Methods of Applied Statistics I

STA2101H F LEC9101

Week 10

November 23 2022

Masks Cut Covid Spread in Schools, Study Finds

In a so-called natural experiment, two school districts in Boston maintained masking after mandates had been lifted in others, enabling a unique comparison.

🛱 Give this article 🔗 🗍 🗔 177

Experts wrote in an accompanying editorial that research should help dispel misinformation about the effectiveness of universal masking requirements to stem viral transmission. Christopher Capozziello for The New York Times

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Lifting Universal Masking in Schools — Covid-19 Incidence among Students and Staff

Tori L. Cowger, Ph.D., M.P.H., Eleanor J. Murray, Sc.D., M.P.H., Jaylen Clarke, M.Sc., Mary T. Bassett, M.D., M.P.H., Bisola O. Ojikutu, M.D., M.P.H., Sarimer M. Sánchez, M.D., M.P.H., Natalia Linos, Sc.D., and Kathyn T. Hall, Ph.D., M.P.H.

ABSTRACT

BACKGROUND

In February 2022, Massachusetts reschinded a statewide universal masking policy in public schools, and many Massachusetts school districts lifted masking requirements during the subsequent weeks. In the greater Boston area, only two school districts — the Boston and neighboring Chelsea districts — sustained masking requirements through June 2022. The staggered lifting of masking requirements provided an opportunity to examine the effect of universal masking policies on the incidence of coronavirus disease 2019 (Covid-19) in schools.

METHODS

We used a difference-in-differences analysis for staggered policy implementation to compare the incidence of Covid-19 among students and staff in school districts in the greater Boston area that lifted masking requirements with the incidence in districts that sustained masking requirements during the 2021–2022 school year. Characteristics of the school districts were also compared.

Masks Cut Covid Spread in Schools, Study Finds

In a so-called natural experiment, two school districts in Boston maintained masking after mandates had been lifted in others, enabling a unique comparison.

🕆 Give this article 🖉 💭 🖓 177

Experts wrote in an accompanying editorial that research should help dispel misinformation about the effectiveness of universal masking requirements to stem viral transmission. Christopher Capazeleio for The New York Times

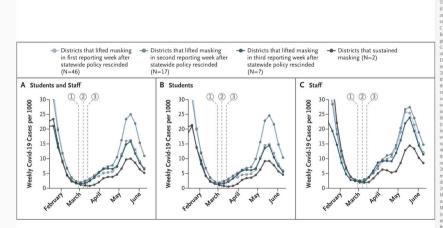


Figure 1. Incidence of Covid-19 in School Districts in the Greater Boston Area before and after the Statewide Masking Policy Was Rescinded.

The observed incidence of coronavirus disease 2019 (Covid-19) (weekly Covid-19 cases per 1000 population) among students and staff overall (Panel A), among students alone (Panel B), and among staff alone (Panel C) is shown for the 72 school districts in the greater Boston area that were included in the study. The greater Boston area was defined according to the U.S. Census Bureau as the New England city and town area of Boston-Cambridge-Newton. The Massachusetts Department of Elementary and Secondary Education rescinded the statewide masking policy on February 28, 2022. The incidence is shown according to whether the school district lifted its masking requirement in the first, second, or third reporting week after the statewide masking policy was rescinded or the district sustained its masking requirement. A school district was considered to have lifted its masking requirement in a given reporting week if the requirement had been lifted before the first day of the reporting week (reporting weeks start on Thursday). The dashed lines indicate the first (1), second (2), and third (3) school. weeks (school weeks start on Monday) during which school districts lifted masking requirements. A total of 46 school districts lifted masking requirements during the first school week (starting on February 28, 2022) and in the first reporting week (starting on March 3, 2022) after the statewide masking policy was rescinded: 17 districts lifted masking requirements during the second school week (starting on March 7, 2022) and in the second reporting week (starting on March 10, 2022): 7 districts lifted masking requirements during the third school week (starting on March 14, 2022) and in the third reporting week (starting on March 17, 2022); and 2 districts sustained masking requirements. Data points are shown on the first day of the reporting week and represent 3-week trailing rolling averages to reduce statistical noise. Dates on the x axis are restricted to the period immediately before and after the statewide masking policy was rescinded.

