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Today Start Recording

1. Upcoming events

Recap

Likelihood theory and logistic regresson
Observational studies and causality

CUNEEE ORI

In the News

6. Hour 3: Comments on HW 1-6 estimates of effect size, missing data

7. Office Hour Wednesday October 26 4-5 pm on Zoom
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+ Monday October 24 3.30-4.30 : DoSS Seminar Room 9014 (Hydro Building)

- Data Science Seminar Series

« Daniel McDonald, U Chicago

+ Markov-Switching State Space Models for Uncovering Musical Interpretation

RESEARCH ARTICLE | POPULATION BIOLOGY | 3 fyine 2

Evaluation of individual and ensemble
probabilistic forecasts of COVID-19 mortality
in the United States

stee Y. Cramer @, Evan L Ray @, Velma K. Lopez @, ast, and Nicholas G, Reich @ & Authors Info & Affiations

Edited by Kenneth Wachter, University of Calfornia, Berkeley, CA; received July 24, 2021; accepted January 24, 2022

April8,2022 | 119(15)€2113561119 | hutps://doiorg/10.1073/pnas 2113561119
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https://www.pnas.org/doi/full/10.1073/pnas.2113561119
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+ October 27 3.30-4.30 Statistical Sciences Seminar; Room 9014, Hydro Building
and online
+ Mireille Schnitzer, U Montreal
“Outcome-Adaptive LASSO for Confounder Selection With Time-Varying Treatments”
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https://www.statistics.utoronto.ca/events/outcome-adaptive-lasso-confounder-selection-time-varying-treatments

« regression models for binomial and binary data
« examples: O-ring failure; heart disease; nodal involvment
- inference, residuals, diagnostics, analysis of deviance, nested models octi9.pdf: 20-24
- covariate classes; binary data
+ model selection with X
AIC = —2¢(B;y) +2p

BIC = 2¢(B; y) + log(n)p
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https://utstat.toronto.edu/reid/sta2101f/challenger.html
https://utstat.toronto.edu/reid/sta2101f/BinaryELM2.html

Likelihood theory

- model:y; ~ f(y;;0),i=1,....,n; 0O CRP independent
+ joint density: f(y;0) = [T, f(¥;:0)
+ likelihood function L(0;y) = f(y; 0)
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Likelihood theory

- model:y; ~ f(y;;0),i=1,....,n; 0O CRP independent

joint density: f(y; 0) = [T f(vi; 6)
+ likelihood function L(6;y) = f(y; 6)

+ log-likelihood function £(6;y) = log L(6;y) = > i, log f(Vi; 0)
- maximum likelihood estimate § = argsup £(6; ); @) =o
« Fisher information j(A) = —¢"(f)
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Likelihood theory

- model:y; ~ f(y;;0),i=1,....,n; 0O CRP independent

joint density: f(y; 0) = [T f(vi; 6)
+ likelihood function L(6;y) = f(y; 6)

+ log-likelihood function £(6;y) = log L(6;y) = > i, log f(Vi; 0)
- maximum likelihood estimate § = argsup £(6; ); @) =o
« Fisher information j(A) = —¢"(f)

* two theorems:
J72(8)(8 - 0) % Ny(o, 1)
asymptotically normal
« likelihood ratio statistic
w(60) = 2{¢(0) — ((0)} > X
p is dimension of 6

Applied Statistics| ~ October 26 2022 d . o 6
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Likelihood Inference

 two theorems:
0@ -0) % No.))
a

(0
w(6) = 2{¢(8) — £(6)} Xp
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Likelihood Inference

 two theorems:
0@ -0) % No.1)
a

(0
w(6) = 2{¢(8) — £(6)} Xp

+ two approximations

>

~ Ng{0,j7'(0)}
O~ N({Ok.j"(O)re}

w() ~ xp
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Likelihood Inference

 two theorems:

@)@ -0) % N,
a

(0
w(6) = 2{¢(8) — £(6)} Xp

+ two approximations

~

~ Ng{0,j7'(0)}
O~ N({Ok.j"(O)re}

w() ~ xp

+ compare two models using change in likelihood ratio statistic nested models
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... Likelihood Inference

log-likelihood function
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Cheatsheet

link

STA2101: Likelihood Cheatsheet

Y = Yi,...,Y, independently distributed with densities f(y; | #;;0),0 € © C
RP;y; € R. The observations are independent, but not identically distributed, due
to the dependence on the p x 1 vector x;. Independence is critical, but i.d. can
usually be handled, so the dependence on z; below is often suppressed.

Likelihood function is the joint probability of the observations, considered as a
function of the parameter

n
L(b;y) o< [[ flwi | 2:36)
i=1
Applied Statistics |~ October 26 2022 9
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https://utstat.toronto.edu/reid/sta2101f/likelihood-cheatsheet.pdf

« Comparing two models:
« likelihood ratio test
2{ta(Ba) — ¢s(S)}
compares the maximized log-likelihood function under model A and model B

« example
model A: logit(p;) = Bo + BiXaj + BoXais  Ba = (Bo, b1, B2)
model B: logit(p;) = Bo + BiX:i, Bs = (Bo, b1)

- when model B is nested in model A, LRT is approximately 2 distributed under model B
« v=dim(A) — dim(B) theory of profile likelihood

Applied Statistics |~ October 26 2022 10



... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)
> summary (logitmodcorrect2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.520195  3.486784 0.723 0.4698
temperature -0.098297 0.044890 -2.190 0.0285 *
pressure 0.008484 0.007677 1.105 0.2691

Null deviance: 24.230 on 22 degrees of freedom
Residual deviance: 16.546 on 20 degrees of freedom
AIC: 36.106
Number of Fisher Scoring iterations: 5

Applied Statistics |~ October 26 2022 1



... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> anova(logitmodcorrect,logitmodcorrect2)
Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature

Model 2: cbind(r, m - r) ~ temperature + pressure
Resid. Df Resid. Dev Df Deviance

1 21 18.086

2 20 16.546 1 1.5407
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+ Model A: logit(p;) = o + Bitemp; + frpressure;

Model B: logit(p;) = Bo + SBitemp;
 nested: Model B is obtained by setting 5, = 0
« Under Model B, the change in deviance is (approximately) an observation from a x2

 Pr(x? > 1.5407) = 0.22; this is a p-value for testing Ho : 5, = 0

N

b
s.e.(52)

*s0is1— ] } =1—®(1.105) = 0.27

ELM-1 p.30
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Binomial likelihood

* model
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Binomial likelihood

* model

+ likelihood
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Binomial likelihood

* model
+ likelihood

« log-likelihood
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Binomial likelihood

* model
+ likelihood
« log-likelihood

« score function
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Binomial likelihood

+ model

+ likelihood

« log-likelihood
« score function

« maximum likelihood estimate
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Binomial likelihood

+ model

+ likelihood

« log-likelihood

« score function

« maximum likelihood estimate

 Fisher information
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... binomial likelihood

« modely; ~ Bin(n;,p;),i=1,...,m no regression
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... binomial likelihood

« modely; ~ Bin(n;,p;),i=1,...,m no regression

« likelihood
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... binomial likelihood

« modely; ~ Bin(n;,p;),i=1,...,m no regression
« likelihood

« log-likelihood
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... binomial likelihood

« modely; ~ Bin(n;,p;),i=1,...,m no regression
« likelihood
« log-likelihood

« score function
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... binomial likelihood

« modely; ~ Bin(n;,p;),i=1,...,m no regression
+ likelihood

« log-likelihood

« score function

« maximum likelihood estimate
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... binomial likelihood

« modely; ~ Bin(n;,p;),i=1,...,m no regression
+ likelihood

« log-likelihood

« score function

« maximum likelihood estimate

« maximized log-likelihood function
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Special to the Binomial and Poisson

« regression model is nested in saturated model

w = 2[6(p) — ¢{p(5)}] ~ Xin—p
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Pearson’s chi-square ELM-2 §3.3
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Special to the binomial and Poisson

+ logistic regression model p; = p;(8) = expit(x73), p;= pi(3)
is nested in the saturated model p; = y;/n;
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Special to the binomial and Poisson

+ logistic regression model p; = p;(8) = expit(x73), p;= pi(3)
is nested in the saturated model p; = y;/n;

« residual deviance compares fitted model to saturated model
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Special to the binomial and Poisson

+ logistic regression model p; = p;(8) = expit(x73), p;= pi(3)
is nested in the saturated model p; = y;/n;

« residual deviance compares fitted model to saturated model

+ under the fitted model, approximately distributed as x7_,
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Special to the binomial and Poisson

+ logistic regression model p; = p;(8) = expit(x73), p;= pi(3)
is nested in the saturated model p; = y;/n;

« residual deviance compares fitted model to saturated model

+ under the fitted model, approximately distributed as x7_,
if each n; “large” ELM-2 §3.2

> summary (Ex1018.glm)

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 40.710 on 22 degrees of freedom

Residual deviance: 18.069 on 17 degrees of freedom

AIC: 41.69
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Deviance and binary data ELM-2 §2.6

« if n; =1, then
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Deviance residuals glm.diag; library(SMPracticals)

> summary (Ex1018binom.glm)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351
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Deviance residuals glm.diag; library(SMPracticals)

> summary (Ex1018binom.glm)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351

Deviance: 2 37, [y; log{yi/nipi(B)} + (nj — ;) log{(n; — v;)/(n; — nipi(8))}]
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Deviance residuals glm.diag; library(SMPracticals)

> summary (Ex1018binom.glm)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351

Deviance: 2 31, [y; log{y;/nipi(B)} + (nj — yi) log{(n; — yi)/(nj — nipi(B3))}]
approximately x7_

roi = +/(2lyilog{yi/nipi} + (n; — i) log{(n; — y;)/(n; — nipi)}1)
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Overdispersion ELM §2.11, SM 10.6

* Yi ~ Bin(n;, p;) = E(Y;) = nip;, Var(Y;) = nip;(1 - p;)
- variance is determined by the mean
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Overdispersion ELM §2.11, SM 10.6

* Yi ~ Bin(n;, p;) = E(Y;) = nip;, Var(Y;) = nip;(1 - p;)
- variance is determined by the mean

* bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial,
data = troutegg)

summary (bmod)
Null deviance: 1021.469 on 19 degrees of freedom
## Residual deviance: 64.495 on 12 degrees of freedom

## AIC: 157.03
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Overdispersion ELM §2.11, SM 10.6

Yi ~ Bin(n;, p;) = E(Y;) = nip;, Var(Y;) = nip;(1 - p;)
variance is determined by the mean

* bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial,
data = troutegg)

summary (bmod)

Null deviance: 1021.469 on 19 degrees of freedom

## Residual deviance: 64.495 on 12 degrees of freedom
## AIC: 157.03

« quasi-binomial: E(Y;) = n;p;, Var(Y;) = ¢nipi(1 — p;)
estimate ¢? over-dispersion parameter
usually use X?/(n — p), where

Z (yl B nlpl
np;i(1— p;)
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overdisp.Rmd; overdisp.html
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Variable selection SM Ex1018

> step(EX1018binom.glm)

Coefficients:
(Intercept) stagel xrayl acid1
-3.05 1.65 1.91 1.64

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual
Null Deviance:""I 40.7

Residual Deviance: 19.6 ~“"IAIC: 39.3

- we can drop age and grade without affecting quality of the fit

- in other words the model can be simplified by setting two regression coefficients to zero

- several mistakes in text on pp. 491,2;

- deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version
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http://statwww.epfl.ch/davison/SM/

... variable selection SM Ex1018

 step implements stepwise regression
- evaluates each fit using AIC = —24(j3;y) + 2p
« penalizes models with larger number of parameters

 we can also compare fits by comparing deviances — binaryELM2.html
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... variable selection

SM Ex.10.18

step implements stepwise regression
evaluates each fit using AIC = —2/(5;y) + 2p
penalizes models with larger number of parameters

we can also compare fits by comparing deviances

> update(Ex1018binom.glm, .”. - aged - grade)

Call: glm(formula = cbind(rtot, total - rtot) ~ stage + xray + acid,
family = binomial, data = nodal2)

Coefficients:
(Intercept) stagel xrayl acidl
-3.05 1.65 1.91 1.64

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual
Null Deviance:~"I 40.7

Residual Deviance: 19.6 ~“IAIC: 39.3

> deviance(ex1018binom)

[1] 18.06869

> pchisq(19.6-18.07, df = 2, lower = F)

[1] 0.4653

Applied Statistics |~ October 26 2022
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« as terms are added to the model, deviance always decreases

+ because log-likelihood function always increases
- similar to residual sum of squares
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« as terms are added to the model, deviance always decreases

+ because log-likelihood function always increases
- similar to residual sum of squares

- Akaike Information Criterion penalizes models with more parameters

AIC = 2{—((B;y) + p}
SM (4.57)
- comparison of two model fits by difference in AIC
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Measures of risk

« see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

logit(pi) ~ fo + frZis [=1,...,n
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Measures of risk

« see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

logit(pi) ~ fo + frZis [=1,...,n

+ no difference between groups <= odds-ratio =1
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p1

« we might be interested in risk ratio — instead of odds ratio P:(1 = Po)
Po Po(1—p)

« also called relative risk
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https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1

... Measures of risk

« we might be interested in risk ratio Pt instead of odds ratio P:(1 = Po)
Po Po(1—p)

+ also called relative risk
- if p; and p, are both small, (y = 1 is rare), then

pP: . P1(1—po)

Po ~ Po(1— p1)

+ sometimes p,/po can be large but if p, and p, are both small the difference p, — po
might also be very small
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... Measures of risk

« we might be interested in risk ratio Pt instead of odds ratio P:(1 = Po)

Po Po(1— p1)
« also called relative risk

- if p; and p, are both small, (y = 1 is rare), then

pP: . P1(1—po)

Po ~ Po(1— p1)

+ sometimes p,/po can be large but if p, and p, are both small the difference p, — po
might also be very small

- in order to estimate the risk difference we need to know the baseline risk p,
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https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1

... Measures of risk

« we might be interested in risk ratio Pt instead of odds ratio P:(1 = Po)

Po Po(1— p1)
« also called relative risk

- if p; and p, are both small, (y = 1 is rare), then

pP: . P1(1—po)

Po ” Po(1— p1)

+ sometimes p,/po can be large but if p, and p, are both small the difference p, — po
might also be very small

- in order to estimate the risk difference we need to know the baseline risk p,

- bacon sandwiches www.youtube.com/watch?v=4szyEbU9s4ig

« risk calculator https://realrisk.wintoncentre.uk/p1
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https://realrisk.wintoncentre.uk/p1
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PAPER TITLE
Dexamethasone and 28 day mortaly for
ients on ventilati
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436

STUDY GROUP
UK patients receiving mechanical ventiation
for COVID-19

STUDY TYPE
experimental
RISK FACTOR

taking dexamethasone
ouTCOME

die after 28 days

MEASURE OF CHANGE

Relative risk 0.64 (0.51- 0.82)
BASELINE CONDITION

Usual care

EXPERIMENTAL CONDITION
Usual care plus dexamethasone
BASELINE RISK

21.4%
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{ 1/ 1000

i 3 /1000 (2 extra cases)
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0dds ratio 2.91; baseline risk 1/1000
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Biostats secret sauce ELM-2 §4.3; SM §10.4.2

Whether we sample prospectively or retrospectively, the odds ratio is the same

Lung cancer

1 o
cases controls
smoke =1 (yes) | 688 650
smoke = 0 (no) 21 59
709 709

(688/709)/(21/709) _ 688 x59 _ o
(650/709)/(59/709) ~ 650 x 21

retro: OR =

{688/(688 + 650)}/{650/(688 + 650)} 688 x 59

:OR = = =2.
prosp 21/(21+459)/{59/(21 4 59)} 650 x21
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Types of observational studies

« secondary analysis of data collected for another purpose

+ estimation of some feature of a defined population
could in principle be found exactly
- tracking across time of such features

- study of a relationship between features, where individuals may be examined
- at a single time point
- at several time points for different individuals
- at different time points for the same individual

* census

+ meta-analysis: statistical assessment of a collection of studies on the same topic
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E-commerce domain survival rates, by platform, 2019-2021
Percentage of domains that survive by number of days after sign-up

® Shopify @ Wix @ Squarespace ® WooCommerce © PrestaShop

100% Survival rate
after one year
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