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 ON THE BENJAMINI-HOCHBERG METHOD

 By J. A. Ferreira1 and A. H. Zwinderman

 University of Amsterdam

 We investigate the properties of the Benjamini-Hochberg method for
 multiple testing and of a variant of Storey's generalization of it, extending
 and complementing the asymptotic and exact results available in the litera
 ture. Results are obtained under two different sets of assumptions and include

 asymptotic and exact expressions and bounds for the proportion of rejections,
 the proportion of incorrect rejections out of all rejections and two other pro
 portions used to quantify the efficacy of the method.

 1. Introduction. Let X = {X\,X2, ...,Xm} be a set of m random vari
 ables defined on a probability space (Q, !F, P) such that, for some positive in
 teger mo <m, each of X\, X2,..., Xmo has distribution function (d.f.) F and
 Xmo+\,..., Xm all have d.f.'s different from F, and consider the problem of choos
 ing a set 31 c X in such a way that the random variable (r.v.)

 ni,m = ??-, Rmvl
 where Rm = #31 and Sm = #(31 n {X\,..., Xmo}), is guaranteed to be small in
 some probabilistic sense. In more ordinary language, the problem is that of dis
 covering observations in X which do not have d.f. F without incurring a high
 proportion of incorrect rejections?the proportion Yl\m of rejected observations
 which in fact come from F.

 Benjamini and Hochberg [2] have proposed a method of choosing 31 specif
 ically aimed at discovering r.v.'s taking values in the interval [0,1] that tend to
 be smaller than standard uniform r.v.'s and which, given 8 > 0, guarantees that
 E(U\^m) < <5 under certain conditions. The method consists of fixing q e [0, 1],
 computing

 (1.1) Rm=max\i:Xi:m <q?\,

 where 0 < X\:m < < Xm:m < 1 denote the order statistics of X, and set
 ting 51 ? {X\:m,..., XRm:m}. In its simplest form, the Benjamini-Hochberg the
 orem states that if 31 is chosen according to this procedure and Xi, X2,..., Xmo
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 1828 J. A. FERREIRA AND A. H. ZWINDERMAN

 are independent and standard uniform and independent of Xmo+i,..., Xm, then
 E(T\\,m) = qy, where y := mo/m, a property usually expressed by saying that
 the Benjamini-Hochberg procedure controls the false discovery rate?the number
 E(nlm).

 The Benjamini-Hochberg procedure seems somewhat mysterious from (1.1)
 alone; an explanation as to why it does work in the appropriate circumstances will
 be given below.

 Benjamini and Hochberg [2] formulated their ideas in the context of multiple
 testing. Here, rejecting observations in X is interpreted as rejecting hypotheses
 among m null hypotheses Hq, ..., H , of which only the first mo are true, on the
 basis of p-values X\, ...,Xm that result from the observation of certain test sta
 tistics Y\, ...,Ym. Although the hypotheses tested may be arbitrary, the p-values

 are assumed to be given by X/ = 1 ? F((Yi), where F; is the d.f. of 7/ under H^;
 furthermore, in the most general case considered by Sarkar [15] X\, X2,..., Xmo
 need not be independent and are only assumed to be sub-uniform in the sense that
 P(Xi <x)<x for all x e [0, 1]. [Note: In general, P(Xt <x)>x, rather than
 P(Xi < x) < x: If F is a d.f. and F~x(u) = min{t: F(t) > u] then F(t) >u&
 t > F~l(u), and F(F~l(u)-) < u; therefore, P(Xt <x) = P(Fi(Yt) >\-x) =
 P(Yt > Frl(l -x)) = l- Fi(Frl(l - x)-) > x with equality for all x if and
 only if F( is continuous. Thus (see, e.g., the proof of Theorem 2.1), under the as
 sumptions usually made in the literature, the Benjamini-Hochberg theorem actu
 ally states that E(U\^m) > qy. If the method is modified by using strict inequality
 in (1.1) and the p-values are defined by Xi = F/(F/) (which represents no loss
 of generality), then E(U\,m) < qy with equality if Y\,..., Ymo are continuous,
 because P(X( < x) = P(Fi(Yt) < x) = P(Yt < Frl(x)) = Fi(Frl(x)-) <x.]

 Most common multiple testing procedures tend to be either too conservative
 or too liberal?they either miss the chance of detecting many false hypotheses
 in the fear of incorrectly rejecting one hypothesis (the case of the Bonferroni

 method), or they incur a very large proportion of false positives in the greed of
 finding significant results (the case of "uncritical testing," in which all hypotheses
 yielding p-values below q, say, are rejected). Benjamini and Hochberg's [2] moti
 vation in proposing to control the false discovery rate was to achieve a balance be
 tween these two extremes: in many problems?especially in those involving many
 hypotheses?it is acceptable to incorrectly reject some hypotheses as long as they
 make up only a small proportion of all the hypotheses rejected; and allowing for
 this proportion of false positives yields a substantial proportion of true discoveries.

 We were led to the Benjamini-Hochberg approach to multiple testing by consider
 ing one such problem: "gene discovery" in the context of heart disease, where the
 objective is to discover genetic variables which determine or influence a number of
 phenotypical variables. "Gene expression" studies provide other examples of prob
 lems where the control of the false discovery rate is important; see, for example,
 Tusher, Tibshirani and Chu [22], Dudoit, Schaffer and Boldrick [7], Reiner, Yeku
 tieli and Benjamini [14], Fan et al. [8] and McLachlan, Do and Ambroise [12].
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 ON THE BENJAMINI-HOCHBERG METHOD 1829

 Some of these authors actually use variants of the Benjamini-Hochberg method
 based on estimating the proportion of incorrect rejections out of all rejections that
 result from rejecting all p- values below rasa function of t, a procedure which for
 t = qRm/m is equivalent to Benjamini and Hochberg's.

 As outlined in our first paragraph, the problem of choosing 31 in a way that con
 trols U\m seems to arise in other contexts as well. For instance, in data analyses
 of "contaminated" data, where a majority of elements form a sample from some
 population but a minority do not, 31 records those observations thought to be "out
 liers," and it is naturally of interest to seek a choice of 31 that keeps n\m small
 so that not too many of the good observations are thrown away. In the more gen
 eral formulation, the variables Xmo+i,..., Xm need not behave in a more extreme
 way than X\,..., Xmo', they simply have d.f.'s that differ from F, and the problem,
 then, can be further translated into that of identifying a mixture of two populations

 given the knowledge of the law describing one of them. This is a useful point of
 view in that it helps us to put the Benjamini-Hochberg method into a context of
 goodness of fit, which is not just more general but also illuminating as far as the
 workings and the limitations of the method are concerned. More specifically, the
 problem could, in principle, be solved by choosing 31 as the subset of X for which
 a goodness of fit test of F performed with X \3l yields the smallest discrepancy
 among the discrepancies based on all subsets of X. As we shall see, what the
 Benjamini-Hochberg method does is just this, except that the subsets considered
 are of the form {X\:m,..., Xr:m} for some r.

 Let Hm denote the empirical d.f. of X\ then (the second identity here is known
 and has been used before in this context; e.g., see [1] and [9])

 {Rm>r}= (J \Xkm <q z, I m k=r

 m ( m \

 = U {YlMXjSqk/m) >k\ k=rVj=\ J

 , _ I \ m J m\
 (1.2)

 - M \Hm(qk/m) -qk/m ^ l-q\
 \lr\ qk/m ~ q J
 { Hm(t)-t \-q\ = | max ->-}, [t=qr/m,...,q(m-Y)/m,q t q J

 r = 0, 1,..., m, so the procedure rejects the r lower order statistics if and only if

 Hm(t)-t \-q max ->
 t=qr/m.q(m ? \)/m,q t q
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 1830 J. A. FERREIRA AND A. H. ZWINDERMAN

 and
 Hm(t)-t \-q max -<-.

 t=q(r+l)/m,...,q(m-l)/m,q t q

 In other words, the r lower order statistics are rejected whenever the goodness of
 fit statistics

 n^ Hm(t)-t Hm(t)-t (1.3) max -^ max -,
 t=qk/m,...,q(m ? \)/m,q t te[qk/m,q] t

 k = I, ...,m, indicate a relatively big discrepancy between Hm and the uniform
 d.f. over [qr/m, q], and a relatively small one over [q(r + l)/m, q], indicating that
 most of the nonuniform observations lie in the interval (0, qr/m]; the standard for
 comparison, (1 ? q)/q, corresponds to the biggest discrepancy of (Hm(t) ? t)/t
 one could get at t = q, and the choice of q determines the interval (0, q] to be
 "scanned" for discrepancies.
 The function on the right-hand side in (1.3) is Renyi's statistic, a well-known

 goodness of fit statistic for testing the uniform distribution; it is a one-sided statistic
 of the Kolmogorov-Smirnov type, devised to detect distributions with too much
 mass in the lower tail, scaled by the standard uniform distribution in order to inflate
 the discrepancies that occur at lower values.
 From the version of the "ballot theorem" given on page 113 of [11], we

 know that if X\,..., Xm are independent standard uniform r.v.'s, then P(Hm(t) <
 t/q Vr G (0, q]) = 1 ? q for all m e N and q e [0, 1], from which it follows that
 the probability that the Benjamini-Hochberg method yields no rejections satisfies

 P(Rm < 1) - 1 - P(sup0<t<q(Hm(t) - t)/t > (1 - q)/q) = l-q. Thus, if the
 hypothesis that the variables are a standard uniform random sample is taken as the
 null and the type I error is defined as the incorrect rejection of at least one /7-value,

 q can be interpreted as the approximate significance level. (We thank a referee for
 posing a question which led to this observation.)
 The connection between the Benjamini-Hochberg procedure and goodness of

 fit has been hinted at by other authors (e.g., [5, 6, 13]), but this seems to be the
 first explicit link to be exhibited. In their seminal work Benjamini and Hochberg
 [2] provided some justification of the appropriateness of their method, and so did
 Storey [18] in connection with one of the variants mentioned above; the present
 explanation provides further insight into the workings of the method, as well as to
 its domain of applicability.
 The objective of this article is to investigate the main properties of the

 Benjamini-Hochberg method, extending and complementing the results of Ben
 jamini and Hochberg [2], Genovese and Wasserman [9] and Storey, Taylor and
 Siegmund [19], focusing particularly on its asymptotic aspects as m -> oo,
 m\ := m ? mo -> oo and y remains fixed. In Section 2 we extend the Benjamini
 Hochberg theorem and prove some results on the convergence in probability of Rm
 to infinity, and of riijm to qy, in what is essentially the setting originally adopted
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 ON THE BENJAMINI-HOCHBERG METHOD 1831

 by Benjamini and Hochberg [2]: Xi,..., Xmo are independent and sub-uniform,
 and independent of Xmo+\, ...,Xm, but the latter can be anything. This set of
 assumptions is very asymmetric in that too much is assumed from one set and
 nothing is assumed from the other, but the results are potentially useful in a
 number of practical situations. In fact, the proofs of Section 2 go through if the
 assumptions just stated hold conditionally on a sigma field $ C 5r, hence if
 Xi,..., Xmo are, for each mo, part of an infinite exchangeable sequence inde
 pendent of Xmo+i,..., Xm, and so the results are more general than stated. (See
 [4] and [15] for the Benjamini-Hochberg theorem under general dependence con
 ditions. Recent parallel developments in this area can be found in [10] and [17].)

 But more interesting, perhaps, is that the results proved in Section 2 actually
 hold in an asymptotic way under the rather general assumptions introduced by
 Storey, Taylor and Siegmund [19]. These assumptions, which essentially amount
 to the convergence of the sequence of empirical distributions, are more balanced
 and seem more realistic. In our work in Sections 3 and 4 we adopt essentially
 the assumptions of [19] and obtain results which are parallel to theirs, namely
 about the convergence in probability of Rm/m and Tl\m', our approach allows
 some extensions and, we think, the quickest and most transparent treatment of the
 main properties of the Benjamini-Hochberg method. The results of Section 3 are
 extended in Section 4 to a slight modification of Storey's [18] generalization of the
 Benjamini-Hochberg method, whose practical relevance and range of applicability
 are illustrated by the statements of Theorem 4.1.

 Before proceeding, let us introduce two statistical measures often used to assess
 the performance of the Benjamini-Hochberg method,

 r-, Rm ~ ^m Rm ~~ ^m , ,-, t ^0 ~ ^m n2,m =-=- and n3,m = l---??-. m ? mo m\ (m ? Rm) v 1
 The first is the proportion of correctly rejected observations out of {Xmo+\,
 Xm}, and its expected value will be called average power, or simply power; it is
 the most popular and perhaps most straightforward efficacy measure considered
 in the literature. The second is the proportion of incorrect nonrejections among
 nonrejections and has been introduced by Genovese and Wasserman [9] as a dual
 quantity to O i,m; its expected value is called false nondiscovery rate. The latter
 seems to be a particularly useful concept in the context of "outlier detection" men
 tioned above, where one would like to keep only a small number of outliers out of
 all the observations judged to have come from F; in the multiple testing context
 it seems more difficult to interpret than average power; but see Proposition 2.3 for
 an interpretation in terms of the Benjamini-Hochberg method.

 2. Results in the original setting. Unless stated otherwise, X\,..., Xmo will
 be assumed independent and such that P(X[ < x) < F(x) := x for x e [0,1],

 and independent of {Xmo+i,..., Xm}. In the sequel, by X^-j we shall mean
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 1832 J. A. FERREIRA AND A. H. ZWINDERMAN

 the ith order statistic of the set X^ := X \ {X\, ...,Xj}, j = I,..., mo, and by
 Rm (X^) the number of rejections that result from applying to X^ the modified
 form of the Benjamini-Hochberg procedure obtained by replacing / on the right

 hand side of the inequalities in (1.1) by / + j; we shall also write Rm = Rm (X),

 Xi:m ? X\m, X = X(?K By the standard uniform case, we mean the case where
 X\,..., XmQ are standard uniform r.v.'s.

 Our first result gives upper bounds on the moments of Oi m and Sm, and con
 tains Benjamini and Hochberg's [2] theorem as a special case.

 Theorem 2.1. We have

 (2.1) E[(Uhm)k] < ?(?^) (,m?-J + 1)g[(; + R<t>(xW))J-k]
 and

 (2.2, ??.?) < ?(,=*) . {q"^Zl?l)E[U + &(*?))>}
 for k = 1,2,..., mo, the inequalities being achieved for all q only in the standard
 uniform case.

 PROOF. We only prove (2.1); the proof of (2.2) is very similar. It will be
 evident that there is no loss of generality in assuming that X\,..., Xmo have the
 same distribution. Observe first that, for 0 < r < m (setting Xo:m = 0), Rm = r o

 Xr:m < q^ A Xs:m > q-^Vs > r, and that, for 1 < r < m,

 *l <q^Rm=r\

 !r r s ] X\ < q ?, Xnm <q ? , Xs:m >q?Vs>r\ m m m \

 = ;x1<,?,ev?_,<^.x;i.l,:,?_,>,ivs>r|
 = U, < <,'-, X'r<2,m_, < <,'-, 4'I_, >0^i v, > r - 1 j I mm m J

 = {xl<q^-,Rml\X\{Xl}) = r-l}.
 Similarly,

 Xi <q-,...,Xj <q-,Rm=r\ [mm J

 = \xl<q-,...,XJ<q-,RlJ\X^)=r-j\ [mm J
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 ON THE BENJAMINI-HOCHBERG METHOD 1833

 for r = j, j + 1,..., m, j ? 0, 1,..., mo- Thus, since {X\,..., Xj} and X(7) are
 independent if j < mo, we have

 m / Sk \
 E[(nhm)k] = J2E(^1i^W=r}) r=\ Vr 7

 m i |~ / m0 \k

 = JlZkE ( Zl1{^<^r/m}) t{Rm(X)=r} r=\r L\s=\ '

 ^^mo-.-(mo-j + l)
 = 2^2^ -k-F[t{Xl<qr/m,...,Xj<qr/m}MRm(X)=r}\ r=\j=\ V

 _y,Am0>-(/no-j + l) ~ 2~< 2-, rk j=lr=j

 X L {Xi<^r//w,...,X/<^r/m,/?i/)(XO"))=r-7}-l

 _f A/n0->(yno-j + l)
 7=1^=7

 X ?[l{X,<^r/in,...,^<9r/m}]?[l{i?0')(Xo-))=r_7.}]

 7=1 L^=7 J

 equality holding for all g if and only if F is standard uniform.

 Setting k = 1 at each step of the argument yields what is perhaps the simplest
 and most elementary available proof of the Benjamini-Hochberg theorem; Sarkar
 [15] gives a proof using similar ideas in a more general setting, and Storey, Taylor
 and Siegmund [19] give another simple proof based on the optional stopping the
 orem.

 As the following proposition shows, Theorem 2.1 with k > 2 can be used to
 derive conclusions about the asymptotic properties of U\m; the proof is given in
 the Appendix.
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 1834 J. A. FERREIRA AND A. H. ZWINDERMAN

 Proposition 2.2. IfRm^oo, then

 (2.3) limsup?[(ni,m)/:] < (qy)k, k e N;

 moreover, in the standard uniform case we have

 P P
 (2.4) Rm -> oo if and only if Y\\,m -> qy.

 Remarks, (i) One practical rule that follows from (2.4) is this: If with large
 m one rejects a substantial (0.1, say, as opposed to 0.001) proportion Rm/m of the
 sample (indicating Rm -> oo), then one can be sure that rii,m, the proportion of
 incorrect rejections out of all rejections, is not only near, but is practically equal
 to, the false discovery rate E(Tl\,m) = qy.
 (ii) Besides the false discovery rate, some authors consider E(Sm)/E(Rm v 1),
 sometimes called "marginal false discovery rate" (e.g., [20]). When k = I, (2.2)
 yields E(Sm)/E[(l +Rm\x^)] < qy with equality in the standard uniform case,
 which almost represents the control of E(Sm)/E(Rm v 1). Since, as shown in
 the proof of Proposition 2.2, Rm\x^) is asymptotically no smaller than Rm, it
 follows that in the standard uniform case

 lim E\-] =qy = lim --tt
 m-^oo \Rm V 1/ ifi-xx) 1 + E(Rml)(XW))

 E(Sm) E(Sm) < liminf-< liminf
 " m^oo 1 + E(Rm) ~ m^oo E(Rm V 1)

 (an analogous statement with higher moments is also possible).

 Because average power is an absolute quantity, there is nothing one can say
 about it without some information on Xm+\,..., Xm. More precisely, all that one
 can conclude from Proposition 2.2 is that, because Rm/m can be anything from
 0 to 1 (as can be seen from the results of Section 3),

 Rm ~ bm _ 1 Rfn I om \
 mi 1 ? y m \ RmvlJ

 (hence its expected value) is somewhere between 0 and -y^ > 1, which, besides
 the truism that average power is between 0 and 1, only tells us that Rm/m is

 asymptotically bounded above by j?^- < 1.
 In contrast, E(Yli>,m), the false nondiscovery rate of Genovese and Wasser

 man [9], provides a relative measure of the performance of the Benjamini
 Hochberg method?it assesses the efficacy of the method in terms of the num
 ber of rejections?for which reason one can use a statement like (2.3) to obtain a
 meaningful upper bound on fl3,m (or on its moments):
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 ON THE BENJAMINI-HOCHBERG METHOD 1835

 Proposition 2.3. Suppose y e (0,1]. Then

 (2.5) E[(nXm)']<(l-y)'+E[inikm)k\ kJeN r
 moreover, ifO<q < 1,

 (2.6) Rm-^oo => hmmpE[(nXin)l]<(l-y)1, / N.

 Proof. If Rm = 0, then Yl^m = 1 - y; if /? = m, then Il3,m = 0; and if
 Rm > 0, we have n3 m = 1 - ^r1 < 1 - Y O ir < Y- Thus>

 E[(n3,m)1] = (1 - y)lP(Rm = 0) + ?(n3,ml{5m//?m<y)l!/?m>0))

 + E(n3tmt{Sm/Rm>y)t[Rm>0})

 < (1 - ]/)'P(/?m = 0) + (1 - y)'P(Rm > 0) + ?(l{ni,m>K})

 /1 \/ . n/n \ ^ /1 \/ i ^L(Ill,ra) ] = (1 - yy + P(Tlhm > y) < (1 - YY +-1 yK

 By (2.5) and (2.3), limsupm_^(X) E[(Yl3,m)1] < 0 - y/ + qh, and since A: 6 N is
 arbitrary (2.6) follows.

 p
 In words, (2.6) says that if Rm -> oo, then, asymptotically, the expected pro

 portion of incorrect nonrejections in the Benjamini-Hochberg procedure with ar
 bitrary q e [0, 1) does not exceed the proportion 1 ? y of observations that ideally
 one would like to reject. From a practical point of view, this seems to be a nice
 "unbiasedness" property of the Benjamini-Hochberg method, one that should be
 required from procedures for selecting 31 in general: at least in the limit, the pro
 portion of false hypotheses among those that pass unnoticed does not exceed the
 proportion of false hypotheses that would go unnoticed if one simply considered
 all hypotheses true from the start?if one did not even bother about investigat
 ing them?which is just another way of saying that we are better off applying the
 Benjamini-Hochberg procedure than doing nothing.

 For other results on Fl3,m and a definition of unbiasedness we refer the reader
 to [16].

 3. Asymptotic results under dependence. In what follows we assume that

 (3.1) Fmo(x) = ? J2^{Xk<x} -> F(x) :=x
 m*k^\

 and
 j m

 (3.2) Gmi(x) = ? ? t{Xk<x]^G(x)
 mi k=m0+l
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 1836 J. A. FERREIRA AND A. H. ZWINDERMAN

 uniformly in x e [0,1], where G is a d.f. concentrated on [0,1]. These are weak
 versions of the Glivenko-Cantelli theorem; a result at the end of this section gives
 some sufficient conditions for them to hold.

 The following theorem extends Theorem 1 of [9], and in part also Theorem 5
 of [19] in the case of the Benjamini-Hochberg method?as opposed to the case of
 Storey's [18] variant of it (see the Remark to Theorem 4.1 for a parallel result in
 the case of what we call the Benjamini-Hochberg-Storey method).

 THEOREM 3.1. Under conditions (3.1) and (3.2) we have, for k e N,

 ?l\{\-q)) ~ m^oo LV m ) J

 < lim sup E I ? } m^oo LV m / J

 ^(q{\-Y)\k
 where, for y > 0,

 ?*(y) = min{x [0, 1]: %(x) < l/y),

 ^q(y) = M{x e[0,l]:^q(x) < l/y}
 and

 G(t)-t
 x//q(x)= sup -, x e [0,1]. qx<t<q t

 In particular,

 (3.3) _^pspfo,y) = ^__j
 whenever ^*(^?) := f* (^E^j) = l?q(q$E$-)> which wiU be the case lfand
 only if^fq does not assume the value ((1~^\ over an interval.

 Proof. By (1.2) we have

 \Rm If Hm(t)-t 1 1 { ? > x I = I max ->-1} [ m J [t=q\mx'\/m,...,q(m-\)/m,q t q J

 for each x e ((r - l)/m, r/m], so with i//qm)(x) ? maxr=^fmx]/m,...,^ Mm^t?^
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 ON THE BENJAMINI-HOCHBERG METHOD 1837

 Since for each x > 0

 Fmo(t)-t Fmo(t)-t max ?-< max ?
 t=q\mx~\/m,...,q(m-\)/m,q t qx<t<q t

 1 I . P ?
 <? max \FmQ(t) ? t\-+0 qX qx<t<q

 and, similarly, maxt=q\mxym,...,q ? ?-> 0> we have

 ,(m), x Fmo(t)-t , (A Gmx(t)-G(t) f^m)(x) = y max ?-h (1 - y) max ^ t=q\mxym,...,q t t=q\mx~\/m,...,q t
 G(t)-t + (1 ? y) max - t=q\mxym,...,q t

 p n , G(t)-t -> (1 ? y) max -. qx<t<q t

 Thus,

 l((i-?)/(?(i-y)),oo)(^U)) < liminf P^m)(x) > - - l)
 < limsuppf^m)(;c) > - - l) m^oo \ H q )
 < h{\-q)/(q{\-Y)),oc)(i'q(x))

 for almost all x, whence

 / kxk~lti{i-q)/(qii-y)}^oo)(\l/q(x))dx j o

 < liminf ?[f^V"

 < lim sup EI I ? j ra^oc LV m / _
 r\

 < / /:x/:~1l[(i_^)/(^(i_)/)),00)(^(x))(ix. ?/0

 Finally, from the definition of ^r* and the fact that ^ is a nonincreasing right
 continuous function, we see that

 / kxk~ldx= ~ kxk~ldx
 J{xe[OA]:xf,q(x)>(l-q)/(q(\-y))} JO

 -A a-?) /
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 1838 J. A. FERREIRA AND A. H. ZWINDERMAN

 the analogous identity for ^* following similarly.

 Remarks, (i) Storey, Taylor and Siegmund [19] were the first to realize that
 conditions like (3.1) and (3.2) are sufficient to derive asymptotic results about
 Storey's [18] variant of the Benjamini-Hochberg method. Storey, Taylor and Sieg
 mund [19] actually assume only F(x) < x in (3.1); assuming F(x) = x, how
 ever, allows us to obtain simple and useful asymptotic expressions and bounds for
 Ili,m, ri2,m and U^^m (see the corollaries to the theorem below and Theorem 4.1
 later on) without sacrificing much in the domain of practical applicability of the

 method. Storey, Taylor and Siegmund [19] also assume almost sure convergence
 in (3.1) and (3.2); our results could as easily be formulated in terms of almost sure
 convergence, but we find that convergence in probability is more natural in this
 context?it seems easier to meet and is still very relevant in applications.

 (ii) As pointed out by Genovese and Wasserman [9], (3.3) says that asymptot
 ically the Benjamini-Hochberg procedure rejects the observations (or hypotheses

 whose /^-values fall) below qp. Thus, compared with the method of "uncritical
 multiple testing" in which all hypotheses whose /^-values fall below a critical
 value q are rejected, the Benjamini-Hochberg method always rejects a smaller
 proportion qp(q,y) of hypotheses; on the other hand, because qp(q,y) > q/m
 for large m, it typically rejects many more hypotheses than the corresponding Bon
 ferroni procedure which, for finite m, consists of rejecting all observations below
 q/m.

 (iii) Suppose (3.3) holds. Then p(q, y) > 0 <^ max^,^ ^^- > ^^ for
 some x > 0, and it can be seen that

 , [ G(x)-x (\-q) 1
 (3.4) p(q, y) = q~X mini [0, 1]: ?^-< \ *', [ x q(l-y)\
 or qp(q, y) = sup{jc [0, 1]: jjhr < q}, in agreement with Theorem 5 of Storey,
 Taylor and Siegmund [19]. Furthermore, it can be verified from (3.4) that p(q,y)
 is left-continuous in q for fixed y, and, using the condition expressed right af
 ter (3.3), that it is right-continuous at q if p(q, y) > 0. Thus, q -? p(q, y) is con

 p
 tinuous on (qf, q") if p(q, y) > OWq e (qf, q"), in which case Rm/m -> p(q, y)
 uniformly on [q'', q"\. (Rm/m is a nondecreasing right-continuous function of q.)

 Examples, (i) Suppose G is degenerate at xo e [0,1). Then \//q(x) = -1 if
 q < xo, i/fq(x) = 1/jco - lifqx <xo <q, and i/rq(x) = \/x - 1 if qx > xo.
 __ If xo > q(\ - y)/(\ - qy), that is, if \/x0 - 1 < (1 - q)/[q(l - y)]9 then

 ^*(^z^) = 0, and hence p = 0.
 If xo < q(\ - y)/(l - qy), then the equation \/rq(x) ? (1 - q)/[q(l - y)] has

 a unique solution given by x = (1 ? y)/(\ ? qy), so (3.3) holds and

 (3-5) piq>y)=Hir^) = ^r^y
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 ON THE BENJAMINI-HOCHBERG METHOD 1839

 Thus, p(q, y) > 0 if xq < (1 ? y)/(l ? qy), that is, p > 0 if xo is not "too large"
 given the choice of q, in which case p is actually independent of xo, implying
 that asymptotically the proportion of rejections and the efficacy of the procedure
 depend only on y and on the choice of q and not on the exact position of xo. In
 fact, it can be checked by substitution of (3.5) into the expressions of the limits
 obtained below in (3.8) that Il2,m and 1 ? Yl^m both converge in probability to 1
 when xo < (1 - y)/(l - qy).

 Since q can always be chosen so that xo < (1 ? y)/(l ? qy), we see that in
 this case the Benjamini-Hochberg procedure can always be made to work in an
 asymptotically optimal way?in such a way that practically 100% of the observa
 tions from G will be spotted and rii,m is kept at qy. In order to make use of this
 optimality in practice, one needs to choose q appropriately, but this is easy if y is
 not too large, because the histogram will then have the shape of a scaled down
 uniform density with a conspicuous peak at xo (which is why the problem is easy
 to solve even without using the Benjamini-Hochberg method).

 In the borderline case where xo = q(l ? y)/(\ ? qy), the theorem only tells
 us that Rm/m is asymptotically somewhere between 0 and the right-hand side
 of (3.5), because ^rq(x) = (1 ? q)/[q(\ ? y)] = xo/q holds for all x e (0,xo/<?).
 In fact, ifX\,..., Xmo are independent standard uniform r.v.'s, we have

 0.6) ? iT^T m 2(1 ? qy)
 To see this, note that, after being sorted in ascending order, the sample consists of
 a proportion Hm(xo?) of ordered uniforms below xo, followed by m ? mo copies
 of xo, which are in turn followed by the remaining m(l ? Hm(xo)) ordered uni
 forms, so that the proportion of correctly rejected observations is always given by
 (/?m-5m)/m = max{/:m0//m(xo-) < / <m-m(l-Hm(xo)),mxo/q <i}/m

 flm(jco-). This is t^O and equals 1 ?y if and only if mxo/q < m ?m(l ? Hm(xo)),
 or Fmo (xo) ? xo > 0, which by our assumption happens with probability tending to

 1/2. Thus, Rm~Sm 4 i^, and therefore (3.6) holds by the fact that Sm/Rm -+ qy,
 p

 which follows by Proposition 2.2 (note that Rm ? oo necessarily).
 Finally, we observe that in this borderline case ri2,m and 1 ? Yl3m converge in

 probability to 1/2 and 1 ? (1 ? y)(l - qy)/[(l - qy) + y(\ - q)], respectively,
 a calculation suggesting that Fl2,m is a more practically meaningful measure of
 efficacy than 1 ? Il3,m.

 (ii) Assume that G is concave and

 GAO) ? lim-> 6 where 6 =-. + no x H q(l~y)
 Since then G(0) = 0 and f> > 1, there exists a unique t* > 0 such that G(t*) = /Jf*;

 moreover, f* < q [because 1 > G(t*) = fit* = tllzMl. and !_z?Z >l^>t*<q]9
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 1840 J. A. FERREIRA AND A. H. ZWINDERMAN

 and it becomes evident on geometric grounds that

 max-1 =-1 = /} - 1 < max-1 Vxg (0, t q)\ t*<t<q t t* qx<t<q t
 thus,

 Alternatively, by (3.4), qp(q, y) is the smallest positive root of G(t) = fit, that is,
 qp(q,y) = t*. This was first proved by Genovese and Wasserman [9].

 (iii) For an example where G is not necessarily concave take G(x) = pxa +
 (1 - p)x?, 0 < x < 1, with a e (0, 1), p > 1, 0 < p < 1. Then (G(t) - t)/t =
 pta~l + (1 ? p)tP~l ? 1, and from (3.4) we see that p > 0 always exists and

 is uniquely determined by p(qp)a~l + (1 - p)(qp)P~] - 1 = ^}{~j\, provided
 q>0.

 Using Theorem 3.1, we can show that the conclusion of the Benjamini
 Hochberg theorem holds very generally in an asymptotic sense:

 Corollary 3.2. Under the conditions of Theorem 3.1,

 (3.7) ->p>0 => Ylhm^qy. m

 Proof. Since

 n = Sm = ^=l 1^^/?^/m> = y (J/"*0) ^T=l 1{Xi<qRm/m} Um Rmvl Rmvl Y (Rmvl)/m
 we have for arbitrary e e (0, p), r] e (0,1),

 Fmo(q(p-e)) ^y, ^ Emo(q(p + e)) Y?-;-< Hi,m <y-, p+e p?e
 with probability at least 1 ? r], which by (3.1) proves (3.7).

 The following statements are all direct consequences of the preceding results.

 COROLLARY 3.3. Under the conditions of Theorem 3.1, -^ -> p(q, y) > 0
 implies

 Sm P , , -> p(q,y)qy,
 (3.8) m ? p , M-qy) , , n p (i-gp(g,y)) n2,m -+p(q,y)?-.- and i-n3,m->y?--??. (l-y) (l-p(q,y))
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 ON THE BENJAMINI-HOCHBERG METHOD 1841

 Because #m/m, Sm/m, nim, ri2,m and Tl^m are proportions, all the above
 statements about convergence in probability to a constant are equivalent to state
 ments about convergence in the mean (of any order), as well as to statements about
 convergence of their moments. One consequence of this fact is that, under the con
 ditions of Theorem 3.1,

 Rm P A _^ r E[Sm ] T7[fSm\ 1 . .k ->p>0 => lim -j-= lim E ? =(qy)K,
 m ~> E[Rmk] m^?? l\Rm/ J

 which implies that, asymptotically, the Benjamini-Hochberg method also controls
 the "marginal false discovery rate" E(Sm)/E(Rm v 1) [briefly mentioned in Re
 mark (ii) to Proposition 2.2].

 We shall finish this section by giving an example of a rather general situation
 in which statements like (3.1) and (3.2) hold true uniformly in x; a similar re
 sult (with a stronger conclusion) for stationary ergodic sequences has been given
 by Tucker [21], for example. Let ?i, ?2* be a sequence of r.v.'s on [0, 1] with

 d.f.'s G(1), G(2),.... Since for each x Gn(x) := n~l ??=1 %<x} 4 G(x) if and
 only if EGn(x) -> G(x) and E(Gn(x)z) -> G(x) , we see that Gn(x) -+ G(x) is
 equivalent to

 1 n 1 n
 lim -YG{l)(x) = G(x) and lim -r V P(? < x, ?, < x) = G(x)2.

 z = l 1Y7

 The following sufficient condition combines this observation with a condition that
 is much weaker than strong mixing.

 PROPOSITION 3.4. Assume that, for each x,

 1 n 1 n
 G(x):= lim -y"G(0(x) and G(x-):= lim -Vg(0(x-)

 i = \ i = \

 exist, and there are subsequences {kn} and {(#&?} such that kn ?> oo, kn/n -> 0
 and otkn ? 0 as n ?> oo, and

 sup max{|P(& <x,$j <x) - P(^ <x)P(^ <x)\,
 \i-j\>kn

 \P& < x, $j < x) - P(ft < x)P(Hj < x)\} < akn.

 p
 Then Gn -? G uniformly.

 Proof. That Gn(x) -> G(x) for fixed x follows from the fact that
 linwoo 4y ??/; />(& < x)P(Hj <x)= lim,^^ ??=1 ^fe < *))2 = G(x)2
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 1842 J. A. FERREIRA AND A. H. ZWINDERMAN

 and from the inequalities

 \ ? p& <*^j<x)-\J2 p& ^ x^p^j ? x) nz rf. nL rf.

 ^(?) + ^2 ? \p(b <x,$j <x) - P^ <x)P(t=j <x)\ KH/ n \i~j\>kn

 (the right-hand side of which goes to zero as n -> oo by assumption). The analo
 gous statement with < x in place of < x and jc? in place of jc follows in the same
 way. Finally, that these pointwise results imply uniform convergence is a classical
 result.

 4. A modification of the method. It has been observed by several authors
 that the Benjamini-Hochberg method tends to be conservative unless y is rela
 tively close to 1. For if the value of y cannot be guessed at, the only way one can
 guarantee that E(Tl\m) < 8 for a given 8 > 0 is to apply the method with q ? 8.
 But if y is actually smaller, say equal to 1/2, such a choice yields the overcautious

 bound E(J\\,m) < 8/2 and the concomitant decrease in Il2,m, which is an increas
 ing function of q. Although in some practical situations this is hardly a problem

 because one has a reasonably good idea about the value of y, from a general point
 of view it is still a shortcoming one would like to eliminate.

 These considerations have led Benjamini and Hochberg [3], Storey [18] and
 Storey, Taylor and Siegmund [19], among others, to propose and study variants of
 the Benjamini-Hochberg method which incorporate estimates of y. Our objective
 here will be to introduce another variant?very similar to Storey's?and to study
 some of its asymptotic properties. Questions related to the practical application of
 the method [e.g., the problem of choosing jc in (4.1) below] will be considered
 elsewhere. Our assumptions and notation will be those of Section 3.

 The closer jc gets to G~x(\), the tighter the inequality H(x) = yx + (1 ?

 y)G(x) < yx + (1 ? y), or y < ]^^\ becomes, which suggests taking

 f ^ l-Hm(t) (4.1) Ym(x)= mm ?-?, 0<t<x 1 ? t

 where jc e (0, 1) is to be chosen, as an estimator of y [note that, for fixed x e (0,1),

 ym(jc) > 0 with probability tending to 1]. (Storey's [18] estimator is defined by
 (1 ? Hm(x))/(l ? jc) for a given jc.) Because of the convergence of Hm to H, this
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 ON THE BENJAMINI-HOCHBERG METHOD 1843

 Ym(x) will typically be an overestimate of y in the sense that, given s > 0,

 l-Hm(t) . l-H(t) (4.2) ym(x)= min -> mm-s>y ? s, 0<t<x 1 ? t 0<t<x 1 ? t

 with high probability if m is large enough. On the other hand, if we put

 1 -G{t) k(x)= min -, x e (0, 1), 0<t<x 1 ? t

 we see that ym(x) will typically not exceed y by more than (1 ? y)ic(x):

 . \-Fmo(t) , ,, . l-Gmi(Q Ym(x) = y min ?-\-(\ - y) mm 0<r<jc 1 ? t 0<t<x 1 ? t
 (4.3)

 < ? + y + (1 - y)k(x),

 with high probability for arbitrary s > 0 if m is large enough.
 For want of a better name, and because we are essentially using the ideas of

 Benjamini and Hochberg [2] and Storey [18], we shall refer to the procedure
 that consists of rejecting all observations smaller than or equal to X/?m(^m(x^)):m,

 where Rm(qm(x, 8)) = max{/: Xi:m < qm(x, 8)^}, qm(x, 8) = ^y and ym(x) is
 defined by (4.1), as the Benjamini-Hochberg-Storey method.

 The variable Rm of (1.1) will now be denoted by Rm(q) in order to indicate
 its dependence on q in the Benjamini-Hochberg method, and similarly for the
 other variables; for instance, we shall write Tl\m(q) for Tl\m, and U\ym(qm(x, 8))
 for the proportion of incorrect rejections incurred by applying the Benjamini
 Hochberg-Storey method.

 The following result shows that, with the modified method, one is able, in an
 asymptotic sense, to keep the false discovery rate under control and at the same
 time achieve greater average power than that provided by the Benjamini-Hochberg
 procedure.

 THEOREM 4.1. Lety e (0, I) and suppose 8 > 0, x e (0, l),q\x) andqn(x)
 can be chosen so that

 q(x) < 8 <-< q"(x) y + (l-y)K(x) y
 and

 ^^4-p(?,K)>0 Vqe[q'(x),q"(x)]. m

 Then
 y

 8?TTi-^~TT <liminf?[ni,m(<5rm(x,<5))] y + (1 - y)k(x) ^?? l , v /j
 (4.4)

 <limsup?[ni,m(<?m(x,<5))] < 8 m?kx)
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 1844 J. A. FERREIRA AND A. H. ZWINDERMAN

 and

 ( & \l-Sy/(y + (l-y)K(x)) P\y + a-y)ic(x),y) \-y
 (4.5) < liminf E[Tl2,m(qm(x, 8))]

 (0 \ /I _ c\

 "'KIT;-7 y /(i-y)

 Proof. We know from Corollary 3.3 that we have

 pm(q) p , , n Sm(q) p ->p(q,y) as well as-> p(q,y)qy m m

 Vq ? W(x), qff(x)]', moreover, by Remark (iii) following Theorem 3.1, the con
 vergence here is uniform on [q'(x),qff(x)]. It can be shown (and it is certainly
 known) that if fn -> / and gn -> g uniformly, sup, \f(t)\ < oo and infr \g(t)\ > 0,
 then sup, \fn(t)/gn(t) - f(t)/g(t)\ -+ 0. Thus,

 (4.6) sup ^ -qy = sup \Uhm(q) - qy\ -^ 0. q'{x)<q<q"{x) Km\q)vl q'(x)<q<q"(x)

 Now fix s e (0, y), r] e (0,1) and mf so large that

 q(x) <
 y + (1 - y)k(x) + ? (4.7)

 < qm(x, 8) = ?? <-< 9"(jr), Ym(x) y-s
 with probability at least 1 ? rj if m > mr, which is possible by (4.2), (4.3) and our
 assumptions about qf(x) and q"(x). Then for m>mf

 y ^hm(qm(x,8))< sup |nifm(g)-tfy|+S
 q,(x)<q<q,f(x) Y ~ ?

 holds with probability at least 1 ? r). Since e is arbitrarily small, this, combined
 with (4.6), proves the inequality on the right-hand side in (4.4) as well as its version
 in probability. The other inequality follows similarly.

 To prove (4.5), we use the inequalities

 Rm(&/(Y + (1 ~ Y)*(x) + g)) ~ Sm(8/(y + (1 - Y)k(x) + g))
 m ? mo

 Rm(qm(x, 8)) - Sm(qm(x, 8))
 ~ m ? mo

 <Rm(8/(Y-s))-Sm(8/(y-s))
 ~ m ? mo
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 ON THE BENJAMINI-HOCHBERG METHOD 1845

 which hold whenever (4.7) is valid because Rm(q) - Sm(q) is nondecreasing in q,
 and the continuity of q -> p(q, y) on \qf(x), q"(x)\.

 p
 Remark. Under the assumptions of the theorem, we have qm(x,8) ->

 q(x, 8) := yH^y)K{x) and *"(**<*'*? 4 p(<?(x, 5), y); thus, asymptotically, the
 Benjamini-Hochberg-Storey method consists of rejecting all observations below
 q(x,8)p(q(x,8),y).

 Examples, (i) If G(x) = xa, x e [0, 1], a e (0,1), then k(x) = (1 -
 xa)/(l - x) because t -> (1 - fa)/(l ? 0 is decreasing. [In fact, if G has
 a nonincreasing density function g, then 1 ? G(t) = ft g(s)ds < (1 ? t)g(t),
 or ? g(f)0 - 0 + (1 ? G(0) < 0, which implies that the derivative of t ->
 (1 ? G(t))/(\ ? t) is negative.] In this case [see Example (ii) following Theo
 rem 3.1], it can be seen that p(q, y) = (q(\ - y)/(\ - qy))l/(l~a)/q, which is
 always positive for q > 0, and so we have explicit expressions for the bounds
 in Theorem 4.1 that are valid for all x e (0, 1). Here we shall consider a = 0.1 in

 two cases: (a) y = 0.5, (b) y = 0.9. The density h of H in case (a) is roughly in
 agreement with the histogram shown in Figure 5.8 of [12]; that of case (b) is much
 closer to the standard uniform density; they are both compared with the latter in
 Figure 1.

 The asymptotic average power and false discovery rate of the Benjamini
 Hochberg procedure are shown in Figure 2 as functions of q. In case (a), the choice
 of q = 0.2 yields an asymptotic false discovery rate of 0.1 and an asymptotic aver
 age power of 0.784; in case (b), an asymptotic false discovery rate of 0.1 is guar
 anteed by taking q = 0.111, which yields an asymptotic average power of 0.614.

 Figure 3 illustrates the adherence of the bounds in (4.5) as a function of x
 when 8 (the upper bound of the false discovery rate) is fixed at 0.1; as just seen,
 in the ideal situation where y is known, the power obtained by controlling the

 O J I I ol ~~~~~
 c\i c\i

 ?o \_ xo. V _ jc -- \~ jz >- ^~ -

 LO-"- LO
 6 d"

 o o
 d 1_ d"_

 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
 x x

 FlG. 1. Densities of the standard uniform distribution and of the d.f. H: left panel: a = 0.1,
 y ? 0.5, right panel: a = 0.1, y = 0.9.
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 00___^.? ~~~~_ 00_^"-"^_ s' d~ ^^-^ d~ ^_____-~ ~~p^

 0 o / go /^ /^

 xi_^^__i_/_
 CM_^^_C\J_s^_:_ d ^-" d s

 O ^^-_O /S_ <D\'^~ I I I I I I OI~ I I " I I I
 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
 q q

 FlG. 2. Asymptotic average power and false discovery rate of the Benjamini-Hochberg procedure
 as functions ofq: left panel: a = 0.1, y = 0.5, right panel: a = 0.1, y = 0.9.

 false discovery rate at this level would be about 0.784 and 0.614 in the cases
 y ? 0.5 and y = 0.9, respectively. In each case, the asymptotic average power
 of the Benjamini-Hochberg-Storey procedure with qm(x, 8) = 0A/ym(x) lies be
 tween the two curves of Figure 3 and is rather close to the maximum average
 power?achieved by setting q = 8/y in the Benjamini-Hochberg procedure?
 even for small values of x. However, since k(x) -> a as x t 1, the lower bound
 for asymptotic average power is always strictly below p(8/(y + (1 ? y)a), y)(\ ?

 8 J_ )a)/(l ? y), which in turn is always strictly below the asymptotic average
 power of the Benjamini-Hochberg procedure with q = 8/y.
 The left-hand side of (4.4) approaches 8 = 0.1 in a very similar way.

 (ii) Suppose G(x) = xat[o,Xo)(x) + l[X0iOo)(x) for x0, a e (0, 1). Then xfrq(x) =
 (qx)a~l ? 1 if 0 < jc < xo/q and^(x) =0ifx > xo/q, so that p(^, y) is still pos
 itive and has the same expression as in (i) as long as (q(\ ?y)/(l ? gy))1^1-0^ <
 jco, which can always be arranged by choosing a small enough q. Since k(x) =
 (1 - xa)/(l ? x) for jc e [0, jco) and at(jc) = 0 for x e [xo, 1), the lower bounds

 Sj-1 ?J-1 ?- d - <o
 1 $? _ o 00 _ o

 ?-h*-_ Q. C\i _
 8?_- ?5- ___ 0)_" Ui ? ^-^^ "g CO ^- -o /^ S^_ f ?^ f 2 ? ( o ? I __ ^s
 o d o
 _ ?o _"- ?S" (DO <D 9- ?

 ?g ?8 oT?,-,-,-,-,-r-1 d L-i-1-1-1-'-"-1
 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
 x x

 FlG. 3. Upper and lower bounds on the asymptotic average power of the Ben
 jamini-Hochberg-Storey procedure as functions of x as given in (4.5): left panel: a = 0.1,
 y = 0.5, right panel: a = 0.1, y = 0.9.
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 ON THE BENJAMINI-HOCHBERG METHOD 1847

 on the average power of the Benjamini-Hochberg-Storey procedure as a function
 of x coincide in this case with those shown in Figure 3 over the interval [0, xo),
 but attain their maximum values over [xo, 1); analogously, the lower bounds on the
 false discovery rate attain the value of 8 if x e [xo, 1).

 In this case, therefore, using qm(x, 8) = 8/ym(x) withx e [xo, 1) in place of q in
 the Benjamini-Hochberg procedure and choosing 8 according to the conditions of
 Theorem 4.1 is asymptotically equivalent to taking q = 8/y and thus corresponds
 to the ideal situation in which y is known, the required upper bound for the false
 discovery rate is 8, and the power is maximum.

 APPENDIX: PROOF OF PROPOSITION 2.2

 We first show that Rm-^oo=> R(mj)(XiJ)) 4 oo Vj. Observe that Hm(t) :=
 m~lET=21{xi<t+q/m} > Hm(t) := m~x Z?=2Mxi<t] for all t, and that, by
 definition of /41}(X(1)) and (1.2), we have

 \R(m\x^) ^ l | Kity-t i l l-> x = \ max ?->-1 > ( m? 1 J [t=qr/m,...,q(m-l)/m t q J
 for x e((r ? l)/(m ? 1), r/(m ? 1)]. Since

 Hm(t)~t max -
 t=qr/m,...,q(m ? \)/m,q t

 I Hm(t)-t Hm(q)-q\ ? max] max -,-[
 [t=qr/m,...,q(m ? \)/m t q J

 f Hm(t)-t <max| max ?-, [t=qr/m,...,q(m ? \)/m t

 H^(q(m - l)/m) - q(m - l)/m (m - 1) 1 j q(m ? l)/m m m]
 we have

 1 ^ Hm(t)-t -1 < max -
 q t=qr/m,...,q(m ? \)/m,q t

 =>-1 < max ?--,
 q t=qr/m,...,q(m ? \)/m t

 and because sup, \Hm(t) - Hm(t)\ -> 0 with probability one (and q^> qx/2), it
 follows that P(Rm/m > x(m - l)/m) + e < P(RmX)(X{{))/(m - 1) > x) for suf

 ficiently large m and arbitrary e > 0. This proves that Rm -> oo => Rml)(X^) -+

 oo; similar reasoning shows that R{J)(X{J)) 4- oo =? R^+l)(X{j+l)) 4- oo.
 Thus, Rm -> oo implies R% (X(J)) -* oo for each j, and by the bounded conver
 gence theorem E[(j + Rim,)(X{J))y-k] -> 0 whenever 1 < j < k, so (2.3) follows
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 from (2.1). In the standard uniform case equality holds in (2.3) with "lim" in place
 p

 of "lim sup," whence Y\\,m ? qy.

 To prove the converse, we show that T\\,m -> qy => Rm (X^) ? oo and

 then that Rm (X^) ?> oo => Rm ?> oo. Suppose n\m ? qy, and assume
 limsupm_>00 Rm (X^) < C < oo in probability. Then (2.1) with k = 2 and in
 the standard uniform case implies

 liminf E[Y\\ J = qy liminf ? -ttt- + (qy)2

 >7^ + (<7y)2>(<7y)2,
 which contradicts Yt\m -? gy; thus, 7?^ (Z(1)) ? oo. When k = 1, (2.2) in the
 standard uniform case reads

 E(Sm)
 (A.l) -tjt-?=qy.

 1 + E(R%\XW))

 If Rm -/> oo then Sm -/> oo, but then 7?^(^(1)) ? oo contradicts (A.l) when we

 let m ?> oo; thus we must have /?m ?> oo if Rm (X^) -> oo.
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