Todav

- 1. Upcoming events
- 2. Project
- 3. Recap
- 4. Finish survival data
- 5. Random and mixed effects models

Project Guidelines

STA 2101F: Methods of Applied Statistics I 2022

Outline

Part I 3–5 pages non-technical

12 point type, 1.5 vertical spacing, thank you

- 1. a description of the scientific problem of interest
- 2 how (and why) the data being analyzed was collected
- 3 preliminary description of the data (plots and tables)
- 4. non-technical summary for a non-statistician of the analysis and conclusions
- Part II 3-5 pages, technical

LaTeX or R markdown; submit .Rmd and .pdf files

- 1. models and analysis
- 2. summary for a statistician of the analysis and conclusions
- Part III Appendix submit .Rmd and .pdf or .html files R script or .Rmd file: additional plots: additional analysis: References

Project Marking

- 40 points total
- Part I: description of data and scientific problem 5 suitability of plots and tables 5 quality of the presentation 5 Part II-
- summary of the modelling and methods 5 suitability and thoroughness of the analysis 10
- Part IIIrelevance of additional material 5 complete and reproducible submission 5

clear, non-technical, concise but thorough

justification for choices model checks, data checks

1

Upcoming

• November 24 3.30-4.30 Statistical Sciences Seminar Room 9014, Hydro Building and online

Keen Ming Tan, U Michigan

"Convolution type smoothing approach for quantile regression"

November 25 12.00-1.00 Toronto Data Workshop
 BL 520 and zoom
 Marcel Fortin and Leanne Trimble, U Toronto
 "... will talk about their newly acquired data collections, software and support"

...Upcoming

• November 28 3.30-4.30 Data Science ARES Room 9014, Hydro Building and online

Jishnu Das, U Pittsburgh

"Using Interpretable Machine Learning and Network Systems Approaches to Uncover Mechanisms Underlying Pathophysiology of Immune Disorders"

- generalized linear models: family, link, density
- generalized linear models: mean function, variance function, dispersion
- iteratively re-weighted least squares fitting; estimation of dispersion
- survival data: hazard function, survivor function, censoring
- parametric models: exponential, Gamma, Weibull, log-logistic
- likelihood function, log-likelihood, MLE, etc.
- nonparametric inference for survivor function

Kaplan-Meier estimator

- regression analysis: proportional hazards model; partial likelihood
- · estimation of survivor function

Recap: Analysis of data using GLMs: overview

- choose a model, often based on type of response
- fit a model, using maximum likelihood estimation
- inference for individual coefficients \hat{eta}_j from summary

or on mean/variance relationship convergence (almost) guaranteed

- inference for groups of coefficients by analysis of deviance
- estimation of ϕ based on Pearson's Chi-square

typo in ELM p.121: cross out = var $(\hat{\mu})$

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$

- analysis of deviance: see p. 121 (near bottom)
- diagnostics: same as for lm
 - residuals: deviance or Pearson; can be standardized
 - influential observations: uses hat matrix

likelihood ratio tests ELM p.124; SM p.477 lized ELM likes 1/2 normal plots SMPracticals has very good GLM diagnostics glm.diag, plot.glm.diag

- one sample $(y_1, d_1), ..., (y_n, d_n)$
- parametric model: Exponential, Weibull, Gamma, ...
- non-parametric: Kaplan-Meier estimator of $S(\cdot)$
- covariates $(y_1, d_1, x_1), ..., (y_n, d_n, x_n)$
- parametric model: Exponential, Weibull, Gamma
- semi-parametric: hazard function

$$\lambda(\mathbf{y}; \mathbf{x}, \beta) = \lambda_{\mathsf{o}}(\mathbf{y}) \exp(\mathbf{x}^{\mathsf{T}}\beta)$$

• semi-parametric: survivor function

$$\mathsf{S}(\mathsf{y};\mathsf{x},\beta) = \{\mathsf{S}_{\mathsf{o}}(\mathsf{y})\}^{\exp(\mathsf{x}^{\mathsf{T}}\beta)}$$

Applied Statistics I November 23 2022

generalizes empirical cdf

Inference in proportional hazards model

model

$$\lambda(\mathbf{y}; \mathbf{x}, \beta) = \lambda_{o}(\mathbf{y}) \exp(\mathbf{x}^{T}\beta)$$

• data $(y_1, d_1, x_1), \ldots, (y_n, d_n, x_n)$

 $y_1 < y_2 < ... < y_n$

- inference about β uses partial likelihood

$$L_{\text{part}}(\beta; t, x) = \prod_{\text{failures}} \frac{\exp(x_i^T \beta)}{\sum_{j \in \mathcal{R}_i} \exp(x_j^T \beta)}$$

