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and the estimated standard error is

ŝeboot =

√∑B
b=1(τ̂

∗
b − τ̂)2
B

. �

The bootstrap is much easier than the delta method. On the other hand,
the delta method has the advantage that it gives a closed form expression for
the standard error.

9.12 Checking Assumptions

If we assume the data come from a parametric model, then it is a good idea to
check that assumption. One possibility is to check the assumptions informally
by inspecting plots of the data. For example, if a histogram of the data looks
very bimodal, then the assumption of Normality might be questionable. A
formal way to test a parametric model is to use a goodness-of-fit test. See
Section 10.8.

9.13 Appendix

9.13.1 Proofs

Proof of Theorem 9.13. Since θ̂n maximizes Mn(θ), we have Mn(θ̂n) ≥
Mn(θ	). Hence,

M(θ	)−M(θ̂n) = Mn(θ	)−M(θ̂n) +M(θ	)−Mn(θ	)

≤ Mn(θ̂n)−M(θ̂n) +M(θ	)−Mn(θ	)

≤ sup
θ
|Mn(θ)−M(θ)|+M(θ	)−Mn(θ	)

P−→ 0

where the last line follows from (9.7). It follows that, for any δ > 0,

P

(
M(θ̂n) < M(θ	)− δ

)
→ 0.

Pick any ε > 0. By (9.8), there exists δ > 0 such that |θ− θ	| ≥ ε implies that
M(θ) < M(θ	)− δ. Hence,

P(|θ̂n − θ	| > ε) ≤ P

(
M(θ̂n) < M(θ	)− δ

)
→ 0. �

Next we want to prove Theorem 9.18. First we need a lemma.
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136 9. Parametric Inference

9.31 Lemma. The score function satisfies

Eθ [s(X; θ)] = 0.

Proof. Note that 1 =
∫
f(x; θ)dx. Differentiate both sides of this equation

to conclude that

0 =
∂

∂θ

∫
f(x; θ)dx =

∫
∂

∂θ
f(x; θ)dx

=
∫ ∂f(x;θ)

∂θ

f(x; θ)
f(x; θ)dx =

∫
∂ log f(x; θ)

∂θ
f(x; θ)dx

=
∫
s(x; θ)f(x; θ)dx = Eθs(X; θ). �

Proof of Theorem 9.18. Let �(θ) = logL(θ). Then,

0 = �′(θ̂) ≈ �′(θ) + (θ̂ − θ)�′′(θ).

Rearrange the above equation to get θ̂− θ = −�′(θ)/�′′(θ) or, in other words,

√
n(θ̂ − θ) =

1√
n
�′(θ)

− 1
n�

′′(θ)
≡ TOP

BOTTOM
.

Let Yi = ∂ log f(Xi; θ)/∂θ. Recall that E(Yi) = 0 from the previous lemma
and also V(Yi) = I(θ). Hence,

TOP = n−1/2
∑
i

Yi =
√
nY =

√
n(Y − 0)�W ∼ N(0, I(θ))

by the central limit theorem. Let Ai = −∂2 log f(Xi; θ)/∂θ2. Then E(Ai) =
I(θ) and

BOTTOM = A
P−→ I(θ)

by the law of large numbers. Apply Theorem 5.5 part (e), to conclude that

√
n(θ̂ − θ)� W

I(θ)
d= N

(
0,

1
I(θ)

)
.

Assuming that I(θ) is a continuous function of θ, it follows that I(θ̂n)
P−→ I(θ).

Now

θ̂n − θ
ŝe

=
√
nI1/2(θ̂n)(θ̂n − θ)

=
{√

nI1/2(θ)(θ̂n − θ)
}√

I(θ̂n)
I(θ)

.
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9.13 Appendix 137

The first term tends in distribution to N(0,1). The second term tends in
probability to 1. The result follows from Theorem 5.5 part (e). �

Outline of Proof of Theorem 9.24. Write

τ̂n = g(θ̂n) ≈ g(θ) + (θ̂n − θ)g′(θ) = τ + (θ̂n − θ)g′(θ).

Thus,
√
n(τ̂n − τ) ≈

√
n(θ̂n − θ)g′(θ),

and hence √
nI(θ)(τ̂n − τ)

g′(θ)
≈

√
nI(θ)(θ̂n − θ).

Theorem 9.18 tells us that the right-hand side tends in distribution to a N(0,1).
Hence, √

nI(θ)(τ̂n − τ)
g′(θ)

� N(0, 1)

or, in other words,
τ̂n ≈ N

(
τ, se2(τ̂n)

)
,

where

se2(τ̂n) =
(g′(θ))2

nI(θ)
.

The result remains true if we substitute θ̂n for θ by Theorem 5.5 part (e). �

9.13.2 Sufficiency

A statistic is a function T (Xn) of the data. A sufficient statistic is a statistic
that contains all the information in the data. To make this more formal, we
need some definitions.

9.32 Definition. Write xn ↔ yn if f(xn; θ) = c f(yn; θ) for some constant
c that might depend on xn and yn but not θ. A statistic T (xn) is
sufficient if T (xn)↔ T (yn) implies that xn ↔ yn.

Notice that if xn ↔ yn, then the likelihood function based on xn has the
same shape as the likelihood function based on yn. Roughly speaking, a statis-
tic is sufficient if we can calculate the likelihood function knowing only T (Xn).

