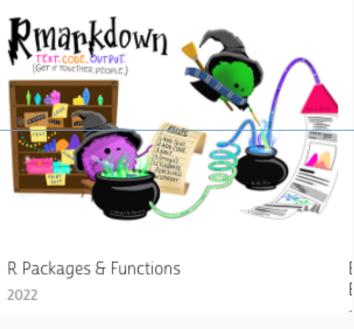
Methods of Applied Statistics I

STA2101H F LEC9101

Week 6

October 19 2022



Alison Horst Data Science Art

Today

- 1. Upcoming events
- 2. Recap
- 3. Binary and binomial responses; logistic regresson
- 4. In the News
- 5. More logistic regression 3rd hour
- 6. Sections for Project
 - a description of the scientific problem of interest
 - how (and why) the data being analyzed was collected
 - preliminary description of the data (plots and tables)
 - models and analysis
 - summary for a statistician of the analysis and conclusions
 - non-technical summary for a non-statistician of the analysis and conclusions

Upcoming

- Monday October 24 3.30-4.30 : DoSS Seminar Room 9014 (Hydro Building)
- Data Science Seminar Series
- Daniel McDonald, U Chicago
- Markov-Switching State Space Models for Uncovering Musical Interpretation

- Design of studies: systematic error (bias); random variation; scale of effort; plan of analysis; pre-specified methods and exploration
- unit of study; randomized controlled trials; ecological bias (unit of interpretation ≠ unit of study)
- factor variables; analysis of covariance (= interaction between dummy variable and continuous variable)
- observational studies; confounding; support for causality ("Bradford-Hill criteria")

- unit of analysis "smallest subdivision of the experimental material such that two distinct units might be randomized to different treatments"
 - example: patient in a clinical trial
 - example: plot of land in an agricultural trial
 - example: units of material in a quality control trial
- advantages of randomization?
 - balances other potential influences on responses
 - avoidance of systematic error
 - a systematic difference in response not due to treatment under study

- unit of analysis "smallest subdivision of the experimental material such that two distinct units might be randomized to different treatments"
 - example: patient in a clinical trial
 - example: plot of land in an agricultural trial
 - example: units of material in a quality control trial
- advantages of randomization?
 - balances other potential influences on responses
 - avoidance of systematic error
 - a systematic difference in response not due to treatment under study
- randomization can make causal interpretation more plausible

permutation test LM-2 §5.3

Binomial Data

ELM-1, Ch. 2, ELM-2, Ch. 2-4, SM Ch.1, §4.4.5

$1 \cdot Introduction$

Table 1.3 O-ring thermal distress data. r is the number of field-joint O-rings showing thermal distance out of 6 forms	Flight	Date	Number of O-rings with thermal distress, <i>r</i>	Temperature (°F) x_1	Pressure (psi) x ₂
distress out of 6, for a launch at the given	1	21/4/81	0	66	50
temperature (°F) and	2	12/11/81	1	70	50
pressure (pounds per	3	22/3/82	0	69	50
square inch) (Dalal et al., 1989).	5	11/11/82	0	68	50
1707).	6	4/4/83	0	67	50
	7	18/6/83	0	72	50
	8	30/8/83	0	73	100
	9	28/11/83	0	70	100
	41-B	3/2/84	1	57	200
	41-C	6/4/84	1	63	200
	41-D	30/8/84	1	70	200
	41-G	5/10/84	0	78	200
	51-A	8/11/84	0	67	200
	51-C	24/1/85	2	53	200
	51-D	12/4/85	0	67	200
	51-B	29/4/85	0	75	200
	51-G	17/6/85	0	70	200
	51-F	29/7/85	0	81	200
	51-I	27/8/85	0	76	200
	51-J	3/10/85	0	79	200
	61-A	30/10/85	2	75	200
Applied Statistics I October 19 20	61-B	26/11/86	0	76	200
Applied Statistics I October 1920	61-C	21/1/86	1	58	200

