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Wait a second, these are not real error bars ... the author literally just put the
letter “T* above the bar graphs &
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Written by Witten: Impostors Anonymous

Contributing Editor Daniela
Witten writes:

T was in my second year

of grad school when I

first heard of “impostor
syndrome”, the well-studied
psychological phenomenon
by which highly talented
and accomplished people
doubt their talent and

accomplishments, and live in constant fear that the outside
world will discover them as frauds. I remember marveling
at the possibility that some of the breathtakingly brilliant
statisticians in my department might question their own
abilities—had they no self-awareness?!? The absurdity of
their impostor syndrome stood in stark contrast to what
T knew to be true: that the people around me had their
figurative ducks all in a row, whereas 7 was the real fraud.
Friends, it did not occur to me that I might, in fact,
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extremely hard. If all of my accomplishments to date were
due to luck and/or trickery, then I had better hurry to
accomplish as much as possible before my luck changed
and/or my trickery was discovered! I am certain that I
would not have achieved the same level of success as carly
in my career without my impostor syndrome. But, I might
have been a lot happier and 90% as successful, and I firmly
believe that this would have been enough, for any reason-
able definition of “enough”.

(I also acknowledge that impostor syndrome can mani-
fest in different ways. For instance, some people might find
themselves unable to complete a research paper due to a
fear that others will discover them to be a fraud.)

Over the years, 've learned that my impostor syndrome
places a burden on those around me. If I believe thar every-
one else is smarter than me, then I will have unrealistically
high expectations for others. This manifests not only in
thinking that all of my grad students are brilliant (and in
fact, they are!) but also in expecting them to constantly
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https://imstat.org/2022/11/15/written-by-witten-impostors-anonymous/

1. Upcoming events

2. Project

3. Recap

4. Nonparametric regression

Project due December 19 (11.59),

no extensions

So think of it as due on December 16 :)

Preliminary versions accepted

for feedback up to Dec 11
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Project Guidelines STA 2101F: Methods of Applied Statistics I 2022
Outline
o Part 13-5 pages, non-technical 12 point type, L5 vertical spacing, thank you

1. a description of the scientific problem of interest
2. how (and why) the data being analyzed was collected
3. preliminary description of the data (plots and tables)

4. non-technical summary for a non-statistician of the analysis and conclusions
@ Part I1 3-5 pages, technical LaTeX or R markdown; submit .Rmd and .pdf files
1. models and analysis
2. summary for a statistician of the analysis and conclusions
o Part 11l Appendix submit Rmd and pdf or html files
R seript or .Rmd file; additional plots; additional analysis: References

Project Marking
o 40 points total

o Part I:
description of data and scientific problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough
quality of the presentation 5

o Part I:
summary of the modelling and methods 5 justification for choices
suitability and thoroughness of the analysis 10 model checks, data checks
o Part III:

relevance of additional material
complete and reproducible submission 5



Upcoming Toronto

- December 1 11.00-4.30 PostDoc Day
Room 9014, Hydro Building
Register here

+ December 5 3.30 Data Science ARES Amy Kuceyeski, Cornell
“Quantitative modeling of brain-behavior relationships”
online

« December 8 3.30-4.30 Statistics Seminar
Room 9014, Hydro Building
Emma Hubert, Princeton
“Continuous-Time Incentives in Hierarchies”

Applied Statistics | November 30 2022


https://utoronto.sharepoint.com/sites/ArtSci-STA/Graduate/SitePages/Postdoctoral-Day.aspx?source=%2Fsites%2FArtSci-STA%2FGraduate%2FSitePages%2FNews-%26-Events.aspx&promotedState=1
https://canssiontario.utoronto.ca/event/data-science-ares-amy-kuceyeski/

- proportional hazards regression; estimation of survivor function; interpretation of
coefficients

- factorial experiments, fixed and random effects, nested and crossed factors
- expected mean squares and components of variance

- fitting with 1me4: : 1mer gives estimates of fixed and random effects

- general formulation of mixed models

- random effects are useful when the factor levels are not themselves meaningful,
but rather a sample of possible levels