- risk set \mathcal{R}_i set of individuals still alive at the time the *i*th item fails
- inference

$$\ell'_{\text{part}}(\hat{\beta}) = 0; \quad -\ell''_{\text{part}}(\hat{\beta}) \doteq \{\widehat{\text{var}}(\hat{\beta})\}^{-1}$$
$$\hat{\beta} - \beta \sim N(0, \widehat{\text{var}}(\hat{\beta}))$$

 $2\{\ell_{\text{part}}(\hat{\beta}) - \ell_{\text{part}}(\beta_0)\} \sim \chi_p^2$

Applied Statistics I November 23 2022

Example

See Appendix to An R Companion to Applied Regression

- > library(car)
- > data(Rossi)
- > Rossi[1:5, 1:10]

	week	arrest	fin	age	race	wexp		mar	paro	prio	educ
1	20	1	no	27	black	no	\mathtt{not}	married	yes	3	3
2	17	1	no	18	black	no	not	married	yes	8	4
3	25	1	no	19	other	yes	\mathtt{not}	married	yes	13	3
4	52	0	yes	23	black	yes		married	yes	1	5
5	52	0	no	19	other	yes	not	married	yes	3	3

> mod.allison <- coxph(Surv(week,arrest) ~ fin + age + race + wexp + mar + paro + prio, data = Rossi)

```
> summary(mod.allison)
Call:
coxph(formula = Surv(week, arrest) ~ fin + age + race + wexp +
    mar + paro + prio, data = Rossi)
```

```
n= 432, number of events= 114
```

	coef	exp(coef)	se(coef)	z	Pr(z)
finyes	-0.37942	0.68426	0.19138	-1.983	0.04742 *
age	-0.05744	0.94418	0.02200	-2.611	0.00903 **
raceother	-0.31390	0.73059	0.30799	-1.019	0.30812
wexpyes	-0.14980	0.86088	0.21222	-0.706	0.48029
marnot married	0.43370	1.54296	0.38187	1.136	0.25606
paroyes	-0.08487	0.91863	0.19576	-0.434	0.66461
prio	0.09150	1.09581	0.02865	3.194	0.00140 **

"holding the other covariates constant, an additional year of age reduces the weekly hazard of re-arrest by

0.944, that is, by 5.6%

Applied Statistics I November 23 2022

.

$$S(y; x) = \operatorname{pr}(Y \ge y \mid x) = \{S_{O}(y)\}^{\exp(x^{T}\beta)}$$

- use partial likelihood to estimate eta by \hat{eta}

• estimate baseline survivor function as
$$\widehat{S}_{o}(y) = \prod_{i:y_i \leq y} \left(1 - \frac{d_i}{\sum_{j \in \mathcal{R}_j} \exp(x_j^T \hat{\beta})} \right)$$

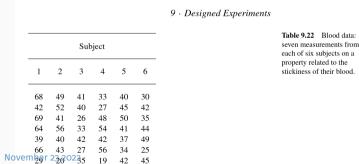
• estimate survivor function for individual with covariates x_+ :

$$\widehat{S}(y; x_+) = \{\widehat{S}_{o}(y)\}^{exp(x_+^T \hat{\beta})}$$

- "the survfit function estimates $S(\cdot)$ by default at the mean value of the covariates"
- " we may wish to display how estimated survival depends on the value of a covariate"
- "this is passed to survfit through the argument newdata"

see also ??survfit

- single source of variation: y_1, \ldots, y_n , independent, $f(y_i | x_i; \beta, \sigma^2) = \ldots$
- if observations arise in groups, or repeated measurements on the same individual, then sets of observations may be correlated
- or it may be natural to model more than one source of randomness



Applied Statistics I

One-way layout

- · blood data: seven measurements on six subjects
- possible model

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \dots, 7; i = 1, \dots, 6$$

- using linear model formulation, rather than glm
- if parameters α_i viewed as constants, then interpretation is

$$\alpha_i - \alpha_{i'} = \mathrm{E}(\mathbf{y}_{ij}) - \mathrm{E}(\mathbf{y}_{i'j})$$

- e.g. expected difference in response between subject *i* and subject *i'*
- · depending on the context, this may not be of interest
- e.g. if the subjects are a random sample, meant to represent a population
- if we view α_i as random, e.g. $\alpha_i \sim N(o, \sigma_{\alpha}^2)$, then σ_{α}^2 is the between-subject variance
- if ϵ_{ij} is modelled as $N(0, \sigma_{\epsilon}^2)$, then σ_{ϵ}^2 is within-subject variance
- interest may well focus on estimation of these two components of variance, and possibly estimation of μ , the population mean

