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Large-Scale Hypothesis Testing and
False-Discovery Rates

By the final decade of the twentieth century, electronic computation fully
dominated statistical practice. Almost all applications, classical or other-
wise, were now performed on a suite of computer platforms: SAS, SPSS,
Minitab, Matlab, S (later R), and others.

The trend accelerates when we enter the twenty-first century, as statis-
tical methodology struggles, most often successfully, to keep up with the
vastly expanding pace of scientific data production. This has been a two-
way game of pursuit, with statistical algorithms chasing ever larger data
sets, while inferential analysis labors to rationalize the algorithms.

Part III of our book concerns topics in twenty-first-century1 statistics.
The word “topics” is intended to signal selections made from a wide cat-
alog of possibilities. Part II was able to review a large portion (though
certainly not all) of the important developments during the postwar period.
Now, deprived of the advantage of hindsight, our survey will be more illus-
trative than definitive.

For many statisticians, microarrays provided an introduction to large-
scale data analysis. These were revolutionary biomedical devices that en-
abled the assessment of individual activity for thousands of genes at once—
and, in doing so, raised the need to carry out thousands of simultaneous
hypothesis tests, done with the prospect of finding only a few interesting
genes among a haystack of null cases. This chapter concerns large-scale
hypothesis testing and the false-discovery rate, the breakthrough in statis-
tical inference it elicited.

1 Actually what historians might call “the long twenty-first century” since we will begin
in 1995.
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272 Large-scale Hypothesis Testing and FDRs

15.1 Large-Scale Testing

The prostate cancer data, Figure 3.4, came from a microarray study of
n D 102 men, 52 prostate cancer patients and 50 normal controls. Each
man’s gene expression levels were measured on a panel of N D 6033

genes, yielding a 6033 � 102 matrix of measurements xij ,

xij D activity of i th gene for j th man: (15.1)

For each gene, a two-sample t statistic (2.17) ti was computed com-
paring gene i ’s expression levels for the 52 patients with those for the 50
controls. Under the null hypothesis H0i that the patients’ and the controls’
responses come from the same normal distribution of gene i expression
levels, ti will follow a standard Student t distribution with 100 degrees of
freedom, t100. The transformation

zi D ˆ
�1 .F100.ti // ; (15.2)

where F100 is the cdf of a t100 distribution and ˆ�1 the inverse function of
a standard normal cdf, makes zi standard normal under the null hypothesis:

H0i W zi � N .0; 1/: (15.3)

Of course the investigators were hoping to spot some non-null genes,
ones for which the patients and controls respond differently. It can be
shown that a reasonable model for both null and non-null genes is2��1

zi � N .�i ; 1/; (15.4)

�i being the effect size for gene i . Null genes have �i D 0, while the
investigators hoped to find genes with large positive or negative �i effects.

Figure 15.1 shows the histogram of the 6033 zi values. The red curve is
the scaled N .0; 1/ density that would apply if in fact all of the genes were
null, that is if all of the �i equaled zero.3 We can see that the curve is a
little too high near the center and too low in the tails. Good! Even though
most of the genes appear null, the discrepancies from the curve suggest that
there are some non-null cases, the kind the investigators hoped to find.

Large-scale testing refers exactly to this situation: having observed a
large numberN of test statistics, how should we decide which if any of the
null hypotheses to reject? Classical testing theory involved only a single
case, N D 1. A theory of multiple testing arose in the 1960s, “multiple”

2 This is model (3.28), with zi now replacing the notation xi .
3 It is ce�z

2=2=
p
2� with c chosen to make the area under the curve equal the area of

the histogram.
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Figure 15.1 Histogram of N D 6033 z-values, one for each gene
in the prostate cancer study. If all genes were null (15.3) the
histogram would track the red curve. For which genes can we
reject the null hypothesis?

meaning N between 2 and perhaps 20. The microarray era produced data
sets withN in the hundreds, thousands, and now even millions. This sounds
like piling difficulty upon difficulty, but in fact there are some inferential
advantages to the large-N framework, as we will see.

The most troubling fact about large-scale testing is how easy it is to be
fooled. Running 100 separate hypothesis tests at significance level 0.05
will produce about five “significant” results even if each case is actually
null. The classical Bonferroni bound avoids this fallacy by strengthening
the threshold of evidence required to declare an individual case significant
(i.e., non-null). For an overall significance level ˛, perhaps ˛ D 0:05, with
N simultaneous tests, the Bonferroni bound rejects the i th null hypothesis
H0i only if it attains individual significance level ˛=N . For ˛ D 0:05,
N D 6033, and H0i W zi � N .0; 1/, the one-sided Bonferroni threshold
for significance is �ˆ�1.0:05=N / D 4:31 (compared with 1.645 for N D
1). Only four of the prostate study genes surpass this threshold.

Classic hypothesis testing is usually phrased in terms of significance lev-
els and p-values. If test statistic z has cdf F0.z/ under the null hypothesis
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then4

p D 1 � F0.z/ (15.5)

is the right-sided p-value, larger z giving smaller p-value. “Significance
level” refers to a prechosen threshold value, e.g., ˛ D 0:05. The null
hypothesis is “rejected at level ˛” if we observe p � ˛. Table 13.4 on
page 245 (where “coverage level” means one minus the significance level)
shows Fisher’s scale for interpreting p-values.

A level-˛ test for a single null hypothesis H0 satisfies, by definition,

˛ D Prfreject true H0g: (15.6)

For a collection ofN null hypothesesH0i , the family-wise error rate is the
probability of making even one false rejection,

FWER D Prfreject any true H0ig: (15.7)

Bonferroni’s procedure controls FWER at level ˛: let I0 be the indices of
the true H0i , having say N0 members. Then

FWER D Pr

8<:[
I0

�
pi �

˛

N

�9=; �X
I0

Pr
n
pi �

˛

N

o
D N0

˛

N
� ˛;

(15.8)

the top line following from Boole’s inequality (which doesn’t require even
independence among the pi ).

The Bonferroni bound is quite conservative: for N D 6033 and ˛ D
0:05 we reject only those cases having pi � 8:3 � 10�6. One can do only a
little better under the FWER constraint. “Holm’s procedure,”�which offers�2
modest improvement over Bonferroni, goes as follows.

� Order the observed p-values from smallest to largest,

p.1/ � p.2/ � p.3/ � : : : � p.i/ � : : : � p.N/; (15.9)

with H0.i/ denoting the corresponding null hypotheses.
� Let i0 be the smallest index i such that

p.i/ > ˛=.N � i C 1/: (15.10)

� Reject all null hypotheses H0.i/ for i < i0 and accept all with i � i0.

4 The left-sided p-value is p D F0.z/. We will avoid two-sided p-values in this
discussion.
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It can be shown that Holm’s procedure controls FWER at level ˛, while
being slightly more generous than Bonferroni in declaring rejections.

15.2 False-Discovery Rates

The FWER criterion aims to control the probability of making even one
false rejection among N simultaneous hypothesis tests. Originally devel-
oped for small-scale testing, say N � 20, FWER usually proved too con-
servative for scientists working with N in the thousands. A quite different
and more liberal criterion, false-discovery rate (FDR) control, has become
standard.

4	  
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Figure 15.2 A decision rule D has rejected R out of N null
hypotheses; a of these decisions were incorrect, i.e., they were
“false discoveries,” while b of them were “true discoveries.” The
false-discovery proportion Fdp equals a=R.

Figure 15.2 diagrams the outcome of a hypothetical decision rule D ap-
plied to the data for N simultaneous hypothesis-testing problems, N0 null
and N1 D N � N0 non-null. An omniscient oracle has reported the rule’s
results: R null hypotheses have been rejected; a of these were cases of
false discovery, i.e., valid null hypotheses, for a “false-discovery propor-
tion” (Fdp) of

Fdp.D/ D a=R: (15.11)

(We define Fdp D 0 if R D 0.) Fdp is unobservable—without the oracle
we cannot see a—but under certain assumptions we can control its expec-
tation.
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Define

FDR.D/ D E fFdp.D/g : (15.12)

A decision rule D controls FDR at level q, with q a prechosen value be-
tween 0 and 1, if

FDR.D/ � q: (15.13)

It might seem difficult to find such a rule, but in fact a quite simple but in-
genious recipe does the job. Ordering the observed p-values from smallest
to largest as in (15.9), define imax to be the largest index for which

p.i/ �
i

N
q; (15.14)

and let Dq be the rule5 that rejects H0.i/ for i � imax, accepting otherwise.
A proof of the following theorem is referenced in the chapter endnotes.��3

Theorem (Benjamini–Hochberg FDR Control) If the p-values correspond-
ing to valid null hypotheses are independent of each other, then

FDR.Dq/ D �0q � q; where �0 D N0=N: (15.15)

In other words Dq controls FDR at level �0q. The null proportion �0 is
unknown (though estimable), so the usual claim is that Dq controls FDR at
level q. Not much is sacrificed: large-scale testing problems are most often
fishing expeditions in which most of the cases are null, putting �0 near 1,
identification of a few non-null cases being the goal. The choice q D 0:1

is typical practice.
The popularity of FDR control hinges on the fact that it is more generous

than FWER in declaring significance.6 Holm’s procedure (15.10) rejects
null hypothesis H0.i/ if

p.i/ � Threshold(Holm’s) D
˛

N � i C 1
; (15.16)

while Dq (15.13) has threshold

p.i/ � Threshold(Dq) D
q

N
i: (15.17)

5 Sometimes denoted “BHq” after its inventors Benjamini and Hochberg; see the chapter
endnotes.

6 The classic term “significant” for a non-null identification doesn’t seem quite right for
FDR control, especially given the Bayesian connections of Section 15.3, and we will
sometimes use “interesting” instead.
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In the usual range of interest, large N and small i , the ratio

Threshold(Dq)
Threshold(Holm’s)

D
q

˛

�
1 �

i � 1

N

�
i (15.18)

increases almost linearly with i .
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Figure 15.3 Ordered p-values p.i/ D 1 �ˆ.z.i// plotted versus
i for the 50 largest z-values from the prostate data in
Figure 15.1. The FDR control boundary (algorithm Dq , q D 0:1)
rejects H0.i/ for the 28 smallest values p.i/, while Holm’s FWER
procedure (˛ D 0:1) rejects for only the 7 smallest values. (The
upward slope of Holm’s boundary (15.16) is too small to see
here.)

Figure 15.3 illustrates the comparison for the right tail of the prostate
data of Figure 15.1, with pi D 1 � ˆ.zi / (15.3), (15.5), and ˛ D q D

0:1. The FDR procedure rejects H0.i/ for the 28 largest z-values (z.i/ �
3:33), while FWER control rejects only the 7 most extreme z-values (z.i/ �
4:14).

Hypothesis testing has been a traditional stronghold of frequentist deci-
sion theory, with “Type 1” error control being strictly enforced, very often
at the 0.05 level. It is surprising that a new control criterion, FDR, has
taken hold in large-scale testing situations. A critic, noting FDR’s relaxed
rejection standards in Figure 15.3, might raise some pointed questions.
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1 Is controlling a rate (i.e., FDR) as meaningful as controlling a probabil-
ity (of Type 1 error)?

2 How should q be chosen?
3 The control theorem depends on independence among the p-values.

Isn’t this unlikely in situations such as the prostate study?
4 The FDR significance for gene i0, say one with zi0 D 3, depends on the

results of all the other genes: the more “other” zi values exceed 3, the
more interesting gene i0 becomes (since that increases i0’s index i in
the ordered list (15.9), making it more likely that pi0 lies below the Dq

threshold (15.14)). Does this make inferential sense?

A Bayes/empirical Bayes restatement of the Dq algorithm helps answer
these questions, as discussed next.

15.3 Empirical Bayes Large-Scale Testing

In practice, single-case hypothesis testing has been a frequentist preserve.
Its methods demand little from the scientist—only the choice of a test
statistic and the calculation of its null distribution—while usually deliver-
ing a clear verdict. By contrast, Bayesian model selection, whatever its in-
ferential virtues, raises the kinds of difficult modeling questions discussed
in Section 13.3.

It then comes as a pleasant surprise that things are different for large-
scale testing: Bayesian methods, at least in their empirical Bayes manifes-
tation, no longer demand heroic modeling efforts, and can help untangle
the interpretation of simultaneous test results. This is particularly true for
the FDR control algorithm Dq of the previous section.

A simple Bayesian framework for simultaneous testing is provided by
the two-groups model: each of the N cases (the genes for the prostate
study) is either null with prior probability �0 or non-null with probabil-
ity �1 D 1 � �0; the resulting observation z then has density either f0.z/
or f1.z/,

�0 D Prfnullg f0.z/ density if null;

�1 D Prfnon-nullg f1.z/ density if non-null:
(15.19)

For the prostate study, �0 is nearly 1, and f0.z/ is the standard normal den-
sity �.z/ D exp.�z2=2/=

p
2� (15.3), while the non-null density remains

to be estimated.
Let F0.z/ and F1.z/ be the cdf values corresponding to f0.z/ and f1.z/,