- random effects can be used to induce dependence between measurements on the
same unit

Applied Statistics | November 30 2022 4



Recap: Components of variance

Some factorial models:

Yi = ptaite;

Vi = p+ i+ B+ e

Vip = m+ai+ G+ (aB)j+ ek
Vi = o+ BiXi+ bo + biXj + €

y = XB+Zb+e

Applied Statistics | November 30 2022 5



... Recap: Example Fox & Weisberg

school ses mathach sector cses meanses
9 1224 -0.888 1.527 Public -0.45362 -0.43438
248 1433 1.332 18.496 Catholic 0.62000 0.71200
1094 2467 0.062 6.415 Public 0.39173 -0.32973
1195 2629 0.942 11.437 Catholic 1.07965 -0.13765
1283 2639 -1.088 -0.763 Public -0.12357 -0.96443
2334 3657 -0.288 13.156 Public 0.36118 -0.64918 and random slope for student-level SES
2783 4042 0.792 14.500 Catholic 0.39000 0.40200
2806 4042 0.482 3.687 Catholic 0.08000 0.40200
2886 4223 1.242 20.375 Catholic 1.33600 -0.09400
3278 4511 -0.178 15.550 Catholic -0.07086 -0.10714
3317 4511 0.342 7.447 Catholic 0.44914 -0.10714
3656 5404 0.902 18.802 Catholic 0.07702 0.82498
5180 7232 0.442 23.591 Public 0.53212 -0.09012
5223 7276 -1.098 -1.525 Public -1.17623 0.07823
5278 7332 -0.508 16.114 Catholic -0.80500 0.29700
Appli®46Tatistt364 -Qol@BbeR003252Catholic -0.08864 -0.08936 6
6292 8707 -0.228 18.463 Public -0.38313 0.15513

F & W show separate regressions
for each school, and then a more parsimonious
model with fixed effects for SES and sector



Analysis of variance: one-factor design SM 9.2.1; LM-2 Ch.15; LM-1 Ch:14

- design: one factor with I levels; J responses at each level

+ model
Vij = p+ o + €y j:1,...];i:1,...l; eijN(070§)

Analysis of variance table

Term degrees of freedom  sum of squares mean square F-statistic
treatment (r=1) Wi =y Xy —y.)?/(0-1) MStreatment / MSerror
error 10 -1) P =¥ Xyl = )2 /0 = 1)}
total(corrected) 1) —1 S — Y. )?

E(Sserror) = I(/ - 1)(7?1
E(Sstreatment) = (I - 1)(10'3 + U?)

Applied Statistics | November 30 2022 7



Expected Mean Squares

E(Sserror) = I(l - 1)U§'
E(Sstreatment) = (I - 1)(102 + Ug)

Applied Statistics | November 30 2022 8



Mixed effects models ELM-2 10; ELM-1 8; SM 9.4,.2

+ more usual to have a model with some fixed effects: treatments, explanatory
variables (age, income, ...)

« and some random effects: cluster, family, school, hospital, ...

+ the general form of a linear mixed effect model is
Yy=XB+Zy+e e~N(0,0%,),y ~ N(0,0°D) = y ~ N(XB3,02(I, +ZDZ"))

+ model matrix X, p, fixed effects 3; model matrix Z, 4, random effects ~

« fit with maximum likelihood for 3, “REML” for variance components
« rely on 1me4 for inference about fixed and random effects

Applied Statistics | November 30 2022 9



... Example 918

> summary(rat.mixed}
Linear mixed model fit by REML [’lmerMod’]
Formula: y ~ week + (week | rat)

Data: rat.growth

Random effects: “the estimated mean weight in week 1 is 156,

Groups  Name Variance Std.Dev. Corr but the variability from rat to rat has

rat (Intercept) 119.54  10.933 standard deviation of about 11 about this.
week 12.49 3.535 0.18

Residual 33.84 5.817 The slopes show similarly large variation.