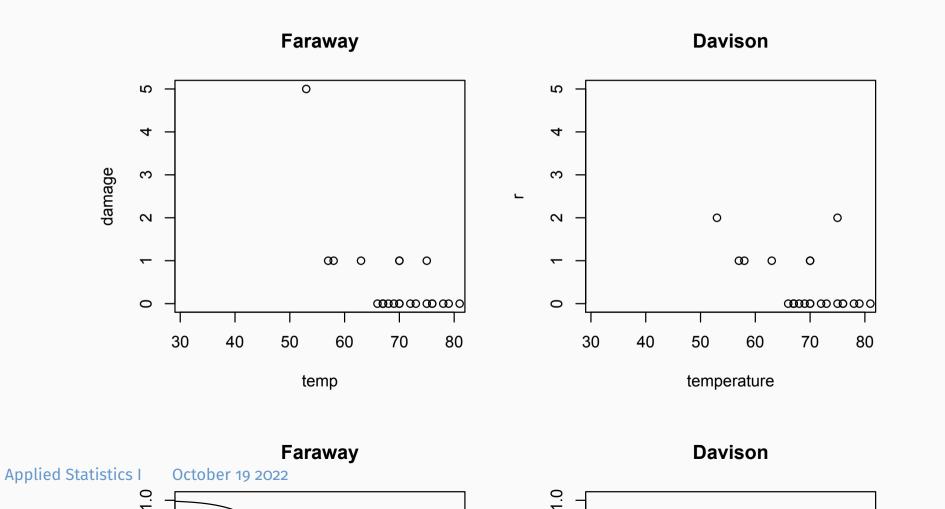
7

Challenger Shuttle Disaster Jan 28 1986

video

Applied Statistics I October 19 2022

Challenger Disaster Live on CNN



Flight	Date	Field				Nozzle			Leak-check pressure	
		Erosion	Blowby	Erosion or blowby	Erosion	Blowby	Erosion or blowby	Joint temperature	Field	Nozzle
1	4/12/81							66	50	50
2	11/12/81	1		1				70	50	50
2 3 5	3/22/82							69	50	50
5	11/11/82							68	50	50
6	4/04/83				2		2	67	50	50
7	6/18/83							72	50	50
8	8/30/83							73	100	50
9	11/28/83							70	100	100
41-B	2/03/84	1		1	1		1	57	200	100
41-C	4/06/84	1		1	1		1	63	200	100
41-D	8/30/84	1		1	1	1	1	70	200	100
41-G	10/05/84							78	200	100
51-A	11/08/84							67	200	100
51-C	1/24/85	2, 1*	2	2		2	2	53	200	100
51-D	4/12/85				2		2	67	200	200
51-B	4/29/85				2, 1*	1	2 2 2 2	75	200	100
51-G	6/17/85				2	2	2	70	200	200
51-F	7/29/85				1			81	200	200
51-i	8/27/85				1			76	200	200
51-J	10/03/85							79	200	200
61-A	10/30/85		2	2	1			75	200	200
61-B	11/26/85				2	1	2	76	200	200
61-C	1/12/86	1		1	1	1	2	58	200	200
61-1	1/28/86							31	200	200
	Total	7, 1*	4	9	17, 1*	8	17			

Table 1. O-Ring Thermal-Distress Data

*Secondary O-ring.

► Link

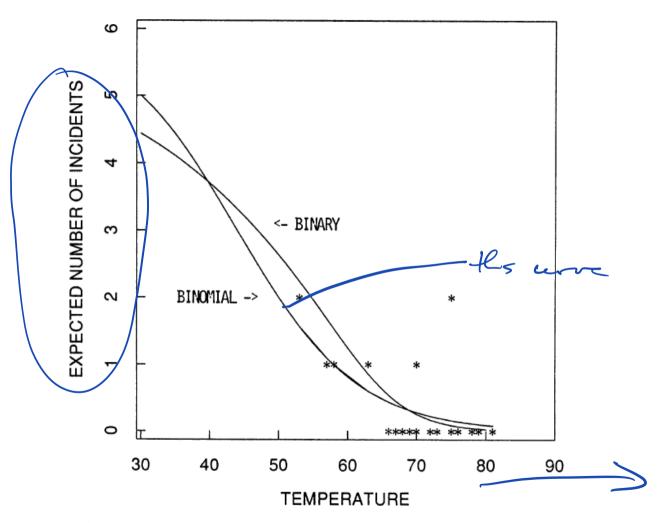


Figure 4. O-Ring Thermal-Distress Data: Field-Joint Primary O-Rings, Binomial-Logit Model, and Binary-Logit Model.

•
$$y_i \sim Bin(6, p_i), \quad i = 1, ..., 23$$

Applied Statistics I October 19 2022

•
$$y_i \sim Bin(6, p_i), \quad i = 1, ..., 23$$

l

• in general n_i trials, y_i successes, probability of success p_i

- $y_i \sim Bin(6, p_i), \quad i = 1, \ldots, 23$
- in general: *n_i* trials, *y_i* successes, probability of success *p_i*
- for regression: associated covariate vector *x_i*, e.g. temperature

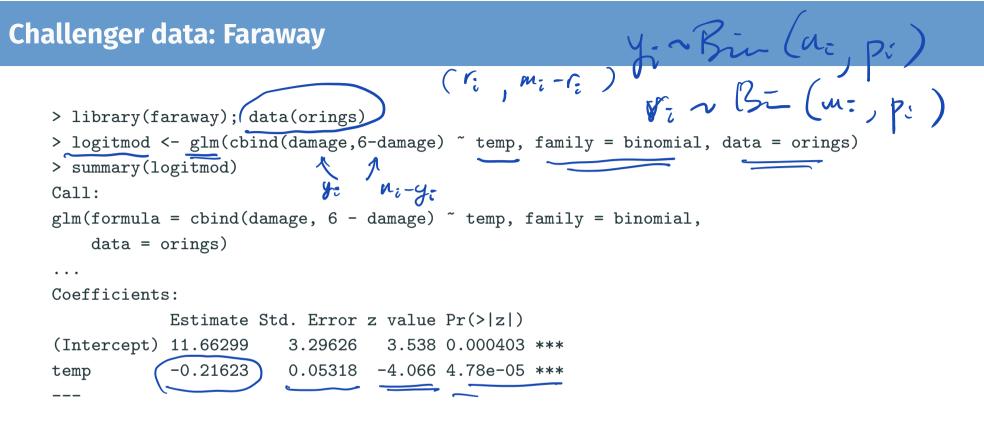
, pr.

- $y_i \sim Bin(6, p_i), \quad i = 1, ..., 23$
- in general: *n_i* trials, *y_i* successes, probability of success *p_i*
- for regression: associated covariate vector x_i , e.g. temperature
- SM uses m_i and r_i instead of n_i and y_i

- $y_i \sim Bin(6, p_i), \quad i = 1, ..., 23$
- in general: *n_i* trials, *y_i* successes, probability of success *p_i*
- for regression: associated covariate vector x_i, e.g. temperature
- SM uses m_i and r_i instead of n_i and y_i
- each y_i could in principle be the sum of n_i independent Bernoulli trials $\overrightarrow{v} P \xrightarrow{b} P_c$

- $y_i \sim Bin(6, p_i), \quad i = 1, ..., 23$
- in general: *n_i* trials, *y_i* successes, probability of success *p_i*
- for regression: associated covariate vector *x_i*, e.g. temperature
- SM uses m_i and r_i instead of n_i and y_i
- each y_i could in principle be the sum of n_i independent Bernoulli trials
- each of the n_i trials having the same probability p_i

- $y_i \sim Bin(6, p_i), \quad i = 1, ..., 23$
- in general: *n_i* trials, *y_i* successes, probability of success *p_i*
- for regression: associated covariate vector x_i, e.g. temperature
- SM uses m_i and r_i instead of n_i and y_i
- each y_i could in principle be the sum of n_i independent Bernoulli trials
- each of the n_i trials having the same probability p_i
- with the same covariate vector x_i



(Dispersion parameter for binomial family taken to be 1)

Null deviance: 38.898 on 22 degrees of freedom Residual deviance: 16.912 on 21 degrees of freedom