Applied Statistics I November 23 2022

In contrast

Residual

Applied Statistics I

40

November 23 2022

473.33

427

Table 9.3 Data on theteaching of arithmetic.		Group			Test result y					Average	Variance		
		A (Usual)	17	14	24	20	24	23	16	15	24	19.67	17.75
		B (Usual)	21	23	13	19	13	19	20	21	16	18.33	12.75
		C (Praised)	28	30	29	24	27	30	28	28	23	27.44	6.03
		D (Reproved)	19	28	26	26	19	24	24	23	22	23.44	9.53
		E (Ignored)	21	14	13	19	15	15	10	18	20	16.11	13.11
										T -1	1-04		
Term	df	Sum of squares	Mean s	quare	F					vari	ance for	Analysis of r data on the arithmetic.	
Groups	4	722.67	180.	67	15.	3							

11.83

9.2 · Some Standard Designs

• design: one factor with / levels; / responses at each level

model

$$\mathbf{y}_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \dots J; i = 1, \dots I; \quad \epsilon_{ij} \sim (\mathbf{0}, \sigma^2)$$

Analysis of variance table

Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(<i>l</i> − 1)	$\sum_{ij}(ar{y}_{i.}-ar{y}_{})^2$	$\sum_{ij}(ar{y}_{i.}-ar{y}_{})^2/(l-1)$	MS _{treatment} /MS _{error}
error	I(J - 1)	$\sum_{ij}(y_{ij}-\bar{y}_{i.})^2$	$\sum_{ij} (y_{ij} - \bar{y}_{i.})^2 / \{ I(J-1) \}$	
total(corrected)	lJ — 1	$\sum_{ij} (y_{ij} - \bar{y}_{})^2$		

Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(<i>I</i> − 1)	SS _{between}	MS _{between}	MS _{between} /MS _{within}
error	I(J - 1)	SS _{within}	MS _{within}	
total(corrected)	lJ — 1	SS _{total}		

Components of variance

- in some settings, the one-way layout refers to sampled groups
- not an assigned treatment
- e.g. a sample of people, with several measurements taken on each person
- $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ as before, but with different assumptions

	Subject									
1	2	3	4	5	6					
68	49	41	33	40	30					
42	52	40	27	45	42					
69	41	26	48	50	35					
64	56	33	54	41	44					
39	40	42	42	37	49					
66	43	27	56	34	25					
29	20	35	19	42	45					

Table 9.22Blood data:seven measurements fromeach of six subjects on aproperty related to thestickiness of their blood.

...components of variance

- $y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim (0, \sigma_{\epsilon}^2), \quad \alpha_i \sim (0, \sigma_{\alpha}^2) \qquad i = 1, \dots, l; j = 1 \dots J$
- · variance of response within subjects
- · variance of response between subjects
- as above,

$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (y_{ij} - \bar{y}_{i.})^2$$

SST = SS_{between} + SS_{within}

- $E(SS_{within}) = I(J 1)\sigma_{\epsilon}^{2}, E(SS_{between}) = (I 1)(J\sigma_{\alpha}^{2} + \sigma_{\epsilon}^{2})$
- $SS_{within} \sim \sigma^2 \chi^2_{I(J-1)}$ $SS_{between} \sim (J\sigma^2_{\alpha} + \sigma^2_{\epsilon})\chi^2_{I-1}$ leads to F-test for $H_0: \sigma^2_{\alpha} = 0$
- and estimates $\tilde{\sigma}_{\epsilon}^2 = SS_{within}/I(J-1)$, $\tilde{\sigma}_{\alpha}^2 = (MS_{between} MS_{within})/J$

```
> anova(lm(y ~ subject, data = sticky))
Analysis of Variance Table
```

Response: y Df Sum Sq Mean Sq F value Pr(>F) subject 5 1465.9 293.18 2.3198 0.06327 . Residuals 36 4549.7 126.38

```
> (293.18-126.38)/7
[1] 23.82857
```

... Example

```
> library(lme4)
> mmod <- lmer(y ~ 1 +(1|subject), data = sticky)</pre>
> summary(mmod)
Linear mixed model fit by REML ['lmerMod']
Formula: y \sim 1 + (1 \mid subject)
  Data: sticky
. . .
Random effects:
Groups Name Variance Std.Dev.
 subject (Intercept) 23.83 4.881
 Residual 126.38 11.242
Number of obs: 42, groups: subject, 6
Fixed effects:
           Estimate Std. Error t value
(Intercept) 41.905 2.642 15.86
```

