) for g.�/, and using (6.45) three times,
gives formula (6.23).