Challenger data: Davison

> library(SMPracticals) # this is for datasets in								
#Statistical Models by Davison								
<pre>> data(shuttle) # same example, different name</pre>								
> shuttle2 <- data.frame(as.matrix(shuttle)) # this is a kludge to avoid								
			#an error with head(shuttle)					
> he	ad(shuttle2	2)						
m	r temperatu	ire pressu	re					
1 6	0	66	50					
26	1	70	50					
36	0	69	50					
4 6	0	68	50					
56	0	67	50					
66	0	72	50					
> na	r(mfrow=c)		ts 4 plots on a page					

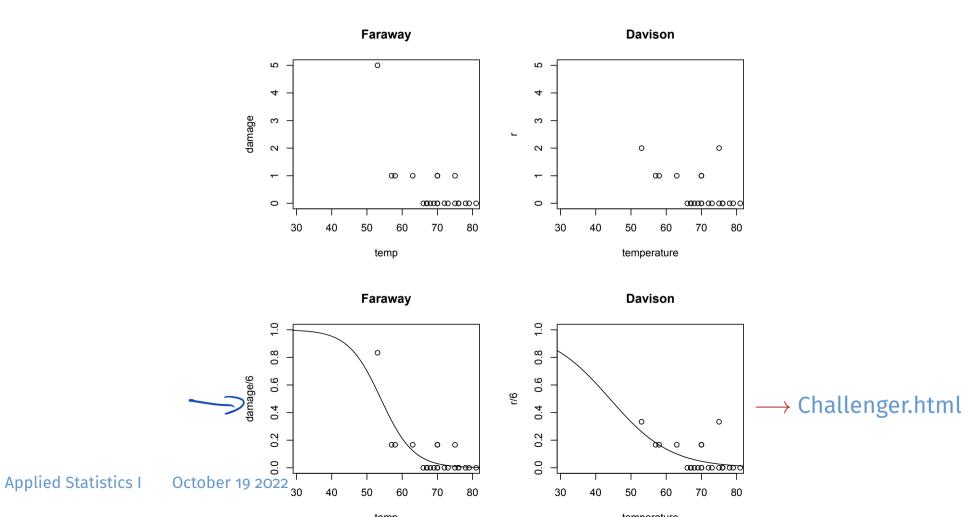
> par(mfrow=c(2,2)) # puts 4 plots on a page

> with(orings,plot(temp,damage,main="Faraway",xlim=c(31,80)))

```
> with(shuttle,plot(temperature,r,main="Davison",xlim=c(31,80),
```

+ ylim=c(0,5)))

Challenger data fits



20

• model:

 $y_i \sim Bin(n_i, p_i)$

 $n_i = 6, i = 1, \ldots, n$

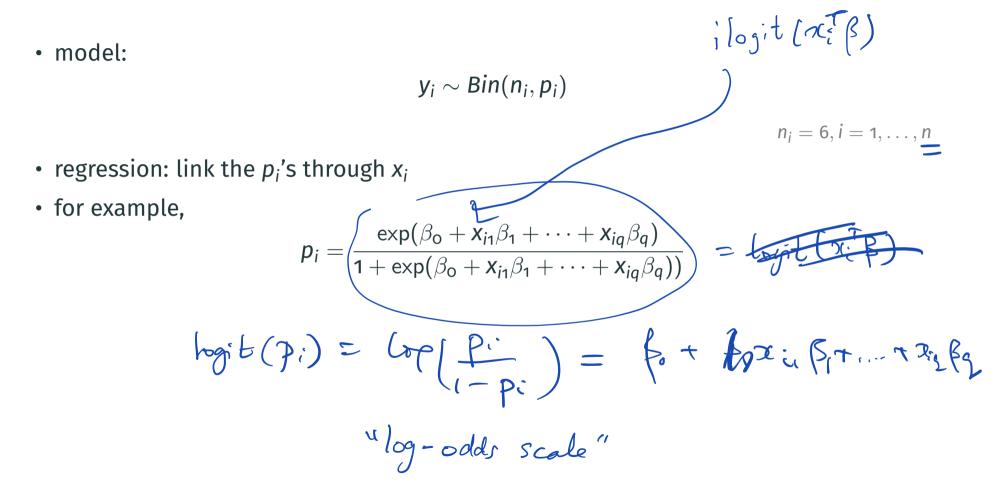
Applied Statistics I October 19 2022

• model:

 $y_i \sim Bin(n_i, p_i)$

 $n_i = 6, i = 1, \ldots, n$

• regression: link the p_i's through x_i



• model:

 $y_i \sim Bin(n_i, p_i)$

 $n_i = 6, i = 1, \ldots, n$

- regression: link the p_i 's through x_i
- for example,

$$p_i = \frac{\exp(\beta_0 + x_{i_1}\beta_1 + \dots + x_{i_q}\beta_q)}{1 + \exp(\beta_0 + x_{i_1}\beta_1 + \dots + x_{i_q}\beta_q))}$$

• more concisely

$$p_i = \frac{\exp(x_i^{\mathrm{T}}\beta)}{1 + \exp(x_i^{\mathrm{T}}\beta)}$$

• model:

 $y_i \sim Bin(n_i, p_i)$

 $n_i = 6, i = 1, \ldots, n$

- regression: link the p_i's through x_i
- for example,

$$p_i = \frac{\exp(\beta_0 + x_{i_1}\beta_1 + \dots + x_{i_q}\beta_q)}{1 + \exp(\beta_0 + x_{i_1}\beta_1 + \dots + x_{i_q}\beta_q))}$$

• more concisely

$$p_i = \frac{\exp(x_i^{\mathrm{T}}\beta)}{1 + \exp(x_i^{\mathrm{T}}\beta)}$$

•
$$X_i^{\mathrm{T}} = (1, X_{i1}, \dots, X_{iq}); \quad \beta = (\beta_0, \beta_1, \dots, \beta_q)^{\mathrm{T}}$$

all vectors are column vectors

Applied Statistics I October 19 2022

• Probability of event:

$$p_i = \frac{\exp(\mathbf{X}_i^{\mathrm{T}}\beta)}{1 + \exp(\mathbf{X}_i^{\mathrm{T}}\beta)}$$