Number of obs: 150, groups: rat, 30
The measurement error variance 62 = 5.822

Fixed effects: is smaller than the inter-rat variation
Estimate Std. Error t value in intercepts but exceed that for slopes”

(Intercept) 156.0533 2.1590 72.28

week 43.2667 0.7275 59.47

Applied Statistics | November 30 2022 10



Nonparametric Regression ELM-2, Ch. 14; ELM-1 Ch. 11; SM 107

- modely; =f(x;) +¢, i=1,...,n Xx;scalar
- mean function f(-) assumed to be “smooth”

- introduce a kernel function K(u) and define a set of weights

1
W,':—K

X,_Xo
A A

2 Z’L W;yi
f X.) = i=1
)\( 0) 2?21 Wi

« estimate of f(x), at x = xo:

+ Nadaraya-Watson estimator - local averaging local polynomial of degree o

Applied Statistics | November 30 2022 1



Kernel smoothers ELM-2 141

choice of bandwidth, A controls smoothness of function

larger bandwidth = more smoothing

kernel estimators are biased
- making the estimate smoother increases bias, decreases variance

choice of kernel function, K(-), controls smoothness and “local-ness”
+ Faraway recommends Epanechnikov kernel K(x) = 2(1 —x?), x| <1

ksmooth (base) offers only uniform (box) or normal

* bkde (KernSmooth) offers normal, box, epanech, biweight, triweight

biweight: K(x) o< (1— |x[?)2, x| <1 triweight: K(x) oc (1— |x[?)3, x| <1

Applied Statistics | November 30 2022 12



ELM-2 Ch. 14

13

Example A Example B Old Faithful
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... Examples ELM Ch. 11

exb <- data.frame(exb)

plota <- ggplot(exa) + geom_point(aes(x,y)) +
geom_line(aes(x,m))+ ggtitle("Example A")

plotb <- ggplot(exb) + geom_point(aes(x,y)) +
geom_line(aes(x,m))+ ggtitle("Example B")

plotc <- ggplot(faithful) + geom_point(aes(eruptions,waiting)) +
ggtitle("01ld Faithful")

grid.arrange(plota, plotb, plotc, nrow=1) #in gridExtra library

Applied Statistics | November 30 2022 14



... Examples

ELM Ch. 14

Example A Example B Old Faithful
12- .
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... Examples ELM Ch. 11

with(faithful, plot(eruptions, waiting, cex=2, main = "bandwidth=0.1", pch="."))
lines(locpoly(faithful$eruptions,faithful$waiting,drv=0L,
degree=0,bandwidth=.1), col = "blue")

with(faithful, plot(eruptions, waiting, cex=2, main = "bandwidth=0.5", pch="."))
lines(locpoly(faithful$eruptions,faithful$waiting,drv=0L,
degree=0, bandwidth=.5), col = "blue")

with(faithful, plot(eruptions, waiting, cex=2, main = "bandwidth=2", pch="."))

lines(locpoly(faithful$eruptions,faithful$waiting,drv=0L,
degree=0, bandwidth=2), col = "blue")

Applied Statistics | November 30 2022 16



... Examples ELM Ch. 14

waiting

Applied Statistics |

bandwidth=0.1

15 20 25 30 35 40 45 50

eruptions

waiting

bandwidth=0.5

bandwidth=2

waiting

T T T T T T
15 20 25 30 35 40 45 50

eruptions

15 20 25 30 35 40 45 50

eruptions

These are smoother than the plots in ELM using base: :ksmooth

November 30 2022



Bias and MSE ELM 141, SM 10.71

- Nadaraya-Watson: f,(x) = Swiy;/Sw;; w; = —K(

- fa(x) is biased
EFA 0} = X ()

var{f(0) = - A‘:(X) /_ ()

g(-) limiting density of x's

- could choose ) to minimize MSE = bias® + var, at x
+ could choose X to minimize integrated MSE

« more usual to use cross-validation SM 10.71 (no n); ELM 11

CV(\) = %Z{yi — i)y

Applied Statistics | November 30 2022



Cross-validation

library(sm)
hm <- hcv(faithful$eruptions,
faithful$waiting, display = "lines")

sm.regression(faithful$eruptions,
faithful$waiting, h = hm,
xlab = "eruptions",
ylab = "waiting")

cv
9000 10000 11000 12000 13000 14000 15000

waiting

80

70

60

Applied Statistics | November 30 2022
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Local Polynomials SM 10.7; ELM 14.3

- above uses local averaging based on kernel function
+ better estimates can be obtained using local regression at point x

Bo £

2 (l i TXO) e _.XO)k) B &
o B : : o I
LR RSV W B W
- attach a weight to each observation (y;, x;) according to the distance from x; to xo
A 1, X —X
B=(wx)"X Wy, W =diag(w), w;=1K(===)
falxo) = Bo
« usually evaluate the function at sample points: fA(x,-), i=1...,n

Applied Statistics | November 30 2022 20



... local polynomials SM 10.7; ELM 14.3

- odd-order polynomials work better than even; usually local linear fits are used

« kernel function is often a Gaussian density, or the tricube kernel
K(u)=(1—[ul)?, |ul<1

+ as with N-W (local averaging) estimators, choice of bandwidth controls smoothness
« loess is the most widely used, and is the default in ggplot2

- fits a local linear regression, but not by least squares

- uses a robust version of least squares that downweights outliers
+ the result is that the bandwidth can change with x

Applied Statistics | November 30 2022 21



... local polynomials SM 10.7

« B = (XTWX)""XTWy W = diag(w,, ..., wp)

f/\(xo) = Bo = Z?:1 S(Xo; Xi, \)Yi

© S(Xo; X1, A), . . ., S(Xo; Xn, A) first row of “hat” matrix

- this makes it relatively easy to analyse the behaviour of local polynomial smoothers
SM 10.7

- and to simplify the expression for the cross-validation criterion CV())

- fitting at each sample value gives

]Ie)\(X,') = ZS(X;; Xj, )\)yj
j=1

Applied Statistics| ~ November 30 2022 smoothing matrix 2



Cross-validation SM 10.7 p.524

n
V(N =D Ayi —f-ita)}?
i=1
- for local polynomials
" [yi—hea)
Vi — Ia\X;
CV(A) = g
) ,2_1:{ 1-Si(N\) }
- even simpler

& yi—how
GEV) = ; {1 S/ }
Fa0a) =" S0 %5, Ay

j=1

Applied Statistics | November 30 2022 23



Examples

ELM-2 Ch. 14

Example A Example B Old Faithful
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Examples loess ELM-2 14.3

Example A Example B Old Faithful

12-

0.00 0.25 0.50 075 1.00 0.00 0.25 0.50 0.75 1.00 2 3 4 5

X X eruptions
geom_smooth in ggplot uses local polynomial fitting robustified

Applied Statistics | November 30 2022 25



Example

520 10 - Nonlinear Regression Models
[3N] 3] Figure 10.14
\ \ Construction of a local
o o linear smoother. Left
- - panel: observations in the
shaded part of the panel
© © are weighted using the
kernel shown at the foot,
> © > © with & = 0.8, and the
solid straight line is fitted
< < by weighted least squares.
The local estimate is the
o~ o~ fitted value when x = xp,
shown by the vertical line.
o o Tw.o hundred local )
estimates formed using
equi-spaced x( were
0 2 4 6 8 10 0 2 4 6 8 10 interpolated to give the
X X dotted line, which is the

estimate of g(x). Right
panel: local linear
. . . . . . smoothers with 1 = 0.2
Recall that a kernel function w () is a unimodal density function symmetric about  (ojidy and i = 5 (dots).
u = 0 and with unit variance. One choice of w is the standard normal density. Another

is a rescaled form of the fricube function

(U= [uPy, Jul <1,

10.37 26
A otherwise, ( )

Applied Statistics | November 30 2022w (#) = {



Great reference Chapter 7

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction

to Statistical
Learning

Applied Statistics | November 30 202
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Example ISLR 7.9

7.6 Local Regression 281

Local Regression

w

Q

FIGURE 7.9. Local regression illustrated on some simulated data, where the
blue curve represents f(x) from which the data were generated, and the light
orange curve corresponds to the local regression estimate f(x). The orange colored
points are local to the target point xo, represented by the orange vertical line.
The yellow bell-shape superimposed on the plot indicates weights assigned to each
point, decreasing to zero with distance from the target point. The fit f'(zo) at xo is
obtained by fitting a weighted linear regression (orange line segment), and using
the fitted value at xo (orange solid dot) as the estimate f(x).

Applied Statistics | November 30 2022 28



Inference after fitting local polynomials SM 10.7

- model:y; =f(x;) +¢, i=1,...,n;E(¢) = 0;var(¢) = o2
* Fa(X%0) = Bo = 0, S(Xo; Xi A)Yi

* E{fs(x0)} =

» var{fa(xo)} =

« how many parameters did we fit?

- by analogy with least squares, estimates of ‘degrees of freedom’ are
vy = tr(Sy), or v, = tr(S1S,)
~2
= X
v T h—2u + 1, Z{YI fA(l}
Applied Statistics| ~ November 30 2022 SM (10.39) 29



... inference after fitting local polynomials

var{fy(Xo)} = 02 1, $2(Xo; Xi, A)

* E{fa(x0)} = S0, S(Xo: Xi, AF (X)),

f/\(XO) - E{f/\(XO)} < N(0,1)

V/a\r{fk(xo)}vz

Old Faithful

waiting

Applied Statistics | November 30 2022
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... inference after fitting local polynomials

Old Faithful Example A

10+

2 3 4 5 000 025 050 075 100
eruptions. x

Applied Statistics | November 30 2022 31



Regression splines ELM 14.2 p.303

« modely; = f(x;) + € f(-) “flexible”
- above f(-) is estimated at several points using local constants or local linear
regression KernSmooth:locpoly

- another popular approach is to use some very flexible, but parametric form, for f

- for example, f(x) = X m_. Bndm(X)
« examples of ¢m: 1, X, X%, X3; 1, sin(x), cos(x), sin(2x), cos(2x)

« popular choice - piecewise polynomials: e.g. knots at &, &, € [0,1]
« basis functions ¢(x) : 1,x,x2, = %3, (x — &)3, (x — &)%

« ELM p.219 builds these “by hand”
+ splines::bs() builds cubic splines automatically

Applied Statistics | November 30 2022 32



... Regression splines ELM 14.2 p.303

> library(splines)
> examod <- 1lm(y ~ bs(x,3), data = exa)
> summary (examod)

. Coefficients:

Estimate Std. Error t value Pr(>[tl)

(Intercept) 0.0025764 0.1134784 0.0227 0.98190
bs(x, 3)1 -0.6606770 0.3249083 -2.0334  0.04306 *
bs(x, 3)2 2.0122935 0.2029124 9.9171 < 2.2e-16 **x
bs(x, 3)3 -0.8910698 0.1668033 -5.3420 2.055e-07 **x
Residual standard error: 0.46159 on 252 degrees of freedom
Multiple R-squared: 0.3426, Adjusted R-squared: 0.33478
F-statistic: 43.777 on 3 and 252 DF, p-value: < 2.22e-16

> model.matrix(examod)

(Intercept) bs(x, 3)1 bs(x, 3)2 bs(x, 3)3

1 1 0.0000000e+00 0.00000000000 0.0000000e+00

2 . 1 1.1399500e-02 0.00004381762 5.6142342e-08
Applied Statistics | Novembergizozz 33
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... Regression splines ELM 14.2 p.303
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... Regression splines ELM 14.2 p.303
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Smoothing splines ELM 14.2, SM 10.7.2

‘y,‘:f(X,‘)—}—E,‘, i:1,...,n
+ choose f(-) to solve

n b
min > {y — £(x)}2 + / FOPdt, A>o0

« solution is a cubic spline, with knots at each observed x; value
see SM Figure 10.18 for a non-regularized solution

« has an explicit, finite dimensional solution

« Kis a symmetric n x n matrix of rank n — 2

Applied Statistics | November 30 2022 36



Nonparametric regression

* Yi =F(X) + €

+ local polynomial regression — stats::loess, KernSmooth::locpoly ELM 11.3; SM 10.7:

