
Methods of Applied Statistics I
STA2101H F LEC9101

Week 3

September 28 2022



Today Start Recording

1. Upcoming events
2. Comments re HW
3. Linear Regression Part 3: recap, checking model assumptions, collinearity,
model-building, p > n

4. In the News
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Upcoming

• September 29: CANSSI Ontario Research Day Schedule and Registration

• Distinguished Lecture Series in Statistical Sciences
• Xihong Lin, Harvard U Details and Registration

• September 29 3.30 89 Chestnut Street, 3rd Floor
Lessons learned from the COVID-19 Pandemic: a statistician’s reflection

• September 30 3.30 UY9014
Ensemble methods for testing a global null hypothesis

• September 30 1.00 Zoom data 4 lyf
Toronto Data workshop
“How the NFL blocks black coaches”
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https://canssiontario.utoronto.ca/event/research-day-2022/
https://canssiontario.utoronto.ca/event/2022-dlss-xihong-lin/
https://utoronto.zoom.us/j/84277066292


... upcoming

• October 3 3:30 Data Science ARES online

James Zou, Stanford

“AI for clinical trials and clinical trials for AI” Register here
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HW 1 HW Question Week 1

STA2101F 2022

Due September 21 2022 11.59 pm

Homework to be submitted through Quercus

You can submit this HW in Word, Latex, or R Markdown, but in future please use R

Markdown. If you are using Word or Latex with a R script for the computational work, then

this R script should be provided as an Appendix. In the document itself you would just

include properly formatted output.

You are welcome to discuss questions with others, but the solutions and code must be written

independently. Any R output that is included in a solution should be formatted as part of

the discussion (i.e. not cut and pasted from the Console).

The dataset wafer concerns a study on semiconductors. You can get more information about

the data with ?wafer; you will first need library(faraway);data(wafer), and possibly

install.packages("faraway"). The questions below are adapted from LM Ch.3.

(a) Fit the linear model resist ~ x1 + x2 + x3 + x4. Extract the X matrix using the

model.matrix function. How have the levels of the factors been coded? Level "-" has

been coded 0, level "+" coded 1.

(b) Compute the correlation between the columns of the X matrix. Why are there some

missing values? The R output tells you the standard error of the intercept column is 0,

so it seems likely that dividing by 0 in the formula for correlation is the problem. It’s

slightly more subtle, R will give Inf if the numerator is not 0 (try 5/0 for example), but

gives NaN for 0/0, and cor(X[,1],X[,2]), for example, returns NA. However cor(X)
gives 1 for the correlation between the intercept and itself. It somehow recognizes that

the numerator and denominator are equal, and that seems to take precedence over

other conventions. Which is why it’s good to study statistical computing.

(c) What di�erence in resistance is expected when moving from the low to the high level of

x1? The estimated di�erence in resistance is 25.8 units. Note that it is not necessary

to add “all other variables held fixed”, because of (d).

(d) Refit the model without x4 and examine the regression coe�cients and standard errors.

What stayed the same and what changed? How is this related to the correlation matrix

of X? The coe�cients on x1, x2, x3 are unchanged, as the XT X matrix is diagonal.

The estimated standard errors of the coe�cients are slightly larger, because the residual

sum of squares is slightly larger, so the estimate of ‡2
is as well. The RSS always gets

smaller as you add more explanatory variables, whether you need them or not.

1

bonus, rmd, soln’s
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Linear regression recap

• Analysis of variance: yTy = (y − Xβ̂)T(y − Xβ̂) + β̂TXTXβ̂

Source DF SS MS

Regression p− 1 SSREG RegMS = SSREG/(p− 1)

Residual n− p RSS ResMS = RSS/(n− p)

Total (corrected) n− 1 TSS

F =
RegMS
ResMS ∼ Fp−1,n−p under

• regression SS can be further partitioned depends on the order
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... Linear regression recap LM §3.2

• same principle can be used to test for sets of variables

• or for testing any linear constraint on β Aβ = c

• numerator degrees of freedom for F-statistic depend on the rank of A

•
F1,ν ≡ t2ν

• sometimes only an F-test can be used to assess the effect
of an explanatory variable when?
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Q on Piazza
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Factor variables

• F-tests are used when the columns to be removed form a group

• if a covariate is a factor, i.e. categorical, then lm will construct a set of dummy
variables as part of the model matrix

• these variables should either all be in, or all be out in most cases

• prostate$gleason_factor <- factor(prostate$gleason)

levels(prostate$gleason_factor)

[1] "6" "7" "8" "9"

model_fac <- lm(lpsa ~ .-gleason, data=prostate)
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... factor variables

model_fac <- lm(lpsa ~ .-gleason, data=prostate)

sumary(model_fac)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.91328 0.84084 1.09 0.2804

lcavol 0.56999 0.09010 6.33 1.1e-08

lweight 0.46879 0.16961 2.76 0.0070

age -0.02175 0.01136 -1.91 0.0589

lbph 0.09968 0.05898 1.69 0.0946

svi 0.74588 0.24740 3.01 0.0034

lcp -0.12511 0.09559 -1.31 0.1941

pgg45 0.00499 0.00467 1.07 0.2885

gleason_factor7 0.26761 0.21942 1.22 0.2259

gleason_factor8 0.49682 0.76927 0.65 0.5201

gleason_factor9 -0.05621 0.50020 -0.11 0.9108

n = 97, p = 11, Residual SE = 0.70, R-Squared = 0.67

check model.matrix
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... factor variables

model_nog <- lm(lpsa ~ . - gleason - gleason_factor, data = prostate)

anova(model_fac, model_nog) # compare two models

Analysis of Variance Table

Model 1: lpsa ~ (lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45 + gleason_factor) - gleason - gleason_factor

Model 2: lpsa ~ (lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45 + gleason_factor) - gleason

Res.Df RSS Df Sum of Sq F Pr(>F)

1 89 44.2

2 86 42.7 3 1.48 0.99 0.4
Applied Statistics I September 28 2022 11



Model checking LM-2 Ch. 6, LM-1 Ch. 4; SM 8.6

plot(model1)
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... Model checking LM-2 Ch. 6, LM-1 Ch. 4; SM 8.6

Model assumptions https://data.library.virginia.edu/diagnostic-plots/
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... Model checking

• residuals: ε̂i =

• Var(ε̂) =
• i.e. don’t all have the same variance

• hat matrix H =

• standardized residuals: ri =

• Cook’s distance Ci =
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... Model checking

• residuals: ε̂i = yi − ŷi

• Var(ε̂) = σ2(I− H), Var(yi − ŷi) = σ2(1− hii) 0 < hii < 1,Σhii = p

• i.e. don’t all have the same variance

• hat matrix H = X(XTX)−1XT Hy = X(XTX)−1XTy = Xβ̂ = ŷ

• standardized residuals: ri =
ε̂i

σ̃(1− hii)1/2
approx var 1

• Cook’s distance Ci =
(ŷ − ŷ−i)T(ŷ − ŷ−i)

pσ̃2 =
r2i hii

p(1− hii)
measure of influence

high leverage or high residual
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... Model checking

• standard diagnostics check for non-constant variance, influential observations

• and for normality of residuals using qqnorm

• assumption of independence across i may be more important

• but more difficult to assess

• exception: observations collected over time LM-2, §6.1.3, LM-1 §4.1.3
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Aside on normal plots
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... Aside

library(ggplot2); library(nullabor); library(tidyverse)

df5_frame <- data.frame(x = rt(30, df = 5))

lineup_df5_data <- lineup(

method = null_dist("x", dist = "norm", params = list(mean = 0, sd = 1)),

true = df5_frame, n=12)

lineup_df5_data %>%

ggplot(aes(sample = x)) +

geom_qq_line() +

geom_qq() +

facet_wrap(~ .sample)
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Model structure LM-2 §6.3, LM-1 §4.3

• Model y = Xβ + ε, alternatively,
• E(y | X) = Xβ, Var(Y | X) = σ2I
• plots of y against each column of x can be helpful
• for(i in 1:8){plot(prostate[,i],prostate[,9]... }

• added variable plots can be more helpful partial regression plots

• plot residuals from y on X−j against residuals from xj on X−j slope of this line is β̂j
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Prostate data
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Partial residual plots LM-2 Fig 6.13, LM-1 Fig 4.13
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Partial residual plots LM-2 Fig 6.13, LM-1 Fig 4.13
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Collinearity LM-2 §7.3, LM-1 §5.3

• simple model yi = β0 + β1x1i + β2x2i + εi, i = 1, . . .n
• if x1 ⊥ x2, then interpretation of β1 and β2 clear
• if x1 = x2 then β1 and β2 not separately identifiable
• usually we’re somewhere in between, at least in observational studies
• may be very difficult to dis-entangle effects of correlated covariates
• example: health effects of air pollution
• measurable increase in mortality on high-pollution days
• measurable increase in mortality on high-temperature days
• high temperatures and high levels of pollutants tend to co-occur +++
• mathematically, XTX is nearly singular, or at least ill-conditioned, so calculation of
its inverse is subject to numerical errors

• if p > n then XTX not invertible, no LS solution ridge, Lasso
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Three tasks related to linear regression

• Estimation of β, and estimation of its standard error – for inference about E(y | x)
alternatively comparing sub-models using F-tests

• Prediction of y+, say, given a new vector of explanatory variables x+
LM-2 Ch.4, LM-1 §3.5, SM §8.3.2

• Model Selection: which explanatory variables do we need
for prediction or inference?

These same questions arise in other models such as logistic regression, analysis of
survival data, and so on, but the generic linear model is often a good starting point

• Prediction: y+ = xT
+β + ε; ŷ+ = xT

+β̂; var(ŷ+) = σ2x+(XTX)−1x+
assuming ...

• error in expected response different from
prediction error E(y+ − ŷ+)2 = σ2 + var(ŷ+)
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Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

• “analyses should be as simple as possible, but no simpler”
• What variables should we keep in the model ?
• Hierarchical models: some models have a natural hierarchy: polynomials, factorial
structure, auto-regressive, sinusoidal, ...

• in these models the ‘highest’ level of the hierarchy is removed first
• e.g. y = β0 + β1x + β2x2 + ε should *not* be simplified to y = β0 + β2x2 + ε

• e.g. if interaction terms are included, then main effects and other 2nd-order terms
also need to be included: y = β0 + β1x1 + β2x2 + β12x1x2 + β11x21 + β22x22 + ε

• *not* y = β0 + β1x1 + β2x2 + β12x1x2 + ε unless x = 0/1

• y = β0 + β1 sin(2πx) + β2 cos(2πx) + β3 sin(4πx) + β4 cos(4πx) + ε

• yt = β0 + αyt−1 + ε yt = β0 + α1yt−1 + α2yt−2ε *not* yt = β0 + α2yt−2 + ε
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

• testing procedures: forward selection, backward selection, stepwise selection
• it is quite common to fit all explanatory variables, and then drop if p > 0.05
• if estimates and estimated standard errors don’t change very much, may be okay
• if estimates and estimated standard errors change a lot, cause for concern
• if estimates change sign, points to possibly extreme confounding

step(model1)

Start: AIC=-58.32

lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45

Df Sum of Sq RSS AIC

- gleason 1 0.0412 44.204 -60.231

- pgg45 1 0.5258 44.689 -59.174

- lcp 1 0.6740 44.837 -58.853

<none> 44.163 -58.322

- age 1 1.5503 45.713 -56.975

- lbph 1 1.6835 45.847 -56.693

- lweight 1 3.5861 47.749 -52.749

- svi 1 4.9355 49.099 -50.046

- lcavol 1 22.3721 66.535 -20.567
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

step(model1)

...

Step: AIC=-61.37

lpsa ~ lcavol + lweight + age + lbph + svi

Df Sum of Sq RSS AIC

<none> 45.526 -61.374

- age 1 0.9592 46.485 -61.352

- lbph 1 1.8568 47.382 -59.497

- lweight 1 3.2251 48.751 -56.735

- svi 1 5.9517 51.477 -51.456

- lcavol 1 28.7665 74.292 -15.871

Call:

lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi, data = prostate)

Coefficients:

(Intercept) lcavol lweight age lbph svi

0.95100 0.56561 0.42369 -0.01489 0.11184 0.72095
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

• Criterion-based procedures most widely used
• AIC,BIC, Mallows Cp, R2a RSS: residual sum of squares
•

AIC = n log(RSS/n) + 2p

•
BIC = n log(RSS/n) + log(n)p

•
Cp = RSSp/σ̃2 + 2p− n

•
R2a = 1−

σ̃2model
TSS/(n− 1)

• SM has yet another version AICc which may be better than AIC for linear models
• Cp and R2a are only useful for linear models; AIC and BIC more general
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In the News Economist, Sep 14

link
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Design of Studies CD, Ch.2

• common objectives
• to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

• to reduce the non-systematic (random) error to a reasonable level by replication
and other techniques

• to estimate realistically the likely uncertainty in the final conclusions
• to ensure that the scale of effort is appropriate
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... design of studies

• we concentrate largely on the careful analysis of individual studies
• in most situations synthesis of information from different investigations is needed
• but even there the quality of individual studies remains important
• examples include overviews (such as the Cochrane reviews)
• in some areas new investigations can be set up and completed relatively quickly;
design of individual studies may then be less important
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... design of studies

• formulation of a plan of analysis
• establish and document that proposed data are capable of addressing the research
questions of concern

• main configurations of answers likely to be obtained should be set out
• level of detail depends on the context
• even if pre-specified methods must be used, it is crucial not to limit analysis
• planned analysis may be technically inappropriate
• more controversially, data may suggest new research questions or replacement of
objectives

• latter will require confirmatory studies
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Unit of study and analysis

• smallest subdivision of experimental material that may be assigned to a treatment
context: Expt

• Example: RCT – unit may be a patient, or a patient-month (in crossover trial)
• Example: public health intervention – unit is often a community/school/...
• split plot experiments have two classes of units of study and analysis
• in investigations that are not randomized, it may be helpful to consider what the
primary unit of analysis would have been, had a randomized experiment been
feasible

• the unit of analysis may not be the unit of interpretation – ecological bias
systematic difference between impact of x at different levels of aggregation

• on the whole, limited detail is needed in examining the variation within the unit of
study
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Types of observational studies

• secondary analysis of data collected for another purpose
• estimation of a some feature of a defined population (could in principle be found
exactly)

• tracking across time of such features
• study of a relationship between features, where individuals may be examined

• at a single time point
• at several time points for different individuals
• at different time points for the same individual

• experiment: investigator has complete control over treatment assignment
• census
• meta-analysis: statistical assessment of a collection of studies on the same topic

Applied Statistics I September 28 2022 37



Avoidance of systematic error CD §2.4

• “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

• can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

• this can often be avoided by design, or adjustment in analysis
• can arise by the entry of personal judgement into some aspect of the data
collection process

• this can often be avoided by randomization and blinding

Applied Statistics I September 28 2022 38