• Probability of event:

$$\boldsymbol{\mathcal{D}}_i = \frac{\exp(\boldsymbol{X}_i^{\mathrm{T}}\boldsymbol{\beta})}{1 + \exp(\boldsymbol{X}_i^{\mathrm{T}}\boldsymbol{\beta})}$$

• Linear on the logit scale:

$$\log \frac{p_i}{1-p_i} = x_i^{\mathrm{T}}\beta$$

• Probability of event:

$$\mathcal{D}_i = \frac{\exp(\mathbf{X}_i^{\mathrm{T}}\beta)}{1 + \exp(\mathbf{X}_i^{\mathrm{T}}\beta)}$$

• Linear on the logit scale:

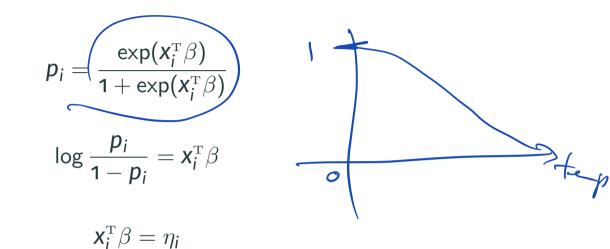
$$\log \frac{p_i}{1-p_i} = x_i^{\mathrm{T}}\beta$$

• linear predictor:

$$\begin{array}{ccc} x_i^{\mathrm{T}}\beta = \eta_i & \widehat{\beta} & \rightarrow & \gamma_i^{\mathrm{T}}\beta = \widehat{\eta}_i \\ & \widehat{p}_i = & e^{\widehat{\eta}_i} \\ & & I + e^{\widehat{\eta}_i} \end{array}$$

• Probability of event:

- Linear on the logit scale:
- linear predictor:



•
$$p_i$$
 is always between 0 and 1

• Probability of event:

$$p_i = \frac{\exp(\mathbf{X}_i^{\mathrm{T}}\beta)}{1 + \exp(\mathbf{X}_i^{\mathrm{T}}\beta)}$$

• Linear on the logit scale:

$$\log \frac{p_i}{1-p_i} = x_i^{\mathrm{T}}\beta$$

• linear predictor:

$$\mathbf{X}_{\mathbf{i}}^{\mathrm{T}}\boldsymbol{\beta} = \eta_{\mathbf{i}}$$

- p_i is always between 0 and 1
- see ELM-1 §2.1 for a linear fit

• Probability of event:

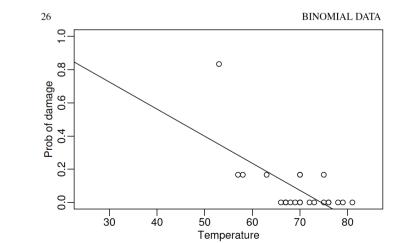
$$p_i = \frac{\exp(x_i^{\mathrm{T}}\beta)}{1 + \exp(x_i^{\mathrm{T}}\beta)}$$

• Linear on the logit scale:

$$\log \frac{p_i}{1-p_i} = x_i^{\mathrm{T}}\beta$$

 $\mathbf{X}_{\mathbf{i}}^{\mathrm{T}}\boldsymbol{\beta} = \eta_{\mathbf{i}}$

- linear predictor:
- p_i is always between 0 and 1
- see ELM-1 §2.1 for a linear fit



Applied Statistics I October 19 2022

> summary(logitmodcorrect)

```
Call:
glm(formula = cbind(r, m - r) ~ temperature, family = binomial, data = shuttle2)
```

Coefficients:

	Estimate	Std.	Error	Z	value	$\Pr(z)$	
(Intercept)	5.08498	3	.05247		1.666	0.0957	•
temperature	-0.11560	0	.04702	-	-2.458	0.0140 >	*

> summary(logitmodcorrect)

```
Call:
glm(formula = cbind(r, m - r) ~ temperature, family = binomial, data = shuttle2)
```

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 5.08498 3.05247 1.666 0.0957 . temperature -0.11560 0.04702 -2.458 0.0140 *

linear predictor:

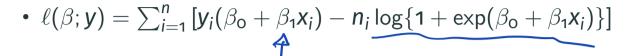
$$logit(p_i) = log(\frac{p_i}{1 - p_i}) = \beta_0 + \beta_1 temp_i$$
$$p_i = \frac{exp\{\beta_0 + \beta_1 temp_i\}}{1 + exp\{\beta_0 + \beta_1 temp_i\}}$$

Applied Statistics I October 19 2022

Estimation

• $\ell(\beta; \mathbf{y}) = \sum_{i=1}^{n} \left[y_i(\beta_0 + \beta_1 \mathbf{x}_i) - n_i \log\{1 + \exp(\beta_0 + \beta_1 \mathbf{x}_i)\} \right] + c[\mathbf{y}_i, \mathbf{y}_i]$ $= \binom{n}{y_i} p_i^{g_i} (1-p_i)^{n_i-g_i}$ yin Bin(ni, pi) f(y; p)i=1,...,n ind+ (y; p) Y== 0,..., N= y ([) ([+e^{xits}) = f(y:] = Likelihood $\int \frac{\chi_i^T \beta}{1 + e^{\chi_i^T \beta}},$ $= \prod_{i=1}^{n} \binom{n_i}{y_i}$ at By: L(B;y = xfb Applied Statistics I ober 10 202 17

Estimation



• maximum likelihood estimate $\hat{\beta}_0$, $\hat{\beta}_1$ $\partial \ell(\beta; \mathbf{v}) / \partial \beta = \mathbf{0}$ βο + β, 2; e 1+e bo+ β, 2; n. B.+B.x; τ = Z(yix $e_{\beta \in \beta, \chi}$ α_{i} $\sum y_i x_i = \sum n_i \hat{p}_i x_i$ $\sum y_i = \sum n_i \hat{p}_i$ **Applied Statistics I** October 19 2022

Estimation

•

- $\ell(\beta; y) = \sum_{i=1}^{n} [y_i(\beta_0 + \beta_1 x_i) n_i \log\{1 + \exp(\beta_0 + \beta_1 x_i)\}]$
- maximum likelihood estimate $\hat{\beta}_0$, $\hat{\beta}_1$

