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Today

1. Course introduction: course details, evaluation, syllabus, people

2. Upcoming events of interest

3. Review of linear regression

4. In the news: −→ at the conference
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Course Description My web page(s)

STA 2101F: Methods of Applied Statistics I
Wednesday, 10am – 1 pm Eastern September 14 – December 7 2022
SF 3201

From the calendar:
This course will focus on principles and methods of applied statistical science. It

is designed for MSc and PhD students in Statistics, and is required for the Applied
Paper of the PhD comprehensive exams. The topics covered include: planning of
studies, review of linear models, analysis of random and mixed effects models, model
building and model selection, theory and methods for generalized linear models, and
an introduction to nonparametric regression. Additional topics will be introduced
as needed in the context of case studies in data analysis.
Prerequisites: ECO374H1/ECO375H1/STA302H1 (regression); STA305H1 (design
of studies)

Course Delivery:
On September 14, the class will be delivered online at the scheduled
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Course Description Quercus

STA 2101F: Methods of Applied Statistics I
Wednesday, 10am – 1 pm Eastern September 14 – December 7 2022
SF 3201

From the calendar:
This course will focus on principles and methods of applied statistical science. It

is designed for MSc and PhD students in Statistics, and is required for the Applied
Paper of the PhD comprehensive exams. The topics covered include: planning of
studies, review of linear models, analysis of random and mixed effects models, model
building and model selection, theory and methods for generalized linear models, and
an introduction to nonparametric regression. Additional topics will be introduced
as needed in the context of case studies in data analysis.
Prerequisites: ECO374H1/ECO375H1/STA302H1 (regression); STA305H1 (design
of studies)

Course Delivery:
On September 14, the class will be delivered online at the scheduled
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Course Description

• Grading

• Academic Integrity

• Computing

• References Modules

• Contact
Use Piazza for course questions; email for personal questions
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Today

1. Course introduction: technical issues, course details, evaluation, syllabus

2. Upcoming events of interest

3. Review of linear regression

4. In the news: −→ at the conference
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Upcoming events

• Thursdays 3.30 — Departmental Seminar link

• Mondays 3.30 — Data Science and Applied Research Seminar link

• Fridays 12.00 — Toronto Data Workshop

• Special:
• September 29: CANSSI Ontario Research Day link

• September 29, 30 3.30: Distinguished Lecture Series
in Statistical Sciences link
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https://www.statistics.utoronto.ca/events
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Today Start Recording

1. Course introduction: course details, evaluation, syllabus

2. Upcoming events of interest

3. Review of linear regression

4. Steps in analysis

5. In the news: −→ at the conference
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Y = X β + "
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1

• Equivalently:
yi =
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1

• Equivalently:
yi =

• Standard Assumptions
• yi independent equivalently !i independent y is o!en called response
• E(!i) = 0 why?
• var(!i) = σ2 constant
• xi known, β to be estimated xi o!en called explanatory variables
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1

• Equivalently:
yi =

• Standard Assumptions
• yi independent equivalently !i independent y is o!en called response
• E(!i) = 0 why?
• var(!i) = σ2 constant
• xi known, β to be estimated xi o!en called explanatory variables

• More concisely:
E(Y | X) = , var(Y | X) =

I ??
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

Nice big equation:
!

""#

y1
...
yn

$

%%& =

!

""#

x11 . . . x1p
...

...
...

xn1 . . . xnp

$

%%&

!

""#
...

$

%%&+

!

""#
...

$

%%&
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

Nice big equation:
!

""#

y1
...
yn

$

%%& =

!

""#

x11 . . . x1p
...

...
...

xn1 . . . xnp

$

%%&

!

""#
...

$

%%&+

!

""#
...

$

%%&

Or, if you prefer:

yi = xi1β1 + xi2β2 + · · ·+ xipβp + "i, "i ∼ i = 1, . . . ,n
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

Nice big equation:
!

""#

y1
...
yn

$

%%& =

!

""#

x11 . . . x1p
...

...
...

xn1 . . . xnp

$

%%&

!

""#
...

$

%%&+

!

""#
...

$

%%&

Or, if you prefer:

yi = xi1β1 + xi2β2 + · · ·+ xipβp + "i, "i ∼ i = 1, . . . ,n

Or, if you prefer:

E(yi | xi) = xT

i β, var(yi | xi) = σ2, i = 1, . . . ,n

yi independent
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o'en not completely clear: X might be (xed by design, or measured on each
individual e.g.?
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o'en not completely clear: X might be (xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o'en not completely clear: X might be (xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o'en not completely clear: X might be (xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic

• o'en not emphasized: interpretation of βj
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o'en not completely clear: X might be (xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic

• o'en not emphasized: interpretation of βj
• version 1: e'ect on the expected response of a unit change in jth explanatory variable,

all other variables held (xed
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o'en not completely clear: X might be (xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic

• o'en not emphasized: interpretation of βj
• version 1: e'ect on the expected response of a unit change in jth explanatory variable,

all other variables held (xed
• version 2:

βj =
∂E(yi | xij)

∂xij
∂E(y | xj)

∂xj
notation ambiguous, see CD §6.5.2
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Least squares estimation

• De(nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2
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Least squares estimation

• De(nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,
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Least squares estimation

• De(nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,

• Equivalently,
β̂LS :=

L2 distance
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Least squares estimation

• De(nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,

• Equivalently,
β̂LS :=

L2 distance
• Equivalently, β̂LS is the solution of the score equation

XT(y − Xβ) = 0

?how?
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Least squares estimation

• De(nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,

• Equivalently,
β̂LS :=

L2 distance
• Equivalently, β̂LS is the solution of the score equation

XT(y − Xβ) = 0

?how?
• Solution

β̂LS =

check dimensions
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

ASIDE: here and following all assume X is (xed
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

• Expected value
E(β̂LS) =

why?

ASIDE: here and following all assume X is (xed
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

• Expected value
E(β̂LS) =

why?

• Least squares estimates are unbiased

ASIDE: here and following all assume X is (xed
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

• Expected value
E(β̂LS) =

why?

• Least squares estimates are unbiased
• Variance really variance-covariance matrix

var(β̂LS) = (XTX)−1XTvar(y)X(XTX)−1 = (XTX)−1XTσ2IX(XTX)−1 = σ2(XTX)−1

ASIDE: here and following all assume X is (xed
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

Applied Statistics I September 14 2022 14

you N ftp5 deeaboly.is fly
fly y 1 E za Bir

I II Ege
t.ca ater

E CY g Gxp

third f LEE y fugue



What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and

• the likelihood function is

L(β,σ2; y) = 1
(2πσ2)n/2 exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)
,
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and

• the likelihood function is

L(β,σ2; y) = 1
(2πσ2)n/2 exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)
,

• the log-likelihood function is

ℓ(β,σ2; y) = −n2 log(σ2)− 1
2σ2 (y − Xβ)T(y − Xβ),

constants in params don’t matter
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and

• the likelihood function is

L(β,σ2; y) = 1
(2πσ2)n/2 exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)
,

• the log-likelihood function is

ℓ(β,σ2; y) = −n2 log(σ2)− 1
2σ2 (y − Xβ)T(y − Xβ),

constants in params don’t matter
• the maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)

• distribution of β̂j is
N(βj,σ2(XTX)−1jj ), j = 1, . . . ,p
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)

• distribution of β̂j is
N(βj,σ2(XTX)−1jj ), j = 1, . . . ,p

• maximum likelihood estimate of σ2 is 1n (y − Xβ̂)T(y − Xβ̂)
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)

• distribution of β̂j is
N(βj,σ2(XTX)−1jj ), j = 1, . . . ,p

• maximum likelihood estimate of σ2 is 1n (y − Xβ̂)T(y − Xβ̂)
• but we use

σ̃2 =
1

n− p (y − Xβ̂)T(y − Xβ̂)
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Pause

(1) I’m lost

(2) I’m good

(3) I’m bored
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Homework Week 1 on Quercus and home page

HW Question Week 1

STA2101F 2022

Due September 21 2022 11.59 pm

Homework to be submitted through Quercus

You can submit this HW in Word, Latex, or R Markdown, but in future please use R

Markdown. If you are using Word or Latex with a R script for the computational work, then

this R script should be provided as an Appendix. In the document itself you would just

include properly formatted output.

You are welcome to discuss questions with others, but the solutions and code must be written

independently. Any R output that is included in a solution should be formatted as part of

the discussion (i.e. not cut and pasted from the Console).

The dataset wafer concerns a study on semiconductors. You can get more information about

the data with ?wafer; you will first need library(faraway);data(wafer), and possibly

install.packages("faraway"). The questions below are adapted from LM Ch.3.

(a) Fit the linear model resist ~ x1 + x2 + x3 + x4. Extract the X matrix using the

Applied Statistics I September 14 2022 17



Inference

• If you really like likelihood theory, the expected Fisher information is SM §8.2.3

I(β,σ2) =
*
σ−2XTX 0

0 1
2nσ−4

+

I−1 gives (asymptotic) variance of MLE
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Inference

• If you really like likelihood theory, the expected Fisher information is SM §8.2.3

I(β,σ2) =
*
σ−2XTX 0

0 1
2nσ−4

+

I−1 gives (asymptotic) variance of MLE

• but just using previous slide we have

β̂j − βj
σ[{(XTX)−1}jj}]1/2

∼ N(0, 1)
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Inference

• If you really like likelihood theory, the expected Fisher information is SM §8.2.3

I(β,σ2) =
*
σ−2XTX 0

0 1
2nσ−4

+

I−1 gives (asymptotic) variance of MLE

• but just using previous slide we have

β̂j − βj
σ[{(XTX)−1}jj}]1/2

∼ N(0, 1)

• and
β̂j − βj

σ̃[{(XTX)−1}jj}]1/2
∼ tn−p
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Example LM-2 Exercise 2.4

install.packages("faraway")

library(faraway)

data(prostate)

head(prostate)

Applied Statistics I September 14 2022 19

s FIFA'd



Example LM-2 Exercise 2.4

install.packages("faraway")

library(faraway)

data(prostate)

head(prostate)

model1 <- lm(lpsa ~ ., data = prostate)

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.669337 1.296387 0.516 0.60693

lcavol 0.587022 0.087920 6.677 2.11e-09 ***

lweight 0.454467 0.170012 2.673 0.00896 **

age -0.019637 0.011173 -1.758 0.08229 .

lbph 0.107054 0.058449 1.832 0.07040 .
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Example LM Exercise 2.4

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.669337 1.296387 0.516 0.60693

lcavol 0.587022 0.087920 6.677 2.11e-09 ***

lweight 0.454467 0.170012 2.673 0.00896 **

age -0.019637 0.011173 -1.758 0.08229 .

lbph 0.107054 0.058449 1.832 0.07040 .

svi 0.766157 0.244309 3.136 0.00233 **

lcp -0.105474 0.091013 -1.159 0.24964

gleason 0.045142 0.157465 0.287 0.77503

pgg45 0.004525 0.004421 1.024 0.30886

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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It’s Just a Linear Model Women in Statistics and Data Science
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i

• yi = β0 + β1 sin(xi) + β2 cos(xi) + "i

5 10 15 20

11
13

15

x

y
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i

• yi = β0 + β1 sin(xi) + β2 cos(xi) + "i

• yi = γ0xγ11i x
γ2
2i ηi, ηi ∼ positive r.v. SM Example 8.5

5 10 15 20

11
13

15

x

y
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i

• yi = β0 + β1 sin(xi) + β2 cos(xi) + "i

• yi = γ0xγ11i x
γ2
2i ηi, ηi ∼ positive r.v. SM Example 8.5

• yi = ϕ0 +
,K

k=1 ϕksk(xi) + "i e.g smoothing splines

5 10 15 20

11
13

15

x

y
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The linear model

• expected value E(y) = linear in β

−→ Sep152021.Rmd
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The linear model

• expected value E(y) = linear in β

• measured with additive error y = E(y) + ", " ∼

−→ Sep142022.Rmd
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The linear model

• expected value E(y) = linear in β

• measured with additive error y = E(y) + ", " ∼

• generalizations
" ∼

−→ Sep152021.Rmd
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Today

1. Course introduction: technical issues, course details, evaluation, syllabus, people

2. Upcoming events of interest

3. Review of linear regression

4. In the news: −→ at the conference
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