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Today Start Recording

1. Upcoming events
2. Recap
3. Binary and binomial responses; logistic regresson ELM-2
4. In the News

5. More logistic regression 3rd hour

6. Sections for Project
• a description of the scienti&c problem of interest
• how (and why) the data being analyzed was collected
• preliminary description of the data (plots and tables)
• models and analysis
• summary for a statistician of the analysis and conclusions
• non-technical summary for a non-statistician of the analysis and conclusions
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Upcoming

• Monday October 24 3.30-4.30 : DoSS Seminar Room 9014 (Hydro Building)
• Data Science Seminar Series
• Daniel McDonald, U Chicago
• Markov-Switching State Space Models for Uncovering Musical Interpretation
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Recap

• Design of studies: systematic error (bias); random variation; scale of e)ort; plan of
analysis; pre-speci*ed methods and exploration

• unit of study; randomized controlled trials; ecological bias (unit of interpretation ∕=
unit of study)

• factor variables; analysis of covariance (= interaction between dummy variable and
continuous variable)

• observational studies; confounding; support for causality (“Bradford-Hill criteria”)
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... Recap: randomized experiments LM-2 5.3, LM-1 3.6

• unit of analysis – “smallest subdivision of the experimental material such that two
distinct units might be randomized to di)erent treatments”

• example: patient in a clinical trial
• example: plot of land in an agricultural trial
• example: units of material in a quality control trial

• advantages of randomization?
• balances other potential in'uences on responses
• avoidance of systematic error
• a systematic di(erence in response not due to treatment under study
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... Recap: randomized experiments LM-2 5.3, LM-1 3.6

• unit of analysis – “smallest subdivision of the experimental material such that two
distinct units might be randomized to di)erent treatments”

• example: patient in a clinical trial
• example: plot of land in an agricultural trial
• example: units of material in a quality control trial

• advantages of randomization?
• balances other potential in'uences on responses
• avoidance of systematic error
• a systematic di(erence in response not due to treatment under study

• randomization can make causal interpretation more plausible
permutation test LM-2 §5.3
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Binomial Data ELM-1, Ch. 2, ELM-2, Ch. 2-4, SM Ch.1, §4.4.5
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Challenger Shuttle Disaster Jan 28 1986

video
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https://www.youtube.com/watch?v=j4JOjcDFtBE


... Binomial Data ELM-1, Ch. 2, ELM-2, Ch. 2-4, SM Ch.1, §4.4.5
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Link

Dalal et al (1989) Journal of the American Statistical Association

http://amstat.tandfonline.com/doi/pdf/10.1080/01621459.1989.10478858
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Modelling numbers/proportions of events

• yi ∼ Bin(6,pi), i = 1, . . . , 23
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• yi ∼ Bin(6,pi), i = 1, . . . , 23

• in general: ni trials, yi successes, probability of success pi
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Modelling numbers/proportions of events

• yi ∼ Bin(6,pi), i = 1, . . . , 23

• in general: ni trials, yi successes, probability of success pi

• for regression: associated covariate vector xi, e.g. temperature
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Modelling numbers/proportions of events

• yi ∼ Bin(6,pi), i = 1, . . . , 23

• in general: ni trials, yi successes, probability of success pi

• for regression: associated covariate vector xi, e.g. temperature

• SM uses mi and ri instead of ni and yi
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Modelling numbers/proportions of events

• yi ∼ Bin(6,pi), i = 1, . . . , 23

• in general: ni trials, yi successes, probability of success pi

• for regression: associated covariate vector xi, e.g. temperature

• SM uses mi and ri instead of ni and yi

• each yi could in principle be the sum of ni independent Bernoulli trials

• each of the ni trials having the same probability pi
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Modelling numbers/proportions of events

• yi ∼ Bin(6,pi), i = 1, . . . , 23

• in general: ni trials, yi successes, probability of success pi

• for regression: associated covariate vector xi, e.g. temperature

• SM uses mi and ri instead of ni and yi

• each yi could in principle be the sum of ni independent Bernoulli trials

• each of the ni trials having the same probability pi

• with the same covariate vector xi ELM ‘covariate classes’
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Challenger data: Faraway

> library(faraway); data(orings)

> logitmod <- glm(cbind(damage,6-damage) ~ temp, family = binomial, data = orings)

> summary(logitmod)

