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Today Start Recording

1. Upcoming events

Recap

Likelihood theory and logistic regresson
Observational studies and causality

ol e B e

In the News

6. Hour 3: Comments on HW 1-6 estimates of effect size, missing data

7. Office Hour Wednesday October 26 4-5 pm on Zoom
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Monday October 24 3.30-4.30 : DoSS Seminar Room 9014 (Hydro Building)
Data Science Seminar Series
Daniel McDonald, U Chicago

Markov-Switching State Space Models for Uncovering Musical Interpretation

RESEARCH ARTICLE | POPULATION BIOLOGY | & f¥Yin® :T

Evaluation of individual and ensemble
probabilistic forecasts of COVID-19 mortality
in the United States

Estee Y. Cramer ®, Evan L. Ray O, Velma K. Lopez @d Nicholas G. Reich @ & Authors Info & Affiliations
Edited by Kenneth Wachter, University of California, Berkeley, CA] ed July 24, 2021; accepted January 24, 2022

April 8,2022 119(15)e2113561119  https://doi.org/10.1073/pnas.2113561119

& 7366 99 2 ‘ a »

link
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https://www.pnas.org/doi/full/10.1073/pnas.2113561119
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 October 27 3.30-4.30 Statistical Sciences Seminar; Room 9014, Hydro Building
and online

« Mireille Schnitzer, U Mon
“Outcome-AdaptiveLASSO for Confounder S@Vith Time-Varying Treatments”
T S
—
Cy-3) [3-x@)« A Z| 8]
47"

1
- ‘AJ’.: -
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https://www.statistics.utoronto.ca/events/outcome-adaptive-lasso-confounder-selection-time-varying-treatments

- regression models for binomial and binary data

« examples: O-ring failure; heart disease; nodal involvment &—
—2> * inference, residuals, diagnostics, analysis of deviance, nested models /oct19.pdf: 20-24
—P + covariate classes; binary data
—& + model selection with )
AIC = —2/(B;y) +2p

BIC = 2/(B;y) + log(n)p
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https://utstat.toronto.edu/reid/sta2101f/challenger.html
https://utstat.toronto.edu/reid/sta2101f/BinaryELM2.html

Likelihod theory
, =l
. ’model:y,- ~fy;;0),1=1,..,4h, €O CRP
- joint density: f(y; 0) = [17_,f(vii0) S
- likelihood function L(0;y) = f(y;0) = 7]:('( Yo :)9)

T

independent
—ucpedent

wz:t
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Likelihod theory

« model: y; ~ f(y;;0),i=1,...,n; 6O CRP independent

joint density: £(y: 6) = [T, f(vi: 0)
likelihood function L(0;y) = f(y; 0)

- log-likelihood function £(6;y) = log L(6;y) = >/, log f(Vi; 6) A 1
» maximum likelihood estima@\: argsup £(6;y); /@) =0 0= [3]
« Fisher information j(f) = —6”(9)A

[ —_—
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Likelihod theory

« model: y; ~ f(y;;0),i=1,...,n; €O CRP independent
- joint density: f(y; 0) = [TiL, f(vi: 6) N Eg"—' N °6
- likelihood function L(0;y) = f(y; 0) as’zj var- (€ E % (9)
- log-likelihood function £(6;y) = log L(6;y) = Y[, log f (i; 6) A
- maximum likelihood estimate § = argsup /(05y7— () =0 o MLE
« Fisher information j(A) = —¢"(f) » oo

S,Lw_r: m“' V’“"/' s J(g) V“A
« two theorems: L

j'2(6)(0=0) % Np(o. 1)
asymptotically normal
- likelihood ratio statistic
d o

, o p is dimension of 6
Applied Statistics | October 26 2022 d . S 6
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Likelihood Inference

« two theorems:

Applied Statistics | October 26 2022 7



Likelihood Inference

« two theorems:

- two approximations /@Y J,r

5 ~ N({0,j (0
el st 2 wa Wﬁ gty /W
b s wa) < s

A
fi\’ >€p ol de~an-ce
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Likelihood Inference

« two theorems:

- two approximations

/W(@)’*JXE

L

nested models

e — e —

- compare two models using change in likelihood ratio statistic

Applied Statistics|  October 26 2022



... Likelihood Inference

log-likelihood function beR
o bty e

= L% ¢)
[ (g0 = -
2 - \('I‘ =2(.5
L ly- ) | ’*”
Lj o 10((7',9)
° ~(4-0)~ed"Y
Applied Statistics | October 26 2022 0 6 a 8



link

STA2101: Likelihood Cheatsheet

Y = Y,...,Y, independently distributed with densities f(y; | x;;6),0 € © C
R? y; € R. The observations are independent, but not identically distributed, due
to the dependence on the p x 1 vector x;. Independence is critical, but i.d. can
usually be handled, so the dependence on x; below is often suppressed.

Likelihood function is the joint probability of the observations, considered as a
function of the parameter

n
L(;y) oc [ [ £y | wi;0)
i=1
Applied Statistics | October 26 2022 9
Loo-likelihood function


https://utstat.toronto.edu/reid/sta2101f/likelihood-cheatsheet.pdf

Comparing two models:

likelihood ratio test

2{(a(Bn) — to(s)}

compares the maximized log-likelihood function under model A and model B

example

mOdel A: 10g1t( ) BQ == B1X1, + B2X2l7 BA — (607 617 52)
model B: logit(p;) = Bo + BiX4i, Bs = (Bo, £1)

when model B is nested in model A, LRT is approximately x2 distributed under model B

//
v =dim(A) — dim(B) theory of profile like@
e

Applied Statistics | October 26 2022 10




... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> summary (logitmodcorrect2)

T (e
Coefficients:

Estimate Std. Error z value Pr(>lzl|)
(Intercept) 2.520195 3.486784 0.723 0.4698
temperature -0.098297 0.044890 -2.190 0.0285 x*

4 . -~/ A
pressure 0.008484  0.007677 1.10@ . @ w,{(o (@)}
2 ) e

w\.

Null deviance: 24.230 on 22 degrees of freedom
Residual deviance: 16.546 on 20 degrees of freedom

A . 06 —A Q/ /\ é ((
< Number of Fisher Sc%ing iterations:ﬁ > C_//j - (goJ ') (S ;,) +

- 4¥”®§¥?ﬂ~t7
Ves. hev, ((8.040 o~ 2l ﬁ“ﬁ
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... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> anova(logitmodcorré:;?)ogitmodcorrect2)
Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature
Model 2: cbind(r, m - r) ~ temperature + pressure
Resid. Df Resid. Dev Df Deviance

1 21 18.086
2 20 16.546 1

Applied Statistics | October 26 2022 12



Model A: logit(p;) = Bo + [1temp; + [rpressure;

Model B: logit(p;) = Bo + P1temp;

nested: Model B is obtained by setting 5, = 0

Under Model B, the change in deviance is (approximately) an observation from a 2

Pr(x3 > 1.5407) = 0.22; this is a p-value for teSting Ho : 3, =0

N

SO is1— q>{§;(23 )} =1-— ¢(1.105)@

Applied Statistics | October 26 2022 13
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Binomial likelihood
- : TF ( )

- model 95 "/%”"‘(“‘u ?v) c=l, m %c.;wé‘é
by By = 6 e
ik f gy = T () #lp) fepws™?
by Db = 3 [y g 1) <o)l ne (0 )
Q/(lé/(1> | o
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Binomial likelihood

« model

* likelihood

Applied Statistics | October 26 2022 14



Binomial likelihood

« model
* likelihood

* log-likelihood

I-r'
Applied Statistics | October 26 2022 T ‘ _ N ﬁ 14



Binomial likelihood

« model P (;g) - e
= Z’Q"”f(?(@) ) P‘(ﬁ)g

- likelihood

. log-likelihood £ ( p) ?;‘ l»fp (@) « (4 'H«)lrfct( P (RIS

. scc;ifunction — vﬁgifﬁ E—’n; Lﬁd + e%?@}j

¢ (p)=o L' (p) :(%917‘

Applied Statistics | October 26 2022 l g.g- J ' 14
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Binomial likelihood

« model

* likelihood

* log-likelihood

« score function

« maximum likelihood estimate
v
<24
—-_—

9@596w
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Binomial likelihood

« model

LY(8)

* likelihood

- log-likelihood ; ( Z

« score function

- maximum likelihood estimate ﬂ((@g@,‘»\ Lg L .20
O 0> [ r[‘(); f @o)‘f@’ﬁo)au(ﬁ)

Applied Statistics|  October 26 2022 C’I/ (gP,\ % 1
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... binomial likelihood

- model y; ~ Bin(n;,p;),1 =1, ..., m ,ﬁ, = (.P, ‘"'/F"“) !10 regression
M w
) = TG rd (-p)™ 2

L, 4) = Z?g;l»(’?;ar(v'f’jl)le(’(“]*) (%)

Vvﬁp_ Q({(i -/\1);0 -a/[ _ _‘3_5_,_ n- _jd. J\:

B0 P, = 9
9 R TS T
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... binomial likelihood

« modely; ~ Bin(n;,p;),i =1,...,m no regression

* likelihood

Applied Statistics | October 26 2022 15



... binomial likelihood

« modely; ~ Bin(n;,p;),i =1,...,m no regression
- likelihood

* log-likelihood
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.. binomial likelihood

model y; ~ Bin(n;,p;),i =1,...,m no regression

likelihood

log-likelihood

score function

Applied Statistics | October 26 2022 15



... binomial likelihood

), i=1,....,m 7; NN{/A:/O‘?)noregression
A‘ L L ) ‘
likelihood ot iy )

log-likelihood

score function

maximum likelihood estimate

Applied Statistics | October 26 2022 15



... binomial likelihood

- model y; ~ Bin(n;,p;), I =1,...,m no regression
- likelihood

* log-likelihood
%p’w a&d\r&

« score function

- maximum likelihood estimate ~]’ 2,"

« maximized log-likelihood fu'|\1ct|on Xg F o (m "21) (- p; )3 i .-;J
(=

L(s)
Applied Statistics |  October 26 2022 1. ( 2) Z );4”7?5 \é) 1’-[“{ ‘3)\05 ((_, ?C (g))a (‘jya



Special to the Binomial and Poisson

- regression model is nested in saturated model

w = 2[¢(p) — (D)} ~ xtn—p

‘{'6':/( ﬁc‘u{? A”Eg{? ff /uj/u(f/:’\ /) (ﬂap(af @)
tn 595[907@/(« A ((70—,&(/4)

[0 Z -M\/S ie /U-SfOL\,@I a(ywwwtc_

Applied Statistics | October 26 2022 16




Pearson'’s chi-square ELM-2 §3.3

lo. dos. = 21@1(’10 lP(A) - }Lfv»u—\%\e))g

bt uw% L’(g\ + \2)’1){ e (142).

S |
T 1 9

—|oC — JZ X - J”l t.
</ @)y
ii -np] g - ~FP) ]

= (fa a; (- p:(R))

| g— o q
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Special to the binomial and Poisson

(—

- logistic regression model p; = p;(3) = expit(x’'3), p;= pi(53) Hbgmgf‘,
is nested in the saturated model p; = y;/n;

Applied Statistics | October 26 2022 18



Special to the binomial and Poisson

- logistic regression model p; = p;(3) = expit(x’'3), p;= pi(53)
is nested in the saturated model p; = y;/n;

« residual deviance compares fitted model to saturated model

Applied Statistics | October 26 2022 18



Special to the binomial and Poisson

« logistic regression model p; = p; {(x"B)," pi= pi(53)
is nested in the saturated mgdel p; = y;/n; - . : ‘ —
Tobe(Ls)  bomg)lr(2)}

- residual deviance compares fitted model to saturated model

N —

- under the fitted model, approximately distributed as Xﬁf"

e
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Special to the binomial and Poisson

- logistic regression model p; = p;(3) = expit(x"3), p;= pi(53)
is nested in the saturated model p; = y;/n;

« residual deviance compares fitted model to saturated model

- under the fitted model, approximately distributed as x7_,
if each n; “large” ELM-2 §3.2

> summary (Ex1018.glm)

(Dispersion parameter for binomial family taken to be 1) | (-ff;é;ééf>)

3 ¢
Null deviance: 40.710 on 22 degrees of freedom
Residual deviance: 18.069 on 17 degrees of freedom 7
AIC: 41.69
(% (’XG > lg,Oc9>

Applied Statistics | October 26 2022 . 7
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Deviance and Dhinary date ELM! 21 £12.6

‘-, ,'2: o
« if n; = 1, then F(?;) = e Lt—{q) F+—=2 1 __—

ﬁ;f@)zw
o () = Z $hep e (glylep)
By <o
Up) = E’;‘Mofi Jrﬁ{“f‘ = o &

resol RE-CE) = ~L(R)
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Deviance residuals glm.diag; library(SMPracticals)

> summary (Ex1018binom.glm)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351
— S

Applied Statistics | October 26 2022 20



Deviance residuals glm.diag; library(SMPracticals)

> summary (Ex1018binom.glm)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351

Deviance: 2 3_ 1, [y; log{yi/nipi(B)} + (n; — yi) log{(n; — yi)/(ni — nipi(3))}]

Applied Statistics | October 26 2022 20



Deviance residuals glm.diag; library(SMPracticals)

2[2(5) - L(ﬁ)ﬁ

> summary(Ex1018binom.glm)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max Z O O
g o1
wlhs

-1.4989 -0.7726 -0.1265 0.7997 1.4351
(lZLs ido A )

Deviance: 32,21 [vi |°g{YI/niPi(§,)} + (nj — i) log{(ni = vi)/(ni = nipi(B)}] L 7Y

2
e
approximately X?,HP

roi = £+/(2[yilog{yi/nipi} + (n; — yi) log{(n; — y;)/(n; — nip;)}])
< (\/k(;c>‘ () wede neoded

Applied Statistics | October 26 2022 20




Overdispersion ELM §2.11, SM 10.6

* Yi ~ Bin(n;, pj) = E(Y;) = nip;, Var(Y;) = nip;(1 - pi)
- variance is determined by the mean

Applied Statistics | October 26 2022 21



Overdispersion ELM §2.11, SM 10.6

* Yi ~ Bin(n;, pj) = E(Y;) = nip;, Var(Y;) = nip;(1 - pi)
- variance is determined by the mean

* bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial,
data = troutegg)

summary (bmod)

Null deviance: 1021.469 on 19 degrees of freedom

## Residual deviance: 64.495 on 12 degrees of freedom
## AIC: 157.03

Applied Statistics | October 26 2022 21



Overdispersion ELM §2.11, SM 10.6

* Y; ~ Bin(n;,p;) = E(Y;) = njp;, Var(Y;) = nip;(1 — p;)
- variance is determined by the mean

* bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial,
data = troutegg)

summary (bmod)

Null deviance: 1021.469 on 19 degrees of freedom

## Residual deviance: 64.495 on 12 degrees of freedom
## AIC: 157.03

 quasi-binomial: E(Y;) = n;p;, Var(Y;) = ¢n;p;(1 — p;)
- estimate ¢? over-dispersion parameter
« usually use X?/(n — p), where

A.)2
x2 — N~ Wi—nibi)
2 np;i(1 — pj)

Applied Statistics | October 26 2022 21



overdisp.Rmd; overdisp.html
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Variable selection SM Ex10418

> step(EX1018binom.glm)

~(
. .
Coefficients: CW) = (X \,JX ) T,
(Intercept) stagel xrayl acidil o
-3.05 1.65 Lo el 1.64

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual
Null Deviance: ™=  40.7
Residual Deviance¢ 19.6]|*gAIC: 39.3

- we can drop age and grade without affecting quality of the fit
- in other words the model can be simplified by setting two regression coefficients to zero

- several mistakes in text on pp. 491,2;

- deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version

Applied Statistics | October 26 2022 23


http://statwww.epfl.ch/davison/SM/

... variable selection SM Ex10418

step implements stepwise regression
evaluates each fit using AIC = —2¢(3;y) + 2p
penalizes models with larger number of parameters

we can also compare fits by comparing deviances — binaryELM2.html

Applied Statistics | October 26 2022 24



... variable selection SM Ex10418

« step Implements stepwise regression
« evaluates each fit using AIC = —2/4(53;y) + 2p
- penalizes models with larger number of parameters

« we can also compare fits by comparing deviances — binaryELM2.html

> update (Ex1018binom.glm, .~. - aged - grade)

Call: glm(formula = cbind(rtot, total - rtot) ~ stage + xray + acid,

family = binomial, data = nodal2)

Coefficients:
(Intercept) stagel xrayl acidl
-3.05 1.65 1.91 1.64

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual
Null Deviance:""I 40.7

Residual Deviance: 19.6 ~“"IAIC: 39.3

> deviance(ex1018binom)

[1] 18.06869

> pchisq(19.6-18.07, df = 2, lower = F)

[1] 0.4653

Applied Statistics | October 26 2022 24



- as terms are added to the model, deviance always decreases
 because log-likelihood function always increases
« similar to residual sum of squares

0E) = 2 9«'47”?:(%\) - C"aﬂ‘)wi)
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as terms are added to the model, deviance always decreases

because log-likelihood function always increases
similar to residual sum of squares

Akaike Information Criterion penalizes models with more parameters

AIC = 2{—£(B;y) + p}

comparison of two model fits by difference in AIC

Applied Statistics|  October 26 2022
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Measures of risk

- see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

logit(p,-)wﬁo—i—ﬁ1z,-, i:17"'7n
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Measures of risk

- see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

logit(p,-)wﬁo—i—ﬁ1z,-, i:17"'7n

 no difference between groups <= odds-ratio = 1

Applied Statistics | October 26 2022 26



... Measures of risk
P+

- we might be interested in risk ratio — instead of odds ratio P+(1 = Po)
Po Po(1— p1)

« also called relative risk

Applied Statistics | October 26 2022 27


https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1

... Measures of risk

- we might be interested in risk ratio P1 instead of odds ratio P+(1 = Po)

Po Po(1— pn)

« also called relative risk

- if p; and po are both small, (y = 1 is rare), then

pr _ P1(1=po)
Po  Po(1— p)

- sometimes p,/po can be large but if p, and p, are both small the difference p, — po
might also be very small

Applied Statistics | October 26 2022 27


https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1

... Measures of risk

- we might be interested in risk ratio P1 instead of odds ratio P+(1 = Po)

Po Po(1— P1)

« also called relative risk

- if p; and po are both small, (y = 1 is rare), then

pr _ P1(1=po)
Po  Po(1— p)

- sometimes p,/po can be large but if p, and p, are both small the difference p, — po
might also be very small

« in order to estimate the risk difference we need to know the baseline risk po
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https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1

... Measures of risk

- we might be interested in risk ratio P1 instead of odds ratio P+(1 = Po)

Po Po(1— P1)

« also called relative risk

- if p; and po are both small, (y = 1 is rare), then

pr _ P1(1=po)
Po  Po(1— p)

- sometimes p,/po can be large but if p, and p, are both small the difference p, — po
might also be very small

« in order to estimate the risk difference we need to know the baseline risk po
- bacon sandwiches www.youtube.com/watch?v=4szyEbU94ig

risk calculator https://realrisk.wintoncentre.uk/p1
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https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1
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UNIVERSITY OF
CAMBRIDGE

Winton Centre for
Risk and Evidence Communication

Results

i Risk for Usual care

Out of 100 UK patients receiving mechanical ventilation for COVID-19, we would expect
around 41 to die after 28 days

Edit Text @)

Risk for Usual care plus dexamethasone

Out of 100 UK patients receiving mechanical ventilation for COVID-19, we would expect
around 26 to die after 28 days

Edit Text @)

Icon Array

Without
intervention 2 414%

With |
intervention L 26.5%
(21.1% - 33.9%)

0% 20% 40% 60% 80% 100%

2 0 O EE £

Odds ratio 0.64; baseline risk 41.4%
Applied Statistics|  October 26 2022

Results summary

PAPER TITLE
Dexamethasone and 28 day mortality for
COVID-19 patients on ventilation

DOl
https://www.nejm.org/doi/10.1056/NEJMoa2021
436

STUDY GROUP

UK patients receiving mechanical ventilation
for COVID-19

STUDY TYPE

experimental

RISK FACTOR

taking dexamethasone

OUTCOME

die after 28 days

MEASURE OF CHANGE

Relative risk 0.64 (0.51 - 0.82)

BASELINE CONDITION

Usual care

EXPERIMENTAL CONDITION

Usual care plus dexamethasone

BASELINE RISK
41.4%

28



[ UNIVERSITY OF
| make sense
CAMBRIDGE
° Rea I RIS of your stats Winton Gente for

Risk and Evidence Communication

Results Results summary
. i PAPER TITLE
' Risk for Usual c.are . X L Dexamethasone and 28 day mortality for
Out of 100 UK patients receiving mechanical ventilation for COVID-19, we would expect COVID-19 patients on ventilation
around 41 to die after 28 days o1
Edit Text o https://www.nejm.org/doi/10.1056/NEJMoa2021
436

Ri STUDY GROUP
k for Usual care plus dexamethasone UK patients receiving mechanical ventilation

Out of 100 UK patients receiving mechanical ventilation for COVID-19, we would expect for COVID-19
around 26 to die after 28 days

STUDY TYPE
Edit Text o experimental
RISK FACTOR
taking dexamethasone
die after 28 days
g 4rout of 100 without 226 (22 - 33) out of 100 MEASURE OF CHANGE
intervention with intervention Relative risk 0.64 (0.51 - 0.82)
2222 BASELINE CONDITION
ii;‘;\ Usual care
EXPERIMENTAL CONDITION
2000000008 ﬁiiiiii%i% Usual care plus dexamethasone
222222222028 222222202202 BASELINE RISK
2222222022028 222222202202 41.4%
222222222028 2222222022028
222222222028 2222222022028
2222222022028 2222202202202

I O ETE £

Odds ratio 0.64; baseline risk 41.4%
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Odds ratio 2.91; baseline risk 1/1000
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Biostats secret sauce ELM-2 §4.3; SM §10.4.2

Whether we sample prospectively or retrospectively, the odds ratio is the same

Lung cancer

1 o)
cases controls
smoke =1 (yes) | 688 650

smoke = 0 (no) 21 59
709 709
688 /70 21/70 688
retro;: OR = ( /709)/(21/709) — A39 = 2.97

(650/709)/(59/709) 650 x 21

{688/(688 + 650)}/{650/(688 + 650)} 688 x 59

rosp: OR = — — 2.
Prosp 21/(21+59)/{59/(21 +59)} 650 X 21 o7
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Types of observational studies

secondary analysis of data collected for another purpose

estimation of some feature of a defined population
could in principle be found exactly
tracking across time of such features

study of a relationship between features, where individuals may be examined
- at a single time point
- at several time points for different individuals

- at different time points for the same individual

census

meta-analysis: statistical assessment of a collection of studies on the same topic
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E-commerce domain survival rates, by platform, 2019-2021
Percentage of domains that survive by number of days after sign-up

® Shopify © Wix @ Squarespace ® WooCommerce  PrestaShop
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