 $\partial \ell(\beta; \mathbf{y}) / \partial \beta = \mathbf{0}$

$$\hat{\beta}_{0} = 5.08498, \quad \hat{\beta}_{1} = -0.11560 \qquad j(\beta) \equiv -\frac{\partial^{2}\ell(\beta)}{\partial\beta\partial\beta^{T}}$$

Estimation

•

- $\ell(\beta; y) = \sum_{i=1}^{n} [y_i(\beta_0 + \beta_1 x_i) n_i \log\{1 + \exp(\beta_0 + \beta_1 x_i)\}]$
- maximum likelihood estimate $\hat{\beta}_0$, $\hat{\beta}_1$

 $\partial \ell(\beta; \mathbf{y}) / \partial \beta = \mathbf{0}$

$$\hat{\beta}_{0} = 5.08498, \quad \hat{\beta}_{1} = -0.11560 \qquad j(\beta) \equiv -\frac{\partial^{2}\ell(\beta)}{\partial\beta\partial\beta^{T}}$$

• $\operatorname{var}(\hat{\beta}) \doteq j^{-1}(\hat{\beta})$

Estimation

٠

- $\ell(\beta; y) = \sum_{i=1}^{n} [y_i(\beta_0 + \beta_1 x_i) n_i \log\{1 + \exp(\beta_0 + \beta_1 x_i)\}]$
- maximum likelihood estimate $\hat{\beta}_0$, $\hat{\beta}_1$

 $\partial \ell(\beta; \mathbf{y}) / \partial \beta = \mathbf{0}$

$$\hat{\beta}_{0} = 5.08498, \quad \hat{\beta}_{1} = -0.11560 \qquad j(\beta) \equiv -\frac{\partial^{2}\ell(\beta)}{\partial\beta\partial\beta^{T}}$$

• $\operatorname{var}(\hat{\beta}) \doteq j^{-1}(\hat{\beta})$

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 5.08498 3.05247 1.666 0.0957. temperature -0.11560 0.04702 -2.458 0.0140 *

"a unit increase in temperature is associated with an increase in log-odds of O-ring damage of -0.116"

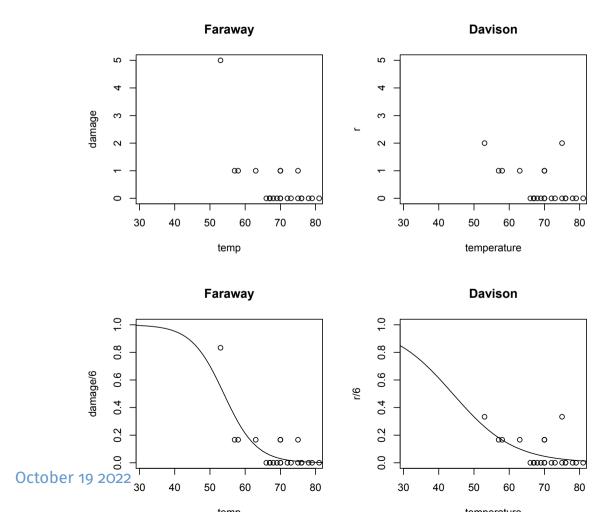
"an increase in the odds of exp(-0.116) = 0.89"

so actually a decrease

" an increase in the probability of ??

depends on the baseline probability

Predicted probabilities



Applied Statistics I

19

• Comparing two models:

- Comparing two models:
- likelihood ratio test

$$2\{\ell_A(\hat{eta}_A) - \ell_B(\hat{eta}_B)\}$$

- Comparing two models:
- likelihood ratio test

$$2\{\ell_{\mathsf{A}}(\hat{\beta}_{\mathsf{A}})-\ell_{\mathsf{B}}(\hat{\beta}_{\mathsf{B}})\}$$

• example

model A: $logit(p_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}, \quad \beta_A = (\beta_0, \beta_1, \beta_2)$ model B: $logit(p_i) = \beta_0 + \beta_1 X_{1i}, \quad \beta_B = (\beta_0, \beta_1)$

- Comparing two models:
- likelihood ratio test

$$2\{\ell_{\mathsf{A}}(\hat{\beta}_{\mathsf{A}})-\ell_{\mathsf{B}}(\hat{\beta}_{\mathsf{B}})\}$$

• example

model A:
$$logit(p_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}, \quad \beta_A = (\beta_0, \beta_1, \beta_2)$$

model B: $logit(p_i) = \beta_0 + \beta_1 X_{1i}, \quad \beta_B = (\beta_0, \beta_1)$

- when model B is nested in model A, LRT is approximately $\chi^{\rm 2}_{\nu}$ distributed, under model B

- Comparing two models:
- likelihood ratio test

$$2\{\ell_{\mathsf{A}}(\hat{\beta}_{\mathsf{A}})-\ell_{\mathsf{B}}(\hat{\beta}_{\mathsf{B}})\}$$

• example

model A: $logit(p_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}, \quad \beta_A = (\beta_0, \beta_1, \beta_2)$ model B: $logit(p_i) = \beta_0 + \beta_1 X_{1i}, \quad \beta_B = (\beta_0, \beta_1)$

- when model B is nested in model A, LRT is approximately $\chi^{\rm 2}_{\nu}$ distributed, under model B
- $\nu = dim(A) dim(B)$

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)</pre>

```
> summary(logitmodcorrect2)
```

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 2.520195 3.486784 0.723 0.4698 temperature -0.098297 0.044890 -2.190 0.0285 * pressure 0.008484 0.007677 1.105 0.2691

Null deviance: 24.230 on 22 degrees of freedom Residual deviance: 16.546 on 20 degrees of freedom AIC: 36.106 Number of Fisher Scoring iterations: 5

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)</pre>

```
> anova(logitmodcorrect,logitmodcorrect2)
Analysis of Deviance Table
```

Model 1: cbind(r, m - r) ~ temperature Model 2: cbind(r, m - r) ~ temperature + pressure Resid. Df Resid. Dev Df Deviance 1 21 18.086 2 20 16.546 1 1.5407

• Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$
- nested: Model B is obtained by setting $\beta_2 = 0$

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$
- nested: Model B is obtained by setting $\beta_2 = 0$
- Under Model B, the change in deviance is (approximately) an observation from a χ^2_1

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$
- nested: Model B is obtained by setting $\beta_2 = 0$
- Under Model B, the change in deviance is (approximately) an observation from a χ^2_1
- $Pr(\chi_1^2 \ge 1.5407) = 0.22$; this is a *p*-value for testing $H_0: \beta_2 = 0$

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$
- nested: Model B is obtained by setting $\beta_2 = 0$
- Under Model B, the change in deviance is (approximately) an observation from a χ^2_1
- $Pr(\chi_1^2 \ge 1.5407) = 0.22$; this is a *p*-value for testing $H_0: \beta_2 = 0$

• so is
$$1 - \Phi\{\frac{\hat{\beta}_2}{\widehat{s.e.}(\hat{\beta}_2)}\} = 1 - \Phi(1.105) = 0.27$$

ELM-1 p.30

Applied Statistics I October 19 2022

- confidence intervals for β_1

- confidence intervals for β_1
- based on normal approximation: $\hat{\beta}_1 \pm \widehat{s.e.}(\hat{\beta}_1) * 1.96$

- confidence intervals for β_1
- based on normal approximation: $\hat{\beta}_1 \pm \widehat{s.e.}(\hat{\beta}_1) * 1.96$
- (-0.208, -0.023)

- confidence intervals for β_1
- based on normal approximation: $\hat{\beta}_1 \pm \widehat{s.e.}(\hat{\beta}_1) * 1.96$
- (-0.208, -0.023)
- based on profile log-likelihood

 $\ell_p(\beta_1)$, details to follow

- confidence intervals for β_1
- based on normal approximation: $\hat{\beta}_1 \pm \widehat{s.e.}(\hat{\beta}_1) * 1.96$
- (-0.208, -0.023)
- based on profile log-likelihood
- confint(logitmodcorrect):
 - (-0.2122262, -0.0244701)

 $\ell_p(\beta_1)$, details to follow

ELM-1 p. 31

Binary data

- each response is $y_i = 0, 1$
- explanatory variables x_i^T as usual
- same model

$$\operatorname{pr}(y_i = 1 \mid x_i) = p_i(\beta) = \frac{\exp(x_i^T \beta)}{1 + \exp(x_i^T \beta)}$$

- example wcgs data, ELM-2, Ch.2
- example nodal data in SMPracticals, SM Example 10.18

 \longrightarrow BinaryELM2.Rmd

instead of $0, 1, \ldots, m_i$

Binary data

> data(wcgs, package="faraway")

> head(wcgs); help(wcgs) #latter not shown

		age	he	eight	weig	ght	sdp	dbp	chol	beha	ve	cigs	3
	2001	49		73	1	.50	110	76	225		A2	25	5
	2002	42		70	1	.60	154	84	177		A2	20)
	2003	42		69	1	.60	110	78	181		B3	C)
	2004	41		68	1	.52	124	78	132		B4	20)
	2005	59		70	1	.50	144	86	255		BЗ	20)
	2006	44		72	2	204	150	90	182		B4	C)
		dibe	эp	chd	type	chċ	l tin	nechd	l aı	cus			
	2001		В	no	n	none	9	1664	abs	sent			
	2002		В	no	n	none	9	3071	pres	sent			
	2003		А	no	n	none	9	3071	. abs	sent			
	2004		А	no	n	none	9	3064	abs	sent			
Арр	lied Stati 2005	stics I	А	yes	19202 infdé	ath	1	1885	j pres	sent			

26

Binary regression ELM-2 Ch.2

18/10/2022

Binary data

data(wcgs, package = "faraway")
dim(wcgs)

[1] 3154 13

head(wcgs) #not run: str(wcgs); plot(wcgs); help(wcgs)

##		age l	height	weight	sdp	dbp	chol	behave	cigs	dibep	chd	typechd	timechd	
##	2001	49	73	150	110	76	225	A2	25	В	no	none	1664	
##	2002	42	70	160	154	84	177	A2	20	В	no	none	3071	
##	2003	42	69	160	110	78	181	в3	0	A	no	none	3071	
##	2004	41	68	152	124	78	132	в4	20	А	no	none	3064	
##	2005	59	70	150	144	86	255	в3	20	А	yes	infdeath	1885	
##	2006	44	72	204	150	90	182	в4	0	А	no	none	3102	
##		ar	cus											
##	2001	abs	ent											
##	2002	pres	ent											
##	2003	abs	ent											
##	2004	abs	ent											
##	2005	pres	ent											

• where's the epsilon?

• where's the epsilon? There isn't one

... Binary responses

- where's the epsilon? There isn't one
- what's the model? It has two parts

... Binary responses

- where's the epsilon? There isn't one
- what's the model? It has two parts
- Regression.

$$\mathbb{E}(y_i) = p_i = \frac{\exp(x_i^{\mathrm{T}}\beta)}{1 + \exp(x_i^{\mathrm{T}}\beta)}$$

• Probability distribution.

 $y_i \sim Bernoulli(p_i)$

... Binary responses

- where's the epsilon? There isn't one
- what's the model? It has two parts
- Regression.

$$\mathbb{E}(y_i) = p_i = \frac{\exp(x_i^{\mathrm{T}}\beta)}{1 + \exp(x_i^{\mathrm{T}}\beta)}$$

• Probability distribution.

 $y_i \sim Bernoulli(p_i)$

- What are these parts in linear regression?
- Regression

$$\mathbb{E}(\mathbf{y}_i) = \mu_i = \mathbf{x}_i^{\mathrm{T}} \beta$$

• Probability distribution

 $y_i \sim Normal(\mu_i, \sigma^2)$

Applied Statistics I October 19 2022

Binomial responses

- if you add a lot of Bernoulli's together, all with the same p_i , you get
- how could they have the same *p_i* in our model?