Nested variation

- we might have more than one level of variation
- SM Example: *H* hospitals; *S* surgeons at each hospital; *P* patients treated by each surgeon
- response is a measure of success of surgery
- linear model:

 $y_{hsp} = \mu + b_h + a_{hs} + \epsilon_{hsp}, \quad h = 1, \dots, H; s = 1, \dots, S; p = 1, \dots P$

- patient 1 treated by surgeon 1 in hospital 1 has no relation to patient 1 treated by surgeon 1 in hospital 2, etc.
- interpretation? b_h departure from average success (μ) in hospital h
- *a*_{hs}
- depending on the context, we may treat factors as fixed, or random

assume continuous

... Nested variation

Term	degrees of freedom	sum of squares	Expected mean square
between hospitals	(H - 1)	$\Sigma_{h,s,p}(\bar{y}_{h}-\bar{y}_{})^2$	$PS\sigma_b^2 + P\sigma_a^2 + \sigma^2$
between surgeons, within hospitals	H(S — 1)	$\Sigma_{h,s,p}(\bar{y}_{hs.}-\bar{y}_{h})^2$	$P\sigma_a^2 + \sigma^2$
between patients within surgeons	HS(P - 1)	$\Sigma_{h,s,p}(y_{hsp}-ar{y}_{hs.})^2$	σ^2

linear model:

$$y_{hsp} = \mu + b_h + a_{hs} + \epsilon_{hsp}, \quad h = 1, ..., H; s = 1, ..., S; p = 1, ... P$$

$$b_h \sim N(O, \sigma_b^2), \quad a_{hs} \sim N(O, \sigma_a^2), \quad \epsilon_{hsp} \sim N(O, \sigma^2)$$

Appliseealso ELM+2/§10/8:(El2M-1 §8.6) for another example

- more usual to have a model with some fixed effects: treatments, explanatory variables (age, income, ...)
- and some random effects: cluster, family, school, hospital, ...
- the general form of a linear mixed effect model is

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\epsilon}$

- model matrix $X_{n \times p}$, fixed effects β
- model matrix Z, random effects γ
- if we assume $\epsilon \sim N(0, \sigma^2 I)$, then model is

 $\mathbf{Y} \mid \gamma \sim \mathbf{N}(\mathbf{X}\beta + \mathbf{Z}\gamma, \sigma^{2}\mathbf{I})$

.

.

.

$$\mathsf{Y} \mid \gamma \sim \mathsf{N}(\mathsf{X}\beta + \mathsf{Z}\gamma, \sigma^2 \mathsf{I})$$

• If in addition $\gamma \sim N(0, \sigma^2 D)$,

 $\mathbf{Y} \sim \mathbf{N}\{\mathbf{X}\boldsymbol{\beta}, \sigma^{2}(\mathbf{I} + \mathbf{Z}\mathbf{D}\mathbf{Z}^{\mathsf{T}})\}$

marginal distribution explanatory variables

- but still conditional on X and Z
- unknown parameters: β , D, and σ^2
- could estimate by maximum likelihood $Y \sim N(X\beta, \sigma^2 V), V = I + ZDZ^T$

$$L(\beta, \sigma^{2}, D; Y) = \frac{1}{(2\pi)^{n/2} |\sigma^{2} V|^{1/2}} \exp{-\frac{1}{2\sigma^{2}} (y - X\beta)^{T} V^{-1} (y - X\beta)}$$

default in lme4 is to use "REML"

restricted maximum likelihood

• inference for fixed effects:

... Mixed effects models

 $\hat{\beta} \sim N(\beta, \sigma^2 \{ X^T (I + Z D Z^T)^{-1} X \}^{-1})$

- need estimates of D and $\sigma^{\rm 2}$
- the normal distribution is only approximate, when D is estimated
- and can be a poor approximation, if true $var(\gamma)$ is very small
- we might also want to test whether some components of variance are o
- standard likelihood theory does not apply boundary
- extensive discussion in ELM 10.2
- conceptually simpler to think of N(0, D) as a prior distribution for γ , and compute (or sample from) the posterior distribution AS II