* regression splines — splines::bs , splines::ns ELM 11.2b p 218ff
+ smoothing splines — stats:smooth.spline ELM 11.2a; SM 10.7.2
+ penalized splines — pspline: :smooth.Pspline Peng et al. 2006
+ wavelets — wavethresh: :wd ELM 11.4
- and more... ELM 11.5; ISLR Ch.7

- same ideas can be applied to generalized linear models
- replace linear predictor n; = x! 8 with f(x;)
- use local poly, reg splines, etc. SM Ex. 10.32 logistic regression

Applied Statistics | November 30 2022 37



Example: ELM Exercise 14.5

> data(aatemp)

> plot(year ~ temp, aatemp) 8 ° o | oo
. o g .
> View(toronto) # not shown o o %
~ 8 0 %® o 8 1 ° o 9O
> plot(year ~ temp, toronto) 0% % o° ° 8 ° 08
° 0 o oo o8 - o @R00g, 0 00
0658 0582 ] 085 oo
w | L% o0 G ® © > d”ocmw
g 0e0, goo © .8 g °°@2 8 o o
g o 800,° ¢ g g 23 8,0° ¢
2 o 00, %% o s ° o&&wo%ogo
o 605% ©° o o 8 %0, ©
e & o g e {54 e
€ 3 o = &ﬁ@‘b&o .
e %m0
° ® 8 8o
31 o °
o o g o°
: . . : — —
1850 1900 1950 2000 1850 1900 1950 2000
year year
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... Example: ELM Exercise 14.5

52
|
o

temp
temp

1850 1900 1950 2000 1850 1900 1950 2000

year year
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... Example: ELM Exercise 14.5

Applied Statistics |
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Example: logistic regression

SM Ex.10.29 and 10.32

Applied Statistics |

516 10 - Nonlinear Regression Models
City Rain r/m City Rain  r/m City Rain  r/m City Rain  r/m
1 1735 2/4 11 2050 724 21 1756 2/12 31 1780 8/13
2 1936 3/10 12 1830 0/1 22 1650  0/1 32 1900 3/10
32000 1/5 13 1650 15/30 23 2250 8/11 33 1976 1/6
4 1973 3/10 14 2200 422 24 1796  41/77 34 2292 23/37
5 1750 272 15 2000 0/1 25 1890 24/51
6 1800 3/5 16 1770 6/11 26 1871 /16
7 1750 2/8 17 1920  0/1 27 2063  46/82
8 2077 719 18 1770 33/54 28 2100  9/13
9 1920 3/6 19 2240 419 29 1918 23/43
10 1800 8/10 20 1620 5/18 30 1834 53/75
Terms df  Deviance
Constant 33 74.21
Linear 32 74.09
Quadratic 31 74.09
Cubic 30 62.63

November 30 2022

Table 10.19
Toxoplamosis data:
rainfall (mm) and the
numbers of people testing
positive for
toxoplasmosis, 7, our of m
people tested, for 34 cities
in El Salvador (Efron,
1986).

Table 10.20  Analysis of
deviance for polynomial
logistic models fitted to
the toxoplasmosis data.

451



Example: logistic regression SM Ex10.29 and 10.32

— toxoplasmosis.Rmd

Applied Statistics | November 30 2022 42



Example: logistic regression SM Ex10.29 and 10.32

Figure 10.17 Local fits
to the toxoplasmosis data.
The left panel shows fitted
probabilities 77 (x), with
the fit of local linear
logistic model with

h = 400 (solid) and 0.95
pointwise confidence
bands (dots). Also shown
is the local linear fit with
h = 300 (dashes). The
right panel shows the local
quadratic fit with & = 400
and its 0.95 confidence - e o o o

band. Note the increased L ! ! I f
1600 1800 2000 2200 2400 variability due to the 1600 1800 2000 2200 2400
quadratic fit, and its

Rainfall (mm) sronger curvature a the Rainfall (mm)

1.0

1.0

Proportion positive
00 02 04 06 038
proportion positive

00 02 04 06 08
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