Call:

glm(formula = cbind(damage, 6 - damage) ~ temp, family = binomial,

data = orings)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.66299 3.29626 3.538 0.000403 ***

temp -0.21623 0.05318 -4.066 4.78e-05 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 38.898 on 22 degrees of freedom

Residual deviance: 16.912 on 21 degrees of freedom
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Challenger data: Davison

> library(SMPracticals) # this is for datasets in

#Statistical Models by Davison

> data(shuttle) # same example, different name

> shuttle2 <- data.frame(as.matrix(shuttle)) # this is a kludge to avoid

#an error with head(shuttle)

> head(shuttle2)

m r temperature pressure

1 6 0 66 50

2 6 1 70 50

3 6 0 69 50

4 6 0 68 50

5 6 0 67 50

6 6 0 72 50

> par(mfrow=c(2,2)) # puts 4 plots on a page

> with(orings,plot(temp,damage,main="Faraway",xlim=c(31,80)))

> with(shuttle,plot(temperature,r,main="Davison",xlim=c(31,80),

+ ylim=c(0,5)))
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Challenger data &ts
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Regression modelling with binomial

• model:
yi ∼ Bin(ni,pi)

ni = 6, i = 1, . . . , n
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Regression modelling with binomial

• model:
yi ∼ Bin(ni,pi)

ni = 6, i = 1, . . . , n

• regression: link the pi’s through xi
• for example,

pi =
exp(β0 + xi1β1 + · · ·+ xiqβq)

1+ exp(β0 + xi1β1 + · · ·+ xiqβq))
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Regression modelling with binomial

• model:
yi ∼ Bin(ni,pi)

ni = 6, i = 1, . . . , n

• regression: link the pi’s through xi
• for example,

pi =
exp(β0 + xi1β1 + · · ·+ xiqβq)

1+ exp(β0 + xi1β1 + · · ·+ xiqβq))

• more concisely
pi =

exp(xT

i β)

1+ exp(xT

i β)
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Regression modelling with binomial

• model:
yi ∼ Bin(ni,pi)

ni = 6, i = 1, . . . , n

• regression: link the pi’s through xi
• for example,

pi =
exp(β0 + xi1β1 + · · ·+ xiqβq)

1+ exp(β0 + xi1β1 + · · ·+ xiqβq))

• more concisely
pi =

exp(xT

i β)

1+ exp(xT

i β)

• xT

i = (1, xi1, . . . , xiq); β = (β0,β1, . . . ,βq)
T

all vectors are column vectors
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... regression modelling with binomial

• Probability of event:
pi =

exp(xT

i β)

1+ exp(xT

i β)
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... regression modelling with binomial

• Probability of event:
pi =

exp(xT

i β)

1+ exp(xT

i β)

• Linear on the logit scale:
log

pi
1− pi

= xT

i β
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... regression modelling with binomial

• Probability of event:
pi =

exp(xT

i β)

1+ exp(xT

i β)

• Linear on the logit scale:
log

pi
1− pi

= xT

i β

• linear predictor:
xT

i β = ηi
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... regression modelling with binomial

• Probability of event:
pi =

exp(xT

i β)

1+ exp(xT

i β)

• Linear on the logit scale:
log

pi
1− pi

= xT

i β

• linear predictor:
xT

i β = ηi

• pi is always between 0 and 1
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... regression modelling with binomial

• Probability of event:
pi =

exp(xT

i β)

1+ exp(xT

i β)

• Linear on the logit scale:
log

pi
1− pi

= xT

i β

• linear predictor:
xT

i β = ηi

• pi is always between 0 and 1
• see ELM-1 §2.1 for a linear *t
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... regression modelling with binomial

• Probability of event:
pi =

exp(xT

i β)

1+ exp(xT

i β)

• Linear on the logit scale:
log

pi
1− pi

= xT

i β

• linear predictor:
xT

i β = ηi

• pi is always between 0 and 1
• see ELM-1 §2.1 for a linear *t
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... regression modelling with binomial

> summary(logitmodcorrect)

Call:

glm(formula = cbind(r, m - r) ~ temperature, family = binomial, data = shuttle2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *
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... regression modelling with binomial

> summary(logitmodcorrect)

Call:

glm(formula = cbind(r, m - r) ~ temperature, family = binomial, data = shuttle2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

linear predictor:
logit(pi) = log(

pi
1− pi

) = β0 + β1tempi

pi =
exp{β0 + β1tempi}

1+ exp{β0 + β1tempi}
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Estimation

• ℓ(β; y) =
!n

i=1 [yi(β0 + β1xi)− ni log{1+ exp(β0 + β1xi)}]
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Estimation

• ℓ(β; y) =
!n

i=1 [yi(β0 + β1xi)− ni log{1+ exp(β0 + β1xi)}]

• maximum likelihood estimate β̂0, β̂1 ∂ℓ(β; y)/∂β = 0
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Estimation

• ℓ(β; y) =
!n

i=1 [yi(β0 + β1xi)− ni log{1+ exp(β0 + β1xi)}]

• maximum likelihood estimate β̂0, β̂1 ∂ℓ(β; y)/∂β = 0

•
β̂0 = 5.08498, β̂1 = −0.11560 j(β) ≡ − ∂2ℓ(β)

∂β∂βT
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Estimation

• ℓ(β; y) =
!n

i=1 [yi(β0 + β1xi)− ni log{1+ exp(β0 + β1xi)}]

• maximum likelihood estimate β̂0, β̂1 ∂ℓ(β; y)/∂β = 0

•
β̂0 = 5.08498, β̂1 = −0.11560 j(β) ≡ − ∂2ℓ(β)

∂β∂βT

• var(β̂) .
= j−1(β̂)
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Estimation

• ℓ(β; y) =
!n

i=1 [yi(β0 + β1xi)− ni log{1+ exp(β0 + β1xi)}]

• maximum likelihood estimate β̂0, β̂1 ∂ℓ(β; y)/∂β = 0

•
β̂0 = 5.08498, β̂1 = −0.11560 j(β) ≡ − ∂2ℓ(β)

∂β∂βT

• var(β̂) .
= j−1(β̂)

> vcov(logitmodcorrect)

(Intercept) temperature

(Intercept) 9.3175983 -0.142564339

temperature -0.1425643 0.002211221
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Interpretation of estimated coe'cients

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

“a unit increase in temperature is associated with an increase in log-odds of O-ring
damage of −0.116”

“an increase in the odds of exp(−0.116) = 0.89” so actually a decrease

“ an increase in the probability of ?? depends on the baseline probability
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Predicted probabilities ELM-2 Fig 2.5
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Nested models

• Comparing two models:
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• likelihood ratio test

2{ℓA(β̂A)− ℓB(β̂B)}
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Nested models

• Comparing two models:
• likelihood ratio test

2{ℓA(β̂A)− ℓB(β̂B)}

compares the maximized log-likelihood function under model A and model B
• example
model A: logit(pi) = β0 + β1x1i + β2x2i, βA = (β0,β1,β2)

model B: logit(pi) = β0 + β1x1i, βB = (β0,β1)
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model B
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Nested models

• Comparing two models:
• likelihood ratio test

2{ℓA(β̂A)− ℓB(β̂B)}

compares the maximized log-likelihood function under model A and model B
• example
model A: logit(pi) = β0 + β1x1i + β2x2i, βA = (β0,β1,β2)

model B: logit(pi) = β0 + β1x1i, βB = (β0,β1)

• when model B is nested in model A, LRT is approximately χ2ν distributed, under
model B

• ν = dim(A)− dim(B)
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... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> summary(logitmodcorrect2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.520195 3.486784 0.723 0.4698

temperature -0.098297 0.044890 -2.190 0.0285 *

pressure 0.008484 0.007677 1.105 0.2691

---

Null deviance: 24.230 on 22 degrees of freedom

Residual deviance: 16.546 on 20 degrees of freedom

AIC: 36.106

Number of Fisher Scoring iterations: 5
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... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> anova(logitmodcorrect,logitmodcorrect2)

Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature

Model 2: cbind(r, m - r) ~ temperature + pressure

Resid. Df Resid. Dev Df Deviance

1 21 18.086

2 20 16.546 1 1.5407
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei
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• Under Model B, the change in deviance is (approximately) an observation from a χ21
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• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0

• Under Model B, the change in deviance is (approximately) an observation from a χ21

• Pr(χ21 ≥ 1.5407) = 0.22; this is a p-value for testing H0 : β2 = 0
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0

• Under Model B, the change in deviance is (approximately) an observation from a χ21

• Pr(χ21 ≥ 1.5407) = 0.22; this is a p-value for testing H0 : β2 = 0

• so is 1− Φ{ β̂2
"s.e.(β̂2)

} = 1− Φ(1.105) = 0.27

ELM-1 p.30
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Inference

• con*dence intervals for β1
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Inference

• con*dence intervals for β1

• based on normal approximation: β̂1 ±"s.e.(β̂1) ∗ 1.96
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Inference

• con*dence intervals for β1

• based on normal approximation: β̂1 ±"s.e.(β̂1) ∗ 1.96
• (-0.208, -0.023)
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Inference

• con*dence intervals for β1

• based on normal approximation: β̂1 ±"s.e.(β̂1) ∗ 1.96
• (-0.208, -0.023)

• based on pro*le log-likelihood ℓp(β1), details to follow
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Inference

• con*dence intervals for β1

• based on normal approximation: β̂1 ±"s.e.(β̂1) ∗ 1.96
• (-0.208, -0.023)

• based on pro*le log-likelihood ℓp(β1), details to follow

• confint(logitmodcorrect):

( -0.2122262, -0.0244701 )

ELM-1 p. 31
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Binary data ELM-2, Ch.2

• each response is yi = 0, 1 instead of 0, 1, . . . ,mi

• explanatory variables xTi as usual
• same model

pr(yi = 1 | xi) = pi(β) =
exp(xTi β)

1+ exp(xTi β)
• example wcgs data, ELM-2, Ch.2

• example nodal data in SMPracticals, SM Example 10.18

−→ BinaryELM2.Rmd
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Binary data ELM-2 Ch.2

> data(wcgs, package="faraway")

> head(wcgs); help(wcgs) #latter not shown

age height weight sdp dbp chol behave cigs

2001 49 73 150 110 76 225 A2 25

2002 42 70 160 154 84 177 A2 20

2003 42 69 160 110 78 181 B3 0

2004 41 68 152 124 78 132 B4 20

2005 59 70 150 144 86 255 B3 20

2006 44 72 204 150 90 182 B4 0

dibep chd typechd timechd arcus

2001 B no none 1664 absent

2002 B no none 3071 present

2003 A no none 3071 absent

2004 A no none 3064 absent

2005 A yes infdeath 1885 present

2006 A no none 3102 absent
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... Binary responses

• where’s the epsilon?
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... Binary responses

• where’s the epsilon? There isn’t one
• what’s the model? It has two parts
• Regression.

E(yi) = pi =
exp(xT

i β)

1+ exp(xT

i β)

• Probability distribution.
yi ∼ Bernoulli(pi)
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... Binary responses

• where’s the epsilon? There isn’t one
• what’s the model? It has two parts
• Regression.

E(yi) = pi =
exp(xT

i β)

1+ exp(xT

i β)

• Probability distribution.
yi ∼ Bernoulli(pi)

• What are these parts in linear regression?
• Regression

E(yi) = µi = xT

i β

• Probability distribution
yi ∼ Normal(µi,σ2)
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
• pi = function(xT

i β)

• di)erent observations with the same pi are called covariate classes
• Example 10.18 in SM – Table 10.8 has 23 rows of binomials

sample sizes vary from 1 to 6
• data(nodal) in library(SMPracticals) has 53 rows of binary observations
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
• pi = function(xT

i β)

• di)erent observations with the same pi are called covariate classes
• Example 10.18 in SM – Table 10.8 has 23 rows of binomials

sample sizes vary from 1 to 6
• data(nodal) in library(SMPracticals) has 53 rows of binary observations
• R expects cbind(r, m-r) in glm with binomial data
• but if all observations are binary you can get away with r only
• see ?family (check Details)
• you can also specify proportions yi/ni, but then you need to use weights
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Binomial/Binary SM Example 10.18

Can we predict nodal
involvement from other
measurements?
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... Binomial/Binary SM Example 10.18

−→ BinaryELM2.Rmd
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Inference based on the likelihood function

• model: yi ∼ f (yi; θ), i = 1, . . . ,n independent
• joint density: f (y; θ) =

#n
i=1 f (yi; θ)

• likelihood function L(θ; y) = f (y; θ)
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Inference based on the likelihood function

• model: yi ∼ f (yi; θ), i = 1, . . . ,n independent
• joint density: f (y; θ) =

#n
i=1 f (yi; θ)

• likelihood function L(θ; y) = f (y; θ)

• log-likelihood function ℓ(θ; y) = log L(θ; y) =
!n

i=1 log f (yi; θ)
• maximum likelihood estimate θ̂ = arg sup ℓ(θ; y); ℓ′(θ̂) = 0
• Fisher information j(θ) = −ℓ′′(θ)
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Inference based on the likelihood function

• model: yi ∼ f (yi; θ), i = 1, . . . ,n independent
• joint density: f (y; θ) =

#n
i=1 f (yi; θ)

• likelihood function L(θ; y) = f (y; θ)

• log-likelihood function ℓ(θ; y) = log L(θ; y) =
!n

i=1 log f (yi; θ)
• maximum likelihood estimate θ̂ = arg sup ℓ(θ; y); ℓ′(θ̂) = 0
• Fisher information j(θ) = −ℓ′′(θ)

• two theorems:
(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

asymptotically normal
• likelihood ratio statistic

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

p is dimension of θ
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... Inference based on the likelihood function

• two theorems:

(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

• two approximations

θ̂k
.∼ N({θk, j−1(θ̂)kk}

w(θ) .∼ χ2p
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... Inference based on the likelihood function

• two theorems:

(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

• two approximations

θ̂k
.∼ N({θk, j−1(θ̂)kk}

w(θ) .∼ χ2p

• compare two models using change in likelihood ratio statistic nested models
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... Inference based on the likelihood function
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... inference based on the likelihood function

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

maximum likelihood estimate ∂ℓ(β; y)/∂β = 0

β̂0 = 5.08498, β̂1 = −0.11560 j(β) ≡ −
∂2ℓ(β)

∂β∂βT

var(β̂) .
= j−1(β̂)

> vcov(logitmodcorrect)

(Intercept) temperature

(Intercept) 9.3175983 -0.142564339

temperature -0.1425643 0.002211221
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Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni
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• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni

• residual deviance compares *tted model to saturated model

Applied Statistics I October 19 2022 36



Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni

• residual deviance compares *tted model to saturated model

• under the *tted model, approximately distributed as χ2n−q

Applied Statistics I October 19 2022 36



Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni

• residual deviance compares *tted model to saturated model

• under the *tted model, approximately distributed as χ2n−q
if each ni “large” ELM-1 p.29

> summary(Ex1018.glm)

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.710 on 22 degrees of freedom

Residual deviance: 18.069 on 17 degrees of freedom

AIC: 41.69
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... example 10.18 variable selection

> step(ex1018binom)

Coefficients:

(Intercept) stage xray acid

-3.052 1.645 1.912 1.638

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual

Null Deviance:^^I 40.71

Residual Deviance: 19.64 ^^IAIC: 39.26

– we can drop age and grade without a+ecting quality of the ,t

– in other words the model can be simpli,ed by setting two regression coe-cients to zero

– several mistakes in text on pp. 491,2;

– deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version
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... example 10.18: variable selection

• step implements stepwise regression
• evaluates each *t using AIC = −2ℓ(β̂; y) + 2p
• penalizes models with larger number of parameters

• we can also compare *ts by comparing deviances
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... example 10.18: variable selection

• step implements stepwise regression
• evaluates each *t using AIC = −2ℓ(β̂; y) + 2p
• penalizes models with larger number of parameters

• we can also compare *ts by comparing deviances• > update(ex1018binom, . ~ . - aged - stage)

Call: glm(formula = cbind(r, m - r) ~ grade + xray + acid, family = binomial,

data = nodal2)

Coefficients:

(Intercept) grade xray acid

-2.734 1.420 1.750 1.797

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual

Null Deviance: 40.71

Residual Deviance: 21.28 AIC: 40.9

> deviance(ex1018binom)

[1] 18.06869

> pchisq(21.28-18.07,df=2,lower=F)

[1] 0.2008896

Applied Statistics I October 19 2022 38



AIC

• as terms are added to the model, deviance always decreases
• because log-likelihood function always increases
• similar to residual sum of squares
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AIC

• as terms are added to the model, deviance always decreases
• because log-likelihood function always increases
• similar to residual sum of squares

• Akaike Information Criterion penalizes models with more parameters
•

AIC = 2{−ℓ(β̂; y) + p}

SM (4.57)

• comparison of two model *ts by di)erence in AIC
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Deviance residuals glm.diag; library(SMPracticals)

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351
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... example 10.18: residuals

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351
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Generalized linear models

glm has several options for family

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

inverse.gaussian(link = "1/mu^2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

Each of these is a member of the class of generalized linear models

Generalized: distribution of response is not assumed to be normal

Linear: some transformation of E(yi) is of the form xTi β link function
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