9.33 Example. Let X1, . . . , Xn ∼ Bernoulli(p). Then L(p) = pS(1 − p)n−S

where S =
∑
iXi, so S is sufficient. �
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138 9. Parametric Inference

9.34 Example. Let X1, . . . , Xn ∼ N(µ, σ) and let T = (X,S). Then

f(Xn;µ, σ) =
(

1
σ
√

2π

)n
exp

{
−nS

2

2σ2

}
exp

{
−n(X − µ)2

2σ2

}
where S2 is the sample variance. The last expression depends on the data
only through T and therefore, T = (X,S) is a sufficient statistic. Note that
U = (17X,S) is also a sufficient statistic. If I tell you the value of U then you
can easily figure out T and then compute the likelihood. Sufficient statistics
are far from unique. Consider the following statistics for the N(µ, σ2) model:

T1(Xn) = (X1, . . . , Xn)

T2(Xn) = (X,S)

T3(Xn) = X

T4(Xn) = (X,S,X3).

The first statistic is just the whole data set. This is sufficient. The second
is also sufficient as we proved above. The third is not sufficient: you can’t
compute L(µ, σ) if I only tell you X. The fourth statistic T4 is sufficient. The
statistics T1 and T4 are sufficient but they contain redundant information.
Intuitively, there is a sense in which T2 is a “more concise” sufficient statistic
than either T1 or T4. We can express this formally by noting that T2 is a
function of T1 and similarly, T2 is a function of T4. For example, T2 = g(T4)
where g(a1, a2, a3) = (a1, a2). �

9.35 Definition. A statistic T is minimal sufficient if (i) it is
sufficient; and (ii) it is a function of every other sufficient statistic.

9.36 Theorem. T is minimal sufficient if the following is true:

T (xn) = T (yn) if and only if xn ↔ yn.

A statistic induces a partition on the set of outcomes. We can think of
sufficiency in terms of these partitions.

9.37 Example. Let X1, X2 ∼ Bernoulli(θ). Let V = X1, T =
∑
iXi and

U = (T,X1). Here is the set of outcomes and the statistics:

X1 X2 V T U

0 0 0 0 (0,0)
0 1 0 1 (1,0)
1 0 1 1 (1,1)
1 1 1 2 (2,1)
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9.13 Appendix 139

The partitions induced by these statistics are:

V −→ {(0, 0), (0, 1)}, {(1, 0), (1, 1)}
T −→ {(0, 0)}, {(0, 1), (1, 0)}, {(1, 1)}
U −→ {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}.

Then V is not sufficient but T and U are sufficient. T is minimal sufficient;
U is not minimal since if xn = (1, 0) and yn = (0, 1), then xn ↔ yn yet
U(xn) �= U(yn). The statistic W = 17T generates the same partition as T . It
is also minimal sufficient. �

9.38 Example. For a N(µ, σ2) model, T = (X,S) is a minimal sufficient
statistic. For the Bernoulli model, T =

∑
iXi is a minimal sufficient statistic.

For the Poisson model, T =
∑
iXi is a minimal sufficient statistic. Check that

T = (
∑
iXi, X1) is sufficient but not minimal sufficient. Check that T = X1

is not sufficient. �

I did not give the usual definition of sufficiency. The usual definition is this:
T is sufficient if the distribution of Xn given T (Xn) = t does not depend on
θ. In other words, T is sufficient if f(x1, . . . , xn|t; θ) = h(x1, . . . , xn, t) where
h is some function that does not depend on θ.

9.39 Example. Two coin flips. Let X = (X1, X2) ∼ Bernoulli(p). Then T =
X1 +X2 is sufficient. To see this, we need the distribution of (X1, X2) given
T = t. Since T can take 3 possible values, there are 3 conditional distributions
to check. They are: (i) the distribution of (X1, X2) given T = 0:

P (X1 = 0, X2 = 0|t = 0) = 1, P (X1 = 0, X2 = 1|t = 0) = 0,

P (X1 = 1, X2 = 0|t = 0) = 0, P (X1 = 1, X2 = 1|t = 0) = 0;

(ii) the distribution of (X1, X2) given T = 1:

P (X1 = 0, X2 = 0|t = 1) = 0, P (X1 = 0, X2 = 1|t = 1) =
1
2
,

P (X1 = 1, X2 = 0|t = 1) =
1
2
, P (X1 = 1, X2 = 1|t = 1) = 0; and

(iii) the distribution of (X1, X2) given T = 2:

P (X1 = 0, X2 = 0|t = 2) = 0, P (X1 = 0, X2 = 1|t = 2) = 0,

P (X1 = 1, X2 = 0|t = 2) = 0, P (X1 = 1, X2 = 1|t = 2) = 1.

None of these depend on the parameter p. Thus, the distribution of X1, X2|T
does not depend on θ, so T is sufficient. �
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140 9. Parametric Inference

9.40 Theorem (Factorization Theorem). T is sufficient if and only if there are
functions g(t, θ) and h(x) such that f(xn; θ) = g(t(xn), θ)h(xn).

9.41 Example. Return to the two coin flips. Let t = x1 + x2. Then

f(x1, x2; θ) = f(x1; θ)f(x2; θ)

= θx1(1− θ)1−x1θx2(1− θ)1−x2

= g(t, θ)h(x1, x2)

where g(t, θ) = θt(1 − θ)2−t and h(x1, x2) = 1. Therefore, T = X1 + X2 is
sufficient. �

Now we discuss an implication of sufficiency in point estimation. Let θ̂ be
an estimator of θ. The Rao-Blackwell theorem says that an estimator should
only depend on the sufficient statistic, otherwise it can be improved. Let
R(θ, θ̂) = Eθ(θ − θ̂)2 denote the mse of the estimator.

9.42 Theorem (Rao-Blackwell). Let θ̂ be an estimator and let T be a sufficient
statistic. Define a new estimator by

θ̃ = E(θ̂|T ).