 $\sigma^2 D = \operatorname{var}(\gamma)$

rather confusing

Rat growth data SM Ex 9.18

- repeated measurements on the 30 individuals, at 5 time points
- might expect that regression relationship against time is similar for each individual, subject to random variation
- model $y_{jt} = \beta_0 + b_{j0} + (\beta_1 + b_{j1})x_{jt} + \epsilon_{jt}$, $t = 1, \dots, 5$
- x_{jt} takes values 0, 1, 2, 3, 4 for t = 1, 2, 3, 4, 5
- same for each *j*
- data(rat.growth, library="SMPracticals")
- $(b_{j0}, b_{j1}) \sim N_2(0, \Omega_b), \quad \epsilon_{jt} \sim N(0, \sigma^2)$ independent
- two fixed parameters $\beta_{\rm O}\text{,}~\beta_{\rm 1}$
- four variance/covariance parameters: $\sigma_{bo}^2, \sigma_{b1}^2, \text{cov}(b_0, b_1), \sigma^2$

... Example 9.18

460

9 · Designed Experiments

	Week						Week				
	1	2	3	4	5		1	2	3	4	5
1	151	199	246	283	320	16	160	207	248	288	324
2	145	199	249	293	354	17	142	187	234	280	31
3	147	214	263	312	328	18	156	203	243	283	31
4	155	200	237	272	297	19	157	212	259	307	33
5	135	188	230	280	323	20	152	203	246	286	32
6	159	210	252	298	331	21	154	205	253	298	334
7	141	189	231	275	305	22	139	190	225	267	30
8	159	201	248	297	338	23	146	191	229	272	30
9	177	236	285	340	376	24	157	211	250	285	32
10	134	182	220	260	296	25	132	185	237	286	33
11	160	208	261	313	352	26	160	207	257	303	34:
12	143	188	220	273	314	27	169	216	261	295	333
13	154	200	244	289	325	28	157	205	248	289	31
14	171	221	270	326	358	29	137	180	219	258	29
15	163	216	242	281	312	30	153	200	244	286	32

Table 9.27Weights(units unknown) of30 young rats over afive-week period (Gelfandet al., 1990).

... Example 9.18

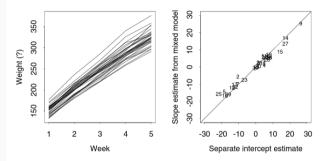


Figure 9.9 Rat growth data. Left: weekly weights of 30 young rats. Right: shrinkage of individual slope estimate; the solid line has unit slope, and the estimates from the mixed model lie slightly closer to zero than the individual estimates.

We treat the rats as a sample from a population of similar creatures, with different initial weights and growing at different rates. To model this we express the data from the jth rat as

$$y_{jt} = \beta_0 + b_{j0} + (\beta_1 + b_{j1})x_{jt} + \varepsilon_{jt}, \quad t = 1, \dots 5,$$

Applied Statistics I November 23 2022

... Example 9.18

- maximum likelihood estimates of fixed effects: $\hat{\beta}_0 = 156.05(2.16), \hat{\beta}_1 = 43.27(0.73)$
- weight in week 1 is estimated to be about 156 units, and average increase per week estimated to be 43.27
- there is large variability between rats: estimated standard deviation of 10.93 for intercept, 3.53 for slope
- there is little correlation between the intercepts and slopes

```
with(rat.growth, plot( y ~ week , type="l"))
> separate.lm = lm(y ~ week + factor(rat)+ week:factor(rat), data = rat.growth)
```

```
> rat.mixed = lmer(y ~ week + (week|rat), data = rat.growth) # REML is the defaul
> summary(rat.mixed) # compare Table 9.28
```

```
> summary(rat.mixed}
Linear mixed model fit by REML ['lmerMod']
Formula: y ~ week + (week | rat)
Data: rat.growth
```

```
• • •
```

Random effects:

Groups	3	Name		Variano	ce Sto	d.Dev.	Corr
rat		(Inte	ercept	;) 119.54	10	.933	
		week		12.49	3	. 535	0.18
Residu	ıal			33.84	5	.817	
Number	of	obs:	150,	groups:	rat,	30	

Fixed effects:

	Estimate	Std. Error	t	value
(Intercept)	156.0533	2.1590		72.28
week	43.2667	0.7275		59.47

"the estimated mean weight in week 1 is 156, but the variability from rat to rat has standard deviation of about 11 about this.

The slopes show similarly large variation.

The measurement error variance $\hat{\sigma}^2 = 5.82^2$ is smaller than the inter-rat variation in intercepts but exceed that for slopes"

Generalized linear mixed models

• linear model: random effect induces correlation

• binary regression: