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Today

1. Upcoming events
2. Project
3. Recap
4. Finish survival data
5. Random and mixed effects models

Project Guidelines STA 2101F: Methods of Applied Statistics I 2022

Outline

• Part I 3–5 pages, non-technical 12 point type, 1.5 vertical spacing, thank you

1. a description of the scientific problem of interest

2. how (and why) the data being analyzed was collected

3. preliminary description of the data (plots and tables)

4. non-technical summary for a non-statistician of the analysis and conclusions

• Part II 3–5 pages, technical LaTeX or R markdown; submit .Rmd and .pdf files

1. models and analysis

2. summary for a statistician of the analysis and conclusions

• Part III Appendix submit .Rmd and .pdf or .html files

R script or .Rmd file; additional plots; additional analysis; References

Project Marking

• 40 points total

• Part I:
description of data and scientific problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough
quality of the presentation 5

• Part II:
summary of the modelling and methods 5 justification for choices
suitability and thoroughness of the analysis 10 model checks, data checks

• Part III:
relevance of additional material 5
complete and reproducible submission 5

1

Applied Statistics I November 23 2022 1



Upcoming Toronto

• November 24 3.30-4.30 Statistical Sciences Seminar
Room 9014, Hydro Building
and online

Keen Ming Tan, U Michigan
“Convolution type smoothing approