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« October 7 12.00-13.00 : STAGE International Seminar link

'_/_

« Teri Manolio, National Human Genome Research Institute
« Genomic Diversity and Genomic Healthcare
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https://canssiontario.utoronto.ca/event/stage-isss-teri-manolio/

Aside: matrix derivatives

Note on Matrix Derivatives

STA 2101F: Methods of Applied Statistics I 2022

The matrix version of the linear model is
y=XpB+e,

where y and X3, and € are n X 1 vectors; X is an n X p matrix and fisa p X 1
vector. To find the least squares estimator we minimize

n

SS(B)=(y—XB)"(y—XB)=> (yi — 2 B)*,
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Aside: partitioning SS

j J
V—y)"(y-y1) = (y—XB)T(y—XB)m R -

i=1
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ess LD 1‘7/;
Voo, §F
i ) < uwrxz/q

Xe., >

2 i—vF = S XA+ el — & /
i=1 /
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Linear regression recap

- factor variables: a factor with k levels needs kR — 1 parameters /
——+ linear model assumptions: E(y) = X8, cov(Y) =%, y=XB+¢€,e~ N(0O,o?l)
« true residuals have constant variance el

true residuals are normally distributed

true residuals are independent
imorwu

Shapiro-Wilk test? & ‘QQ Y(ﬁ+

reminder: Q-Q plot of a vector of observati@ ]

- y-axis;ordered observations z,), ... Z(

6—.

. ?-axis: theoretical quantiles from distribution F: F~'{i/(n_£ 1)} ~ E(X)

est is a summary of weighted LS regression from this plot —— |

X K
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... linear regression recap

« W = X(X"X)'XT hat matrix § = X3 =-Hy M + ondlyr

erage of observation i onthe fitted model

Eallef D; ib LM-2 §6.2.3, LM-1 §4.2.3
« Durbin-Watson test checks for auto-correlation in residualls
- may be useful if the residual plots seem to oscillate,

or if the data are collected over time
- collinearity: if there is a linear relationship among columns of X, then individual

‘coefficients are -determined
. ck condition number of X7 LM-2 §7.3; LM-1 §5.3
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LM-2 Figure 6.7
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Figure 6.7 Diagnostic plots for correlated errors in the air quality data.
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Three tasks related to linear regression

- Estimation of 3, and estimation of its standard error - for inference about E(y | x)
alternatively comparing sub-models using F-tests
- Prediction of y_, say, given a new vector of explanatory variables x, Hw 3
LM-2 Ch.4, LM-1 §3.5, SM §8.3.2
—P+ Model Selection: which explanatory variables do we need
for prediction or inference? g

(V{'MJ,;_‘o H«Law:} W?\»\fwﬂ,o‘%)

_
- r/laM (BWL”L‘:‘“&
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Three tasks related to linear regression

- Estimation of 3, and estimation of its standard error - for inference about E(y | x)
alternatively comparing sub-models using F-tests
- Prediction of y_, say, given a new vector of explanatory variables x,
LM-2 Ch.4, LM-1 §3.5, SM §8.3.2
« Model Selection: which explanatory variables do we need
for prediction or inference?

These same questions arise in other models such as logistic regression, analysis of
survival data, and so on, but the generic linear model is often a good starting point
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Three tasks related to linear regression

- Estimation of 3, and estimation of its standard error - for inference about E(y | x)
alternatively comparing sub-models using F-tests
- Prediction of y_, say, given a new vector of explanatory variables x,
LM-2 Ch.4, LM-1 §3.5, SM §8.3.2
« Model Selection: which explanatory variables do we need
for prediction or inference?

These same questions arise in other models such as logistic regression, analysis of
survival data, and so on, but the generic linear model is often a good starting point

* Prediction: y; =x7 08 +¢; V. = x?ﬁ; var(y.) = o?x (XTX) "X,

assuming ...
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Three tasks related to linear regression

- Estimation of 3, and estimation of its standard error - for inference about E(y | x)
alternatively comparing sub-models using F-tests

- Prediction of y_, say, given a new vector of explanatory variables x,

LM-2 Ch.4, LM-1 §335;

= e"ﬂiP

« Model Selection: which explanatory variables do w¢ need
for prediction or inference?

These same questions arise in other models such4as logistic regressi
survival data, and so on, but the generic linedr model is ood starting point

Gar() - 02X (XTX) "X,
T Ll ol

47

* Prediction: y; % xTB +¢; Vi = xi@

-—_—— [ =i

assumina

« error in expected response different from sl-r—u'
predlctlon error IE(yJr — Y4+ )? f oy var(y,)

~ fe—e
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Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« “analyses should be as simple as possible, but no simpler”
- What variables should we keep in the model ?

) |

- e— —
T ()" %
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Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« “analyses should be as simple as possible, but no simpler”
- What variables should we keep in the model ?

— ¢ Hierarchical models: some models have a natural hierarchy: polynomials, factorial
structure, auto-regressive, sinusoidal, ...

in these models the ‘highest’ level of the hierarchy is remove

ce8.y=700+ @Jr ﬁz? + e should *not* be simplified to Y = 3, + &x?@

- e.g. if interaction terms are included, then main effects and other 2nd-order terms
also need to be included: y = Bo + 51X1 + BaXa + BraXaXa + BuX3 + [aaX3 + €

® *nOt* y p— /80 + /81X1 —|— 52X2 —|— B12X1xm o ‘UnleSSX = 0/1 ’
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Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« “analyses should be as simple as possible, but no simpler”
- What variables should we keep in the model ?

~—> Hierarchical models: some models have a natural hierarchy: polynomials, factorial
structure, auto-regressive, sinusoidal, ...

- in these models the ‘highest’ level of the hierarchy is removed first
c 8.V = Bo+ BiX+ Box?> + e should *not* be simplified to y = 5o + X% + ¢

- e.g. if interaction terms are included, then main effects and other 2nd-order terms
also need to be included: y = Bo + 51X7 + BaXa + BraXaXa + BX3 + [aaX3 + €

*nOt* V = /80 -+ /81X1 —+ 52X2 —+ B12X1X2 + € unless x = 0/1

Q Bo + B sin(2mX) + B, cos(2mX) + 55 sin(47wX) + 5, COSflﬂTh—I—E

* Vit = Po+ayt_q+e Yt = Bo + O’?yt_1 +w26 *not* y: = Bo + auyt—o» + €
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« testing procedures: forward selection, backward selection, stepwise selection (
* itis quite common to fit all explanatory variables, and then drop if p > 0.05

au ])of(‘f/y(l
sub cets

( leaFg )

C(‘eﬂfc«bfc{?)
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

testing procedures: forward selection, backward selection, stepwise selection

it is quite common to fit all explanatory variables, and then drop if p > 0.05

if estimates and estimated standard errors don’t change very much, may be okay

if estimates and estimated standard errors change a lot, cause for concern

if estimates change sign, points to possibly extreme confounding J
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« testing proced mmection, backward selection, stepwise selec@

- it is quite common to fit all explanatory variables, and then drop if p > 0.05

- if estimates and estimated standard errors don’t change very much, may be okay

- if estimates and estimated standard errors change a lot, cause for concern

- if estimates change sign, points to possibly extreme confounding

- importance of retained explanatory variables probably overstated —

- procedures not directly linked to final objectives of prediction or explanation <—
- tend '
“should be discouraged”

at are smaller than desirable for prediction LM-210.2, LM-18.2

LM-2 10.2
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

most widely used

aeen fit and parsimony

—_— ——

RSS: residual sum of squares
Vw«éé«f ‘e LGs
S"}'@P w,.:( A~ s'l’%A‘C

Q“M%rﬂ#— w \I/W,»/Z(u &JZLS;J(L -A‘C

oA |
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« Criterion-based procedures most widely used
« AIC = nlog(RSS/n) +2p balance between fit and parsimony

RSS: residual sum of squares

* BIC = nlog(RSS/n) +/1og(n choose models with smallest AIC or BIC

A oLSDScC W%:H-M& thxﬂ(

M A ks €
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« Criterion-based procedures most widely used

CA/ICZn log(RSS/n) +2p balance between fit and parsimony

RSS: residual sum of squares

* BIC = nlog(RSS/n) + log(n)p choose models with smallest AIC or BIC

« C, = RSS, /5% +2p —n  estimates average MSE of prediction Mov(/[ovx CI’
2SS
U
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

most widely used

alance between fit and parsimony

RSS: residual sum of squares

AIC = nlog(RSS/n) + 2p

v" « BIC = nlog(RSS/n) + log(n)p choose models with smallest AIC or BIC
. .. v
« Cp =RSS,/6%+2p —n estimates average MSE of prediction 6~ P ?[” v
5 72 M ’[’W‘I"
i e R2 —1— RSS/(” - p) —1_ 9 model Q'Jﬂ-m;u ]Z
— 155/(n —1) G rull
* SM has yet another version AIC. which may be better than AIC for linear models //g\
. wde
* Cp and RZ are only useful for linear models; AIC and BIC more t [
Applied Statistics | October 52022 V“-’f@”“) - -2 %L( (3) 11




... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

Jﬂﬂ‘;“’”"

MOM{Q'—[W\([Pga —~ P(‘OJ’(%‘(‘Q

step(modell)

Step: AIC=-61.37
lpsa © lcavol + lweight + age + lbph + svi

Df Sum of Sq RSS AIC
<none> 45.526¢ -61.374&—
-- age . 1 0.9592 46.485 -61.352
. - lbph- 1 1.8568 47.382 -59.497
. - lweight- 1  3.2251 48.751 -56.735 EfYZfLr
_ - svi- 1 5.9517 51.477 -51.456
. - lcavol.- 1 28.7665 74.292 -15.871
Call:
Im(formula = lpsa ~ lcizgl’i_lmaight’¢—3§é + 1lbph + svi, da

(In lcavol lweight age 1bph svi
Applied Octoberg 2022 12
6561 0.42369 -0.01489 0.11184 0.72095




Model Building

e e
- hierarchical principle, testing procedures, criterion-bsed procedures, all provide

guidance on how to choose x's
* in a linear regression model and extensions
- rote application of any of these methods gives little insight

into the structure of the model
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Model Building CD §6.5

« hierarchical principle, testing procedures, criterion-bsed procedures, all provide
guidance on how to choose x's
* in a linear regression model and extensions
- rote application of any of these methods gives little insight
into the structure of the model

« Empirical models: “In many fields of study the models used as a basis for
interpretation do not have a special subject-matter base, but, rather represent
broad patterns of haphazard variatiop,quite widely seen in at least approximate
form - [ »€+eD

« this is typically combined wi pecificaton of the systematic part of the variation,

which is often, alt always, the primary focus of interest”

- E(y | X) %&W,quf
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... Model Building

“Supoose that, at some point in the analysis, interest is focused on the role of a
particular explanatory variable or variables, x;, say, on the response y. Then the
following points are relevant:

- the value, standard error, and interpretatioio@pends on the other variables in
the model
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... Model Building

“Supose that, at some point in the analysis, interest is focused on the role of a

particular explanatory variable or variables, x;, say, on the response y. Then the
following points are relevant:

- the value, standard error, and interpretation of Bj depends on the other variables in
the model

- relatively mechanical methods of choosing which explanatory variables to use may

be helpful in preliminary exploration, especially if p is quite large, but are insecure
as a basis for final interpretation

——
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... Model Building CD §7.3

“Supose that, at some point in the analysis, interest is focused on the role of a
particular explanatory variable or variables, x;, say, on the response y. Then the
following points are relevant:

- the value, standard error, and interpretation of Bj depends on the other variables in
the model

- relatively mechanical methods of choosing which explanatory variables to use may

be helpful in preliminary exploration, especially if p is quite large, but are insecure
as a basis for final interpretation

- explanatory variables not of direct interest but known to have a substantial effect
should be included
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... Model Building

“Supose that, at some point in the analysis, interest is focused on the role of a
particular explanatory variable or variables, x;, say, on the response y. Then the
following points are relevant:

- the value, standard error, and interpretation of Bj- depends on the other variables in
the model

- relatively mechanical methods of choosing which explanatory variables to use may

be helpful in preliminary exploration, especially if p is quite large, but are insecure
as a basis for final interpretation

- explanatory variables not of direct interest but known to have a substantial effect
should be included

@- it may be essential to recognize that several different models are potentially
equally effective

Applied Statistics | October 52022 14



Example SM Eg 8.29

« nuclear plant data Cox & Snell 1981

* library(SMPracticals); data(nuclear); View(nuclear); ?nuclear

Applied Statistics | October 52022 15



Table 8.13 Data on light
water reactors (LWR)
constructed in the USA
(Cox and Snell. 1981,

p. 81). The covariates are
date (date construction
permit issued), T1 (time
between application for
and issue of permit), T2
(time between issue of
operating license and
construction permit),
capacity (power plant
capacity in MWe), PR (=1
if LWR already present on
site), NE (=1 if constructed
in north-east region of
USA). CT (=1 if cooling
tower used), BW (=1 if
nuclear steam supply
system manufactured by
Babcock-Wilcox), N
(cumulative number of
power plants constructed
by each
architect-engineer), PT
(=1 if partial turnkey
plant).

8.7 - Model Building

cost date Ty Tz capacity PR NE CT BW N PT
I 460.05 6858 14 46 687 0 1 0 0 14 0
2 45299 6733 10 73 1065 0 0 1 0 10
3 44322 6733 10 85 1065 1 0 1 0 I 0
4 65232 68.00 11 67 1065 0 1 1 0 120
5 64223 6800 11 78 1065 1 1 1 0 12 0
6 34539 6792 13 5l 514 0 1 1 0 3 0
7 27237 68.17 12 50 822 0 0 0 0 5 0
8 31721 6842 14 59 457 0 0 0 0 10
9 45712 6842 15 55 822 1 0 0 0 5 0
10 690.19 6833 12 71 792 0 1 1 1 20
11 350.63 6858 12 64 560 0 0 0 0 3.0
1240259 6875 13 47 790 0 1 0 0 6 0
13 412,18 6842 15 62 530 0 0 1 0 20
14 49558 6892 17 32 1050 0 0 0 0 7 0
15 39436 6892 13 65 850 0 0 0 1 16 0
16 42332 6842 11 67 778 0 0 0 0 30
17 71227 6950 18 60 845 0 1 0 0 17 0
I8 289.66 6842 15 76 530 1 0 1 0 2.0
19 881.24 69.17 15 67 1090 0 0 0 0 I 0
20 49088 6892 16 59 1050 1 0 0 0 8 0
21 56779  68.75 11 70 913 0 0 1 1 15 0
22 66599 7092 22 57 828 1 1 0 0 20 0
23 62145 69.67 16 59 786 0 0 1 0 18 0
24 608.80 70.08 19 58 821 1 0 0 0 3 0
25 47364 7042 19 44 538 0 0 1 0 19 0
26 697.14 71.08 20 57 1130 0 0 1 0 21 0
27 20751 6725 13 63 745 0 0 0 0 8 1
28 28848  67.17 9 48 821 0 0 1 0 7 1
29 28488 67.83 12 63 886 0 0 0 1 1
30 28036 6783 12 71 886 1 0 0 1 D
31 21738 6725 13 72 745 1 0 0 0 8 1
32 27071 67.83 7 80 886 1 0 0 1 11

401



... EXample

SM Eg 8.29

/ sh_pw;sew
C I 7

Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t
Constant —14.24 (4.229) -3.37 —13.26 (3.140) —4.22 —7.627 (2.875) -2.66
—>date 0.209 (0.065) 3.21 0.212(0.043) 491 V' o0.136 (0.040) 3.38
~—%og(T1) 0.092 (0.244) 0.38 "/‘“—i
log(T2) 0.290 (0.273) 1.05
—>log(cap) 0.694 (0.136) 5.10 0.723(0.119)  6.09Vv 0.671 (0.141)  4.75
PR —0.092 (0.077) —1.20 —
NE 0.258 (0.077) 3.35 0.249 (0.074) 336 v
YCT 0.120 (0.066) 1.82 0.140 (0.060) 232
BW 0.033 (0.101) 0.33
og(N) —0.080 (0.046) —1.74 —0.08%(0.042) —-2.11¥
Yll’T —0.224(0.123) —1.83 —0.226(0.114) —1.99v  —-0.490(0.103) —4.77
Residual SE (df) 0.164 (21) 0.195 (28)

0.159 (25) k

Applied Statiitécs I
— Ccou

October 52022
also use stepAIC

Or leaps: :regsubsets

Table 8.14 Parameter
estimates and standard
errors for linear models
fitted to nuclear plants
data: forward and
backward indicate models
fitted by forward selection
and backward elimination.

17



... EXample Cox & Snell

« transformation of variables: cost, T1, T2, cap, cum.n all converted to log

- “partly to lead to unit-free parameters whose values can be interpreted in terms of
power-law relations between the original variables”

- “Costs are typically relative. Moreover large costs are likely to vary more than small
ones. For consistency we also take logs of the other quantitative covariates” SM
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... EXample Cox & Snell

transformation of variables: cost, T1, T2, cap, cum.n all converted to log

- “partly to lead to unit-free parameters whose values can be interpreted in terms of
power-law relations between the original variables”

- “Costs are typically relative. Moreover large costs are likely to vary more than small
ones. For consistency we also take logs of the other quantitative covariates” SM

« backward elimination leaves six variables with residual mean square
0.0253 = 0.1592%; none of the eliminatelvariables is significant if re-introduced”
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... EXample Cox & Snell

transformation of variables: cost, T1, T2, cap, cum.n all converted to log

- “partly to lead to unit-free parameters whose values can be interpreted in terms of
power-law relations between the original variables”

- “Costs are typically relative. Moreover large costs are likely to vary more than small
ones. For consistency we also take logs of the other quantitative covariates” SM

« backward elimination leaves six variables with residual mean square
0.0253 = 0.159%; none of the eliminate variables is significant if re-introduced”

« variable PT is unbalanced

« check on the model includes interaction with PT one variable at a time

<

Applied Statistics|  October 5 2022 ch ?T hat ,\,,L:’ G 4& 18




... EXample Cox & Snell

nuclear.1lm2 <- 1lm(log(cost) ~ date + log(cap) + ne + ct + log(cum.n) + pt,
== =

data = nuclear)

(Intercept) date log(cap) ne L»Jfkﬁhcﬁfbv\
-13.26031 0.21241 0.72341 0.24902
ct log(cum.n) pt -
0.14039 -0.08758 -0.22610 X’ J—m' w
—
>@ate(nuclear.lm, .7. + pt*log(cap))$coef P12 [?j (u*/) )
(Intercept) date log(cap) ne
-13.08645 0.21044 0.71761 0.24841
ct log(cum.n) pt log(cap):pt
0.13998 -0.08683 -2.18759 0.29159

Applied Statistics | October 52022 19



Lasso LM-2 11.4

« y = X8+ ¢, suppose p very large
« if p > nthen RSS = o0 with n explanatory variables

 no reduction in complexity; nothing learned about the relationship between y and X
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Lasso LM-2 11.4

y = X3 + ¢, suppose p very large

if p > n then RSS = o with n explanatory variables

no reduction in complexity; nothing learned about the relationship between y and X

Sv:)vu-—d.
« we expect few variables to be “active”, i.e. useful in explaining variation in y <n
+ how do we find them? penalized regression Mporie e ¢ egularized
LS.

£ won-2wo ﬁ(S

S<<w4f

Boswv
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Lasso LM-2 11.4

y = X3 + ¢, suppose p very large

if p > n then RSS = o with n explanatory variables

no reduction in complexity; nothing learned about the relationship between y and X

we expect few variables to be “active”, i.e. useful in explaining variationiny s<<n

how do we find them? penalized regression M regularized

Jury I

arg mind(y — XB)T(y — XB) + AH@HO}

—_———— ., =

[18oll = #4{j : B # o}

Applied Statistics | October 52022 20



... LASSO LM-2 11.4

arg min{(y — XB)T(y — XB) + Al|Blo}
|Bol| = #{J : B; # 0}

* non-convex optimization problem; computationally challenging
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... LASSO LM-2 11.4

arg min{(y — XB)T(y — XB) + Al|Blo}
|Bol| = #{J : B; # 0}

* non-convex optimization problem; computationally challenging
« convex relaxation of this is

2 i (7 = XB)'(y — XB) + X514}
p O\

1311 = > 19
j=1 ‘/_ﬁéfﬂ

A, »ZE
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... LASSO LM-2 11.4

arg min{(y — XB)'(y — XB) + |80}
18ol] = #{j : B; # o}

non-convex optimization problem; computationally challenging
convex relaxation of this is

argmin{(y — X8)'(y — X5) @wm}

p
B8l =D 15| <¢—

j=1

resulting estimaalled the Lasso estimate
has the property that many BA,,- are O
« another route to variable selection

< ]
Applied Statistics | October 52022 21




... LASSO LM-2 11.4

> require(glmnet)
> x <- model.matrix(nuclear.lm)
> y <- log(nuclear$cost) o
> nuclear- <7 glmnet (x,y) ;_
> nuclear—lass \ 5 o
cv.glmnet (x,y)" B2 -A%P § :_
- Index Measure SE Nonzero ;_
min 0.0295 \ 24 0.0427 0.0105 (s ) L
se 0.0621 J 16 0.0530 0.0142 ), 00 05 1o 15 20
> coe clear.lasso, s = 0.05) oy bxt ivom &> 1§51/

MLJM'(
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Randomized blinded clinical trial testing EchoNet

Al Initial Assessment
10 Blinded

‘ Cardiologist
Report
Randomize I:1 “ ‘ -

Prlmary Outcome
25 Sonogra; hers Initial Assessment

Sonographer
Scan

r i udies changed
more than 5% LVEF
/\

EVE
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Retrospective evaluatioyéhieves expert performance

AL) C Predicting \h;aZfailure Examples
(,Ot 100! - | ' |

0.25 0.50 0.75
l('-Specn’ city for Cardiomyopathy
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Design of Studies

Applied Statistics | October 52022 27



Design of Studies

- common objectives

- to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

Applied Statistics | October 52022 27



Design of Studies

« common objectives

- to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

- to reduce the non-systematic (random) error to a reasonable level by replication
and other techniques
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Design of Studies

common objectives

to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

to reduce the non-systematic (random) error to a reasonable level by replication
and other techniques

to estimate realistically the likely uncertainty in the final conclusions
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Design of Studies

common objectives

to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

to reduce the non-systematic (random) error to a reasonable level by replication
and other techniques

to estimate realistically the likely uncertainty in the final conclusions
to ensure that the scale of effort is appropriate

Applied Statistics|  October 52022

27



... design of studies

- we concentrate largely on the careful analysis of individual studies
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... design of studies

« we concentrate largely on the careful analysis of individual studies

* in most situations synthesis of information from different investigations is needed
« but even there the quality of individual studies remains important

- examples include overviews (such as the Cochrane reviews)

* in some areas new investigations can be set up and completed relatively quickly;
design of individual studies may then be less important
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... design of studies

 formulation of a plan of analysis

- establish and document that proposed data are capable of addressing the research
questions of concern

- main configurations of answers likely to be obtained should be set out

- level of detail depends on the context

- even if pre-specified methods must be used, it is crucial not to limit analysis
 planned analysis may be technically inappropriate

- more controversially, data may suggest new research questions or replacement of
objectives

- latter will require confirmatory studies
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Unit of study and analysis
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context: Expt
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Unit of study and analysis

« smallest subdivision of experimental material that may be assigned to a treatment

context: Expt
- Example: RCT - unit may be a patient, or a patient-month (in crossover trial)
- Example: public health intervention - unit is often a community/school/...
- split plot experiments have two classes of units of study and analysis

* in investigations that are not randomized, it may be helpful to consider what the
primary unit of analysis would have been, had a randomized experiment been
feasible

« the unit of analysis may not be the unit of interpretation — ecological bias
systematic difference between impact of x at different levels of aggregation

- on the whole, limited detail is needed in examining the variation within the unit of
study
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Types of observational studies

secondary analysis of data collected for another purpose

estimation of a some feature of a defined population (could in principle be found
exactly)

tracking across time of such features

study of a relationship between features, where individuals may be examined
- at a single time point
- at several time points for different individuals
- at different time points for the same individual

experiment: investigator has complete control over treatment assignment
census
meta-analysis: statistical assessment of a collection of studies on the same topic
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Avoidance of systematic error

- “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

Applied Statistics | October 52022 32



Avoidance of systematic error

- “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

- can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

Applied Statistics|  October 52022

32



Avoidance of systematic error

- “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

- can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

- this can often be avoided by design, or adjustment in analysis

Applied Statistics|  October 52022

32



Avoidance of systematic error

- “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

- can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

- this can often be avoided by design, or adjustment in analysis

- can arise by the entry of personal judgement into some aspect of the data
collection process

Applied Statistics | October 52022 32



Avoidance of systematic error

- “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

- can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

- this can often be avoided by design, or adjustment in analysis

- can arise by the entry of personal judgement into some aspect of the data
collection process

« this can often be avoided by randomization and blinding
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