Binomial responses

- if you add a lot of Bernoulli's together, all with the same p_i , you get
- how could they have the same *p_i* in our model?
- $p_i = function(x_i^{T}\beta)$
- different observations with the same *p_i* are called **covariate classes**
- Example 10.18 in SM Table 10.8 has 23 rows of binomials sample sizes vary from 1 to 6
- data(nodal) in library(SMPracticals) has 53 rows of binary observations

Binomial responses

- if you add a lot of Bernoulli's together, all with the same p_i , you get
- how could they have the same *p_i* in our model?
- $p_i = function(x_i^{T}\beta)$
- different observations with the same *p_i* are called **covariate classes**
- Example 10.18 in SM Table 10.8 has 23 rows of binomials sample sizes vary from 1 to 6
- data(nodal) in library(SMPracticals) has 53 rows of binary observations
- R expects cbind(r, m-r) in glm with binomial data
- but if all observations are binary you can get away with r only
- see ?family (check Details)
- you can also specify proportions y_i/n_i , but then you need to use weights

Binomial/Binary

SM Example 10.18

10.4 ·	Proportion	n Data
--------	------------	--------

Table 10.8Data onnodal involvement(Brown, 1980).	<i>m</i>	r	age	stage	grade	xray	acid
	6	5	0	1	1	1	1
	6	1	0	0	0	0	1
	4	0	1	1	1	0	0
	4	2	1	1	0	0	1
	4	0	0	0	0	0	0
	3	2	0	1	1	0	1
	3	1	1	1	0	0	0
	3	0	1	0	0	0	1
	3	0	1	0	0	0	0
Can we predict nodal	2	0	1	0	0	1	0
involvement from other	2	1	0	1	0	0	1
	2	1	0	0	1	0	0
measurements?	1	1	1	1	1	1	1
	1	1	1	1	0	1	1
	1	1	1	0	1	1	1
	1	1	1	0	0	1	1
	1	0	1	0	1	0	0
	1	1	0	1	1	1	0
	1	0	0	1	1	0	0
Applied Statistics I October 19 2022	1	1	0	1	0	1	0
	1	1	0	0	1	0	1

491

Binary regression ELM-2 Ch.2

18/10/2022

Binary data

data(wcqs, package = "faraway") dim(wcgs)

[1] 3154 13

head(wcgs) #not run: str(wcgs); plot(wcgs); help(wcgs)

## 2002 42 70 160 154 84 177 A2 20 B no n ## 2003 42 69 160 110 78 181 B3 0 A no n ## 2004 41 68 152 124 78 132 B4 20 A no n ## 2005 59 70 150 144 86 255 B3 20 A yes infde	
## 2002 42 70 160 154 84 177 A2 20 B no n ## 2003 42 69 160 110 78 181 B3 0 A no n ## 2004 41 68 152 124 78 132 B4 20 A no n ## 2005 59 70 150 144 86 255 B3 20 A yes infdee ## 2006 44 72 204 150 90 182 B4 0 A no n	
## 2003 42 69 160 110 78 181 B3 0 A no n ## 2004 41 68 152 124 78 132 B4 20 A no n ## 2005 59 70 150 144 86 255 B3 20 A yes infde ## 2006 44 72 204 150 90 182 B4 0 A no n	one 1664
## 2004 41 68 152 124 78 132 B4 20 A no n ## 2005 59 70 150 144 86 255 B3 20 A yes infde ## 2006 44 72 204 150 90 182 B4 0 A no n	one 3071
## 2005 59 70 150 144 86 255 B3 20 A yes infde ## 2006 44 72 204 150 90 182 B4 0 A no n	one 3071
## 2006 44 72 204 150 90 182 B4 0 A no n	one 3064
	th 1885
## arcus	one 3102
## 2001 absent	
## 2002 present	
## 2003 absent	
## 2004 absent	
## 2005 present	
## 2006 absent	

Applied Statistics | October 19 2022 missing values; much further sleuthing finds arcus and chol have some missing values

\rightarrow BinaryELM2.Rmd

- model: $y_i \sim f(y_i; \theta), i = 1, \dots, n$
- joint density: $f(\underline{y}; \theta) = \prod_{i=1}^{n} f(y_i; \theta)$
- likelihood function $L(\theta; \underline{y}) = f(\underline{y}; \theta)$

independent

- model: $y_i \sim f(y_i; \theta), i = 1, \dots, n$
- joint density: $f(\underline{y}; \theta) = \prod_{i=1}^{n} f(y_i; \theta)$
- likelihood function $L(\theta; \underline{y}) = f(\underline{y}; \theta)$
- log-likelihood function $\ell(\theta; \underline{y}) = \log L(\theta; \underline{y}) = \sum_{i=1}^{n} \log f(y_i; \theta)$
- maximum likelihood estimate $\hat{\theta} = \arg \sup \ell(\theta; y);$
- Fisher information $j(\theta) = -\ell''(\theta)$

independent

 $\ell'(\hat{ heta}) = \mathbf{0}$

- model: $y_i \sim f(y_i; \theta), i = 1, \ldots, n$
- joint density: $f(\underline{y}; \theta) = \prod_{i=1}^{n} f(y_i; \theta)$
- likelihood function $L(\theta; \underline{y}) = f(\underline{y}; \theta)$
- log-likelihood function $\ell(\theta; \underline{y}) = \log L(\theta; \underline{y}) = \sum_{i=1}^{n} \log f(y_i; \theta)$
- maximum likelihood estimate $\hat{\theta} = \arg \sup \ell(\theta; \mathbf{y});$
- Fisher information $j(\theta) = -\ell''(\theta)$
- two theorems:

$$(\hat{ heta} - heta) j^{1/2}(\hat{ heta}) \stackrel{d}{
ightarrow} \mathsf{N}(\mathsf{O}, I)$$

asymptotically normal

 $\ell'(\hat{\theta}) = \mathbf{0}$

likelihood ratio statistic

$$\mathsf{W}(\theta) = \mathbf{2}\{\ell(\hat{\theta}) - \ell(\theta)\} \stackrel{d}{\to} \chi_p^2$$

p is dimension of θ

Applied Statistics I October 19 2022

independent

• two theorems:

$$(\hat{\theta} - \theta) j^{1/2}(\hat{\theta}) \stackrel{d}{\to} N(0, I)$$
 $W(\theta) = 2\{\ell(\hat{\theta}) - \ell(\theta)\} \stackrel{d}{\to} \chi^2_p$

• two theorems:

$$(\hat{\theta} - \theta)j^{1/2}(\hat{\theta}) \stackrel{d}{\to} N(0,I)$$

 $W(\theta) = 2\{\ell(\hat{\theta}) - \ell(\theta)\} \stackrel{d}{\to} \chi_p^2$

two approximations

$$\hat{ heta}_k \stackrel{.}{\sim} N(\{ heta_k, j^{-1}(\hat{ heta})_{kk}\})$$

 $W(heta) \stackrel{.}{\sim} \chi_p^2$

two theorems:

$$(\hat{\theta} - \theta) j^{1/2}(\hat{\theta}) \stackrel{d}{\to} N(0, I)$$

 $W(\theta) = 2\{\ell(\hat{\theta}) - \ell(\theta)\} \stackrel{d}{\to} \chi_p^2$

two approximations

$$\hat{ heta}_k \stackrel{\sim}{\sim} N(\{ heta_k, j^{-1}(\hat{ heta})_{kk}\})$$

 $w(heta) \stackrel{\sim}{\sim} \chi_p^2$

• compare two models using change in likelihood ratio statistic

nested models

0 1.92 W/2 T log-likelihood 2 $\hat{\theta} + \hat{\theta}$ ကို 4 19 20 22 16 17 18 21 23

log-likelihood function

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 5.08498 3.05247 1.666 0.0957. temperature -0.11560 0.04702 -2.458 0.0140 *

maximum likelihood estimate

 $\partial \ell(\beta; \mathbf{y}) / \partial \beta = \mathbf{0}$

$$\hat{\beta}_{0} = 5.08498, \quad \hat{\beta}_{1} = -0.11560 \qquad j(\beta) \equiv -\frac{\partial^{2}\ell(\beta)}{\partial\beta\partial\beta^{T}}$$

 $\operatorname{var}(\hat{\beta}) \doteq j^{-1}(\hat{\beta})$

- likelihood ratio test for logistic model $p_i = p_i(\beta) = \exp(x_i^T\beta)$, $\hat{p}_i = p_i(\hat{\beta})$
- this model is nested in the saturated model $\tilde{p}_i = y_i/n_i$

- likelihood ratio test for logistic model $p_i = p_i(\beta) = \exp(x_i^T\beta)$, $\hat{p}_i = p_i(\hat{\beta})$
- this model is nested in the saturated model $\tilde{p}_i = y_i/n_i$
- residual deviance compares fitted model to saturated model

- likelihood ratio test for logistic model $p_i = p_i(\beta) = \exp(x_i^T\beta)$, $\hat{p}_i = p_i(\hat{\beta})$
- this model is nested in the saturated model $\tilde{p}_i = y_i/n_i$
- residual deviance compares fitted model to saturated model
- under the fitted model, approximately distributed as χ^2_{n-q}

- likelihood ratio test for logistic model $p_i = p_i(\beta) = \exp(x_i^T\beta)$, $\hat{p}_i = p_i(\hat{\beta})$
- this model is nested in the saturated model $\tilde{p}_i = y_i/n_i$
- residual deviance compares fitted model to saturated model
- under the fitted model, approximately distributed as χ^2_{n-q} if each n_i "large"

ELM-1 p.29

> summary(Ex1018.glm)

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.710 on 22 degrees of freedom Residual deviance: 18.069 on 17 degrees of freedom AIC: 41.69

> step(ex1018binom)

Coefficients:

(Intercept)	stage	xray	acid
-3.052	1.645	1.912	1.638

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual Null Deviance: ^1 40.71 Residual Deviance: 19.64 ^1AIC: 39.26

- we can drop age and grade without affecting quality of the fit

- in other words the model can be simplified by setting two regression coefficients to zero

- several mistakes in text on pp. 491,2;

- deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version

... example 10.18: variable selection

- step implements stepwise regression
- evaluates each fit using AIC = $-2\ell(\hat{\beta}; y) + 2p$
- penalizes models with larger number of parameters
- we can also compare fits by comparing deviances

... example 10.18: variable selection

- step implements stepwise regression
- evaluates each fit using AIC = $-2\ell(\hat{\beta}; y) + 2p$
- penalizes models with larger number of parameters
- we can also compare fits by comparing deviances
- > update(ex1018binom, . ~ . aged stage)

Coefficients:

(Intercept) grade xray acid -2.734 1.420 1.750 1.797

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual Null Deviance: 40.71 Residual Deviance: 21.28 AIC: 40.9

> deviance(ex1018binom)
[1] 18.06869
> pchisq(21.28-18.07,df=2,lower=F)
[1] 0.2008896

- as terms are added to the model, deviance always decreases
- because log-likelihood function always increases
- similar to residual sum of squares

•

- as terms are added to the model, deviance always decreases
- because log-likelihood function always increases
- similar to residual sum of squares
- Akaike Information Criterion penalizes models with more parameters

$$\mathsf{AIC} = \mathsf{2}\{-\ell(\hat{eta}; y) + p\}$$

SM (4.57)

• comparison of two model fits by difference in AIC

> summary(ex1018binom)

Call: glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

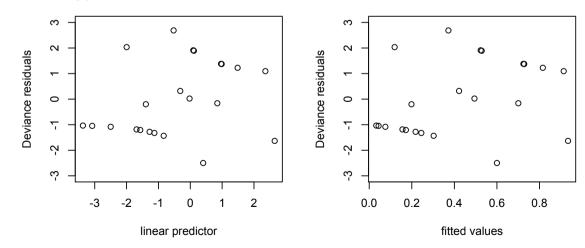
Min	1Q	Median	ЗQ	Max
-1.4989	-0.7726	-0.1265	0.7997	1.4351

> summary(ex1018binom)

Call: glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max -1.4989 -0.7726 -0.1265 0.7997 1.4351



glm has several options for family

```
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```

Each of these is a member of the class of generalized linear models Generalized: distribution of response is not assumed to be normal Linear: some transformation of $E(y_i)$ is of the form $x_i^T \beta$

Applied Statistics I October 19 2022

link function