Then, for every θ, R(θ, θ̃) ≤ R(θ, θ̂).

9.43 Example. Consider flipping a coin twice. Let θ̂ = X1. This is a well-
defined (and unbiased) estimator. But it is not a function of the sufficient
statistic T = X1 +X2. However, note that θ̃ = E(X1|T ) = (X1 +X2)/2. By
the Rao-Blackwell Theorem, θ̃ has MSE at least as small as θ̂ = X1. The
same applies with n coin flips. Again define θ̂ = X1 and T =

∑
iXi. Then

θ̃ = E(X1|T ) = n−1 ∑
iXi has improved mse. �

9.13.3 Exponential Families

Most of the parametric models we have studied so far are special cases of
a general class of models called exponential families. We say that {f(x; θ) :
θ ∈ Θ} is a one-parameter exponential family if there are functions η(θ),
B(θ), T (x) and h(x) such that

f(x; θ) = h(x)eη(θ)T (x)−B(θ).

It is easy to see that T (X) is sufficient. We call T the natural sufficient
statistic.
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9.13 Appendix 141

9.44 Example. Let X ∼ Poisson(θ). Then

f(x; θ) =
θxe−θ

x!
=

1
x!
ex log θ−θ

and hence, this is an exponential family with η(θ) = log θ, B(θ) = θ, T (x) = x,
h(x) = 1/x!. �

9.45 Example. Let X ∼ Binomial(n, θ). Then

f(x; θ) =
(
n

x

)
θx(1− θ)n−x =

(
n

x

)
exp

{
x log

(
θ

1− θ

)
+ n log(1− θ)

}
.

In this case,

η(θ) = log
(

θ

1− θ

)
, B(θ) = −n log(θ)

and

T (x) = x, h(x) =
(
n

x

)
.

�

We can rewrite an exponential family as

f(x; η) = h(x)eηT (x)−A(η)

where η = η(θ) is called the natural parameter and

A(η) = log
∫
h(x)eηT (x)dx.

For example a Poisson can be written as f(x; η) = eηx−eη/x! where the natural
parameter is η = log θ.

Let X1, . . . , Xn be iid from an exponential family. Then f(xn; θ) is an
exponential family:

f(xn; θ) = hn(xn)hn(xn)eη(θ)Tn(xn)−Bn(θ)

where hn(xn) =
∏
i h(xi), Tn(x

n) =
∑
i T (xi) and Bn(θ) = nB(θ). This

implies that
∑
i T (Xi) is sufficient.

9.46 Example. Let X1, . . . , Xn ∼ Uniform(0, θ). Then

f(xn; θ) =
1
θn
I(x(n) ≤ θ)

where I is 1 if the term inside the brackets is true and 0 otherwise, and
x(n) = max{x1, . . . , xn}. Thus T (Xn) = max{X1, . . . , Xn} is sufficient. But
since T (Xn) �=

∑
i T (Xi), this cannot be an exponential family. �
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142 9. Parametric Inference

9.47 Theorem. Let X have density in an exponential family. Then,

E(T (X)) = A′(η), V(T (X)) = A′′(η).

If θ = (θ1, . . . , θk) is a vector, then we say that f(x; θ) has exponential
family form if

f(x; θ) = h(x) exp


k∑
j=1

ηj(θ)Tj(x)−B(θ)

 .

Again, T = (T1, . . . , Tk) is sufficient. An iid sample of size n also has expo-
nential form with sufficient statistic (

∑
i T1(Xi), . . . ,

∑
i Tk(Xi)).

9.48 Example. Consider the normal family with θ = (µ, σ). Now,

f(x; θ) = exp
{
µ

σ2x−
x2

2σ2 −
1
2

(
µ2

σ2 + log(2πσ2)
)}

.

This is exponential with

η1(θ) =
µ

σ2 , T1(x) = x

η2(θ) = − 1
2σ2 , T2(x) = x2

B(θ) =
1
2

(
µ2

σ2 + log(2πσ2)
)
, h(x) = 1.

Hence, with n iid samples, (
∑
iXi,

∑
iX

2
i ) is sufficient. �

As before we can write an exponential family as

f(x; η) = h(x) exp
{
TT (x)η −A(η)

}
,

where A(η) = log
∫
h(x)eT

T (x)ηdx. It can be shown that

E(T (X)) = Ȧ(η) V(T (X)) = Ä(η),

where the first expression is the vector of partial derivatives and the second
is the matrix of second derivatives.

9.13.4 Computing Maximum Likelihood Estimates

In some cases we can find the mle θ̂ analytically. More often, we need to
find the mle by numerical methods. We will briefly discuss two commonly
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9.13 Appendix 143

used methods: (i) Newton-Raphson, and (ii) the EM algorithm. Both are
iterative methods that produce a sequence of values θ0, θ1, . . . that, under
ideal conditions, converge to the mle θ̂. In each case, it is helpful to use a
good starting value θ0. Often, the method of moments estimator is a good
starting value.

Newton-Raphson. To motivate Newton-Raphson, let’s expand the deriva-
tive of the log-likelihood around θj :

0 = �′(θ̂) ≈ �′(θj) + (θ̂ − θj)�′′
(θj).

Solving for θ̂ gives

θ̂ ≈ θj − �
′
(θj)

�′′(θj)
.

This suggests the following iterative scheme:

θ̂j+1 = θj − �
′
(θj)

�′′(θj)
.

In the multiparameter case, the mle θ̂ = (θ̂1, . . . , θ̂k) is a vector and the
method becomes

θ̂j+1 = θj −H−1�
′
(θj)

where �
′
(θj) is the vector of first derivatives and H is the matrix of second

derivatives of the log-likelihood.
The EM Algorithm. The letters EM stand for Expectation-Maximization.

The idea is to iterate between taking an expectation then maximizing. Sup-
pose we have data Y whose density f(y; θ) leads to a log-likelihood that is
hard to maximize. But suppose we can find another random variable Z such
that f(y; θ) =

∫
f(y, z; θ) dz and such that the likelihood based on f(y, z; θ)

is easy to maximize. In other words, the model of interest is the marginal of a
model with a simpler likelihood. In this case, we call Y the observed data and
Z the hidden (or latent or missing) data. If we could just “fill in” the missing
data, we would have an easy problem. Conceptually, the EM algorithm works
by filling in the missing data, maximizing the log-likelihood, and iterating.

9.49 Example (Mixture of Normals). Sometimes it is reasonable to assume that
the distribution of the data is a mixture of two normals. Think of heights of
people being a mixture of men and women’s heights. Let φ(y;µ, σ) denote
a normal density with mean µ and standard deviation σ. The density of a
mixture of two Normals is

f(y; θ) = (1− p)φ(y;µ0, σ0) + pφ(y;µ1, σ1).
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144 9. Parametric Inference

The idea is that an observation is drawn from the first normal with probability
p and the second with probability 1−p. However, we don’t know which Normal
it was drawn from. The parameters are θ = (µ0, σ0, µ1, σ1, p). The likelihood
function is

L(θ) =
n∏
i=1

[(1− p)φ(yi;µ0, σ0) + pφ(yi;µ1, σ1)] .

Maximizing this function over the five parameters is hard. Imaging that we
were given extra information telling us which of the two normals every observa-
tion came from. These “complete” data are of the form (Y1, Z1), . . . , (Yn, Zn),
where Zi = 0 represents the first normal and Zi = 1 represents the second.
Note that P(Zi = 1) = p. We shall soon see that the likelihood for the com-
plete data (Y1, Z1), . . . , (Yn, Zn) is much simpler than the likelihood for the
observed data Y1, . . . , Yn. �

Now we describe the EM algorithm.

The EM Algorithm
(0) Pick a starting value θ0. Now for j = 1, 2, . . . , repeat steps 1 and 2
below:
(1) (The E-step): Calculate

J(θ|θj) = Eθj

(
log

f(Y n, Zn; θ)
f(Y n, Zn; θj)

∣∣∣∣ Y n = yn
)
.

The expectation is over the missing data Zn treating θi and the observed
data Y n as fixed.
(2) Find θj+1 to maximize J(θ|θj).

We now show that the EM algorithm always increases the likelihood, that
is, L(θj+1) ≥ L(θj). Note that

J(θj+1|θj) = Eθj

(
log

f(Y n, Zn; θj+1)
f(Y n, Zn; θj)

∣∣∣∣ Y n = yn
)

= log
f(yn; θj+1)
f(yn; θj)

+ Eθj

(
log

f(Zn|Y n; θj+1)
f(Zn|Y n; θj)

∣∣∣∣ Y n = yn
)

and hence

L(θj+1)
L(θj)

= log
f(yn; θj+1)
f(yn; θj)
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9.13 Appendix 145

= J(θj+1|θj)− Eθj

(
log

f(Zn|Y n; θj+1)
f(Zn|Y n; θj)

∣∣∣∣ Y n = yn
)

= J(θj+1|θj) +K(fj , fj+1)

where fj = f(yn; θj) and fj+1 = f(yn; θj+1) andK(f, g) =
∫
f(x) log(f(x)/g(x)) dx

is the Kullback-Leibler distance. Now, θj+1 was chosen to maximize J(θ|θj).
Hence, J(θj+1|θj) ≥ J(θj |θj) = 0. Also, by the properties of Kullback-Leibler
divergence, K(fj , fj+1) ≥ 0. Hence, L(θj+1) ≥ L(θj) as claimed.

9.50 Example (Continuation of Example 9.49). Consider again the mixture of
two normals but, for simplicity assume that p = 1/2, σ1 = σ2 = 1. The density
is

f(y;µ1, µ2) =
1
2
φ(y;µ0, 1) +

1
2
φ(y;µ1, 1).

Directly maximizing the likelihood is hard. Introduce latent variables Z1, . . . , Zn

where Zi = 0 if Yi is from φ(y;µ0, 1), and Zi = 1 if Yi is from φ(y;µ1, 1),
P(Zi = 1) = P (Zi = 0) = 1/2, f(yi|Zi = 0) = φ(y;µ0, 1) and f(yi|Zi = 1) =
φ(y;µ1, 1). So f(y) =

∑1
z=0 f(y, z) where we have dropped the parameters

from the density to avoid notational overload. We can write

f(z, y) = f(z)f(y|z) =
1
2
φ(y;µ0, 1)1−zφ(y;µ1, 1)z.

Hence, the complete likelihood is
n∏
i=1

φ(yi;µ0, 1)1−ziφ(yi;µ1, 1)zi .

The complete log-likelihood is then

�̃ = −1
2

n∑
i=1

(1− zi)(yi − µ0)−
1
2

n∑
i=1

zi(yi − µ1).

And so

J(θ|θj) = −1
2

n∑
i=1

(1− E(Zi|yn, θj))(yi − µ0)−
1
2

n∑
i=1

E(Zi|yn, θj))(yi − µ1).

Since Zi is binary, E(Zi|yn, θj) = P(Zi = 1|yn, θj) and, by Bayes’ theorem,

P(Zi = 1|yn, θi) =
f(yn|Zi = 1; θj)P(Zi = 1)

f(yn|Zi = 1; θj)P(Zi = 1) + f(yn|Zi = 0; θj)P(Zi = 0)

=
φ(yi;µ

j
1, 1) 1

2

φ(yi;µ
j
1, 1) 1

2 + φ(yi;µ
j
0, 1) 1

2

=
φ(yi;µ

j
1, 1)

φ(yi;µ
j
1, 1) + φ(yi;µ

j
0, 1)

= τ(i).
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146 9. Parametric Inference

Take the derivative of J(θ|θj) with respect to µ1 and µ2, set them equal to 0
to get

µ̂j+1
1 =

∑n
i=1 τiyi∑n
i=1 τi

and

µ̂j+1
0 =

∑n
i=1(1− τi)yi∑n
i=1(1− τi)

.

We then recompute τi using µ̂j+1
1 and µ̂j+1

0 and iterate. �

9.14 Exercises

1. LetX1, . . . , Xn ∼ Gamma(α, β). Find the method of moments estimator
for α and β.

2. Let X1, . . . , Xn ∼ Uniform(a, b) where a and b are unknown parameters
and a < b.

(a) Find the method of moments estimators for a and b.

(b) Find the mle â and b̂.

(c) Let τ =
∫
x dF (x). Find the mle of τ .

(d) Let τ̂ be the mle of τ . Let τ̃ be the nonparametric plug-in estimator
of τ =

∫
x dF (x). Suppose that a = 1, b = 3, and n = 10. Find the mse

of τ̂ by simulation. Find the mse of τ̃ analytically. Compare.

3. Let X1, . . . , Xn ∼ N(µ, σ2). Let τ be the .95 percentile, i.e. P(X < τ) =
.95.

(a) Find the mle of τ .

(b) Find an expression for an approximate 1−α confidence interval for
τ .

(c) Suppose the data are:

3.23 -2.50 1.88 -0.68 4.43 0.17

1.03 -0.07 -0.01 0.76 1.76 3.18

0.33 -0.31 0.30 -0.61 1.52 5.43

1.54 2.28 0.42 2.33 -1.03 4.00

0.39

Find the mle τ̂ . Find the standard error using the delta method. Find
the standard error using the parametric bootstrap.

Wasserman, L. A.. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics., Springer, 2004. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/utoronto/detail.action?docID=4976814.
Created from utoronto on 2020-12-01 09:14:28.

C
op

yr
ig

ht
 ©

 2
00

4.
 S

pr
in

ge
r. 

A
ll 

rig
ht

s 
re

se
rv

ed
.



9.14 Exercises 147

4. Let X1, . . . , Xn ∼ Uniform(0, θ). Show that the mle is consistent. Hint:
Let Y = max{X1, ..., Xn}. For any c, P(Y < c) = P(X1 < c,X2 <

c, ...,Xn < c) = P(X1 < c)P(X2 < c)...P(Xn < c).

5. Let X1, . . . , Xn ∼ Poisson(λ). Find the method of moments estimator,
the maximum likelihood estimator and the Fisher information I(λ).

6. Let X1, ..., Xn ∼ N(θ, 1). Define

Yi =
{

1 if Xi > 0
0 if Xi ≤ 0.

Let ψ = P(Y1 = 1).

(a) Find the maximum likelihood estimator ψ̂ of ψ.

(b) Find an approximate 95 percent confidence interval for ψ.

(c) Define ψ̃ = (1/n)
∑
i Yi. Show that ψ̃ is a consistent estimator of ψ.

(d) Compute the asymptotic relative efficiency of ψ̃ to ψ̂. Hint: Use the
delta method to get the standard error of the mle. Then compute the
standard error (i.e. the standard deviation) of ψ̃.

(e) Suppose that the data are not really normal. Show that ψ̂ is not
consistent. What, if anything, does ψ̂ converge to?

7. (Comparing two treatments.) n1 people are given treatment 1 and n2

people are given treatment 2. Let X1 be the number of people on treat-
ment 1 who respond favorably to the treatment and let X2 be the
number of people on treatment 2 who respond favorably. Assume that
X1 ∼ Binomial(n1, p1) X2 ∼ Binomial(n2, p2). Let ψ = p1 − p2.

(a) Find the mle ψ̂ for ψ.

(b) Find the Fisher information matrix I(p1, p2).

(c) Use the multiparameter delta method to find the asymptotic stan-
dard error of ψ̂.

(d) Suppose that n1 = n2 = 200, X1 = 160 and X2 = 148. Find ψ̂. Find
an approximate 90 percent confidence interval for ψ using (i) the delta
method and (ii) the parametric bootstrap.

8. Find the Fisher information matrix for Example 9.29.

9. Let X1, ..., Xn ∼ Normal(µ, 1). Let θ = eµ and let θ̂ = eX be the mle.
Create a data set (using µ = 5) consisting of n=100 observations.
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148 9. Parametric Inference

(a) Use the delta method to get ŝe and a 95 percent confidence interval
for θ. Use the parametric bootstrap to get ŝe and 95 percent confidence
interval for θ. Use the nonparametric bootstrap to get ŝe and 95 percent
confidence interval for θ. Compare your answers.

(b) Plot a histogram of the bootstrap replications for the parametric
and nonparametric bootstraps. These are estimates of the distribution
of θ̂. The delta method also gives an approximation to this distribution
namely, Normal(θ̂, se2). Compare these to the true sampling distribu-
tion of θ̂ (which you can get by simulation). Which approximation —
parametric bootstrap, bootstrap, or delta method — is closer to the true
distribution?

10. LetX1, ..., Xn ∼ Uniform(0, θ). The mle is θ̂ = X(n) = max{X1, ..., Xn}.
Generate a dataset of size 50 with θ = 1.

(a) Find the distribution of θ̂ analytically. Compare the true distribu-
tion of θ̂ to the histograms from the parametric and nonparametric
bootstraps.

(b) This is a case where the nonparametric bootstrap does very poorly.
Show that for the parametric bootstrap P(θ̂∗ = θ̂) = 0, but for the
nonparametric bootstrap P(θ̂∗ = θ̂) ≈ .632. Hint: show that, P(θ̂∗ =
θ̂) = 1 − (1 − (1/n))n then take the limit as n gets large. What is the
implication of this?
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10
Hypothesis Testing and p-values

Suppose we want to know if exposure to asbestos is associated with lung
disease. We take some rats and randomly divide them into two groups. We
expose one group to asbestos and leave the second group unexposed. Then
we compare the disease rate in the two groups. Consider the following two
hypotheses:

The Null Hypothesis: The disease rate is the same in the two groups.

The Alternative Hypothesis: The disease rate is not the same in the two
groups.

If the exposed group has a much higher rate of disease than the unexposed
group then we will reject the null hypothesis and conclude that the evidence
favors the alternative hypothesis. This is an example of hypothesis testing.

More formally, suppose that we partition the parameter space Θ into two
disjoint sets Θ0 and Θ1 and that we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. (10.1)

We call H0 the null hypothesis and H1 the alternative hypothesis.
Let X be a random variable and let X be the range of X. We test a hypoth-

esis by finding an appropriate subset of outcomes R ⊂ X called the rejection
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150 10. Hypothesis Testing and p-values

Retain Null Reject Null
H0 true

√
type I error

H1 true type II error
√

TABLE 10.1. Summary of outcomes of hypothesis testing.

region. If X ∈ R we reject the null hypothesis, otherwise, we do not reject
the null hypothesis:

X ∈ R =⇒ reject H0

X /∈ R =⇒ retain (do not reject) H0

Usually, the rejection region R is of the form

R =
{
x : T (x) > c

}
(10.2)

where T is a test statistic and c is a critical value. The problem in hy-
pothesis testing is to find an appropriate test statistic T and an appropriate
critical value c.

Warning! There is a tendency to use hypothesis testing methods even
when they are not appropriate. Often, estimation and confidence intervals are
better tools. Use hypothesis testing only when you want to test a well-defined
hypothesis.

Hypothesis testing is like a legal trial. We assume someone is innocent
unless the evidence strongly suggests that he is guilty. Similarly, we retain H0

unless there is strong evidence to reject H0. There are two types of errors we
can make. Rejecting H0 when H0 is true is called a type I error. Retaining
H0 when H1 is true is called a type II error. The possible outcomes for
hypothesis testing are summarized in Tab. 10.1.

10.1 Definition. The power function of a test with rejection region R is
defined by

β(θ) = Pθ(X ∈ R). (10.3)

The size of a test is defined to be

α = sup
θ∈Θ0

β(θ). (10.4)

A test is said to have level α if its size is less than or equal to α.
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10. Hypothesis Testing and p-values 151

A hypothesis of the form θ = θ0 is called a simple hypothesis. A hypoth-
esis of the form θ > θ0 or θ < θ0 is called a composite hypothesis. A test
of the form

H0 : θ = θ0 versus H1 : θ �= θ0

is called a two-sided test. A test of the form

H0 : θ ≤ θ0 versus H1 : θ > θ0

or
H0 : θ ≥ θ0 versus H1 : θ < θ0

is called a one-sided test. The most common tests are two-sided.

10.2 Example. Let X1, . . . , Xn ∼ N(µ, σ) where σ is known. We want to test
H0 : µ ≤ 0 versus H1 : µ > 0. Hence, Θ0 = (−∞, 0] and Θ1 = (0,∞).
Consider the test:

reject H0 if T > c

where T = X. The rejection region is

R =
{

(x1, . . . , xn) : T (x1, . . . , xn) > c

}
.

Let Z denote a standard Normal random variable. The power function is

β(µ) = Pµ
(
X > c

)
= Pµ

(√
n(X − µ)

σ
>

√
n(c− µ)
σ

)
= P

(
Z >

√
n(c− µ)
σ

)
= 1− Φ

(√
n(c− µ)
σ

)
.

This function is increasing in µ. See Figure 10.1. Hence

size = sup
µ≤0

β(µ) = β(0) = 1− Φ
(√

nc

σ

)
.

For a size α test, we set this equal to α and solve for c to get

c =
σΦ−1(1− α)√

n
.

We reject when X > σΦ−1(1− α)/
√
n. Equivalently, we reject when

√
n (X − 0)

σ
> zα.

where zα = Φ−1(1− α). �
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152 10. Hypothesis Testing and p-values

α

µ

β(µ)

H0 H1

FIGURE 10.1. The power function for Example 10.2. The size of the test is the
largest probability of rejecting H0 when H0 is true. This occurs at µ = 0 hence the
size is β(0). We choose the critical value c so that β(0) = α.

It would be desirable to find the test with highest power under H1, among
all size α tests. Such a test, if it exists, is called most powerful. Finding
most powerful tests is hard and, in many cases, most powerful tests don’t
even exist. Instead of going into detail about when most powerful tests exist,
we’ll just consider four widely used tests: the Wald test,1 the χ2 test, the
permutation test, and the likelihood ratio test.

10.1 The Wald Test

Let θ be a scalar parameter, let θ̂ be an estimate of θ and let ŝe be the
estimated standard error of θ̂.

1The test is named after Abraham Wald (1902–1950), who was a very influential mathe-
matical statistician. Wald died in a plane crash in India in 1950.
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10.1 The Wald Test 153

10.3 Definition. The Wald Test
Consider testing

H0 : θ = θ0 versus H1 : θ �= θ0.

Assume that θ̂ is asymptotically Normal:

(θ̂ − θ0)
ŝe

� N(0, 1).

The size α Wald test is: reject H0 when |W | > zα/2 where

W =
θ̂ − θ0

ŝe
. (10.5)

10.4 Theorem. Asymptotically, the Wald test has size α, that is,

Pθ0
(
|W | > zα/2

)
→ α

as n→∞.

Proof. Under θ = θ0, (θ̂ − θ0)/ŝe � N(0, 1). Hence, the probability of
rejecting when the null θ = θ0 is true is

Pθ0
(
|W | > zα/2

)
= Pθ0

(
|θ̂ − θ0|

ŝe
> zα/2

)
→ P

(
|Z| > zα/2

)
= α

where Z ∼ N(0, 1). �

10.5 Remark. An alternative version of the Wald test statistic is W = (θ̂ −
θ0)/se0 where se0 is the standard error computed at θ = θ0. Both versions of
the test are valid.

Let us consider the power of the Wald test when the null hypothesis is false.

10.6 Theorem. Suppose the true value of θ is θ	 �= θ0. The power β(θ	) — the
probability of correctly rejecting the null hypothesis — is given (approximately)
by

1− Φ
(
θ0 − θ	

ŝe
+ zα/2

)
+ Φ

(
θ0 − θ	

ŝe
− zα/2

)
. (10.6)
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154 10. Hypothesis Testing and p-values

Recall that ŝe tends to 0 as the sample size increases. Inspecting (10.6)
closely we note that: (i) the power is large if θ	 is far from θ0, and (ii) the
power is large if the sample size is large.

10.7 Example (Comparing Two Prediction Algorithms). We test a prediction
algorithm on a test set of size m and we test a second prediction algorithm on
a second test set of size n. Let X be the number of incorrect predictions for
algorithm 1 and let Y be the number of incorrect predictions for algorithm
2. Then X ∼ Binomial(m, p1) and Y ∼ Binomial(n, p2). To test the null
hypothesis that p1 = p2 write

H0 : δ = 0 versus H1 : δ �= 0

where δ = p1 − p2. The mle is δ̂ = p̂1 − p̂2 with estimated standard error

ŝe =

√
p̂1(1− p̂1)

m
+
p̂2(1− p̂2)

n
.

The size α Wald test is to reject H0 when |W | > zα/2 where

W =
δ̂ − 0

ŝe
=

p̂1 − p̂2√
p̂1(1−p̂1)

m + p̂2(1−p̂2)
n

.

The power of this test will be largest when p1 is far from p2 and when the
sample sizes are large.

What if we used the same test set to test both algorithms? The two samples
are no longer independent. Instead we use the following strategy. Let Xi = 1
if algorithm 1 is correct on test case i and Xi = 0 otherwise. Let Yi = 1 if
algorithm 2 is correct on test case i, and Yi = 0 otherwise. DefineDi = Xi−Yi.
A typical dataset will look something like this:

Test Case Xi Yi Di = Xi − Yi
1 1 0 1
2 1 1 0
3 1 1 0
4 0 1 -1
5 0 0 0
...

...
...

...
n 0 1 -1

Let
δ = E(Di) = E(Xi)− E(Yi) = P(Xi = 1)− P(Yi = 1).

The nonparametric plug-in estimate of δ is δ̂ = D = n−1 ∑n
i=1Di and ŝe(δ̂) =

S/
√
n, where S2 = n−1 ∑n

i=1(Di −D)2. To test H0 : δ = 0 versus H1 : δ �= 0
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10.1 The Wald Test 155

we use W = δ̂/ŝe and reject H0 if |W | > zα/2. This is called a paired
comparison. �

10.8 Example (Comparing Two Means). Let X1, . . . , Xm and Y1, . . ., Yn be
two independent samples from populations with means µ1 and µ2, respec-
tively. Let’s test the null hypothesis that µ1 = µ2. Write this as H0 : δ = 0
versus H1 : δ �= 0 where δ = µ1 − µ2. Recall that the nonparametric plug-in
estimate of δ is δ̂ = X − Y with estimated standard error

ŝe =

√
s21
m

+
s22
n

where s21 and s22 are the sample variances. The size α Wald test rejects H0

when |W | > zα/2 where

W =
δ̂ − 0

ŝe
=

X − Y√
s21
m + s22

n

. �

10.9 Example (Comparing Two Medians). Consider the previous example again
but let us test whether the medians of the two distributions are the same.
Thus, H0 : δ = 0 versus H1 : δ �= 0 where δ = ν1 − ν2 where ν1 and ν2 are
the medians. The nonparametric plug-in estimate of δ is δ̂ = ν̂1− ν̂2 where ν̂1
and ν̂2 are the sample medians. The estimated standard error ŝe of δ̂ can be
obtained from the bootstrap. The Wald test statistic is W = δ̂/ŝe. �

There is a relationship between the Wald test and the 1 − α asymptotic
confidence interval θ̂ ± ŝe zα/2.

10.10 Theorem. The size α Wald test rejects H0 : θ = θ0 versus H1 : θ �= θ0

if and only if θ0 /∈ C where

C = (θ̂ − ŝe zα/2, θ̂ + ŝe zα/2).

Thus, testing the hypothesis is equivalent to checking whether the null value
is in the confidence interval.

Warning! When we reject H0 we often say that the result is statistically
significant. A result might be statistically significant and yet the size of the
effect might be small. In such a case we have a result that is statistically sig-
nificant but not scientifically or practically significant. The difference between
statistical significance and scientific significance is easy to understand in light
of Theorem 10.10. Any confidence interval that excludes θ0 corresponds to re-
jecting H0. But the values in the interval could be close to θ0 (not scientifically
significant) or far from θ0 (scientifically significant). See Figure 10.2.
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156 10. Hypothesis Testing and p-values

θ0
θ

θ0
θ

FIGURE 10.2. Scientific significance versus statistical significance. A level α test
rejects H0 : θ = θ0 if and only if the 1 − α confidence interval does not include
θ0. Here are two different confidence intervals. Both exclude θ0 so in both cases the
test would reject H0. But in the first case, the estimated value of θ is close to θ0 so
the finding is probably of little scientific or practical value. In the second case, the
estimated value of θ is far from θ0 so the finding is of scientific value. This shows
two things. First, statistical significance does not imply that a finding is of scientific
importance. Second, confidence intervals are often more informative than tests.

10.2 p-values

Reporting “reject H0” or “retain H0” is not very informative. Instead, we
could ask, for every α, whether the test rejects at that level. Generally, if the
test rejects at level α it will also reject at level α′ > α. Hence, there is a
smallest α at which the test rejects and we call this number the p-value. See
Figure 10.3.

10.11 Definition. Suppose that for every α ∈ (0, 1) we have a size α test
with rejection region Rα. Then,

p-value = inf
{
α : T (Xn) ∈ Rα

}
.

That is, the p-value is the smallest level at which we can reject H0.

Informally, the p-value is a measure of the evidence against H0: the smaller
the p-value, the stronger the evidence against H0. Typically, researchers use
the following evidence scale:
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10.2 p-values 157

No

Yes

Reject?

α0 1

p-value

FIGURE 10.3. p-values explained. For each α we can ask: does our test reject H0

at level α? The p-value is the smallest α at which we do reject H0. If the evidence
against H0 is strong, the p-value will be small.

p-value evidence
< .01 very strong evidence against H0
.01 – .05 strong evidence against H0
.05 – .10 weak evidence against H0
> .1 little or no evidence against H0

Warning! A large p-value is not strong evidence in favor of H0. A large
p-value can occur for two reasons: (i) H0 is true or (ii) H0 is false but the test
has low power.

Warning! Do not confuse the p-value with P(H0|Data). 2 The p-value is
not the probability that the null hypothesis is true.

The following result explains how to compute the p-value.

2We discuss quantities like P(H0|Data) in the chapter on Bayesian inference.
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158 10. Hypothesis Testing and p-values

10.12 Theorem. Suppose that the size α test is of the form

reject H0 if and only if T (Xn) ≥ cα.

Then,
p-value = sup

θ∈Θ0

Pθ(T (Xn) ≥ T (xn))

where xn is the observed value of Xn. If Θ0 = {θ0} then

p-value = Pθ0(T (Xn) ≥ T (xn)).

We can express Theorem 10.12 as follows:

The p-value is the probability (under H0) of observing a value of the
test statistic the same as or more extreme than what was actually
observed.

10.13 Theorem. Let w = (θ̂ − θ0)/ŝe denote the observed value of the
Wald statistic W . The p-value is given by

p− value = Pθ0(|W | > |w|) ≈ P(|Z| > |w|) = 2Φ(−|w|) (10.7)

where Z ∼ N(0, 1).

To understand this last theorem, look at Figure 10.4.
Here is an important property of p-values.

10.14 Theorem. If the test statistic has a continuous distribution, then under
H0 : θ = θ0, the p-value has a Uniform (0,1) distribution. Therefore, if we
reject H0 when the p-value is less than α, the probability of a type I error is
α.

In other words, if H0 is true, the p-value is like a random draw from a
Unif(0, 1) distribution. If H1 is true, the distribution of the p-value will tend
to concentrate closer to 0.

10.15 Example. Recall the cholesterol data from Example 7.15. To test if the
means are different we compute

W =
δ̂ − 0

ŝe
=

X − Y√
s21
m + s22

n

=
216.2− 195.3√

52 + 2.42
= 3.78.
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10.3 The χ2 Distribution 159

|w|−|w|

α/2α/2

FIGURE 10.4. The p-value is the smallest α at which you would reject H0. To
find the p-value for the Wald test, we find α such that |w| and −|w| are just at the
boundary of the rejection region. Here, w is the observed value of the Wald statistic:
w = (θ̂ − θ0)/ŝe. This implies that the p-value is the tail area P(|Z| > |w|) where
Z ∼ N(0, 1).

To compute the p-value, let Z ∼ N(0, 1) denote a standard Normal random
variable. Then,

p-value = P(|Z| > 3.78) = 2P(Z < −3.78) = .0002

which is very strong evidence against the null hypothesis. To test if the me-
dians are different, let ν̂1 and ν̂2 denote the sample medians. Then,

W =
ν̂1 − ν̂2

ŝe
=

212.5− 194
7.7

= 2.4

where the standard error 7.7 was found using the bootstrap. The p-value is

p-value = P(|Z| > 2.4) = 2P(Z < −2.4) = .02

which is strong evidence against the null hypothesis. �

10.3 The χ2 Distribution

Before proceeding we need to discuss the χ2 distribution. Let Z1, . . . , Zk be
independent, standard Normals. Let V =

∑k
i=1 Z

2
i . Then we say that V has

a χ2 distribution with k degrees of freedom, written V ∼ χ2
k. The probability

density of V is

f(v) =
v(k/2)−1e−v/2

2k/2Γ(k/2)
for v > 0. It can be shown that E(V ) = k and V(V ) = 2k. We define the upper
α quantile χ2

k,α = F−1(1−α) where F is the cdf. That is, P(χ2
k > χ2

k,α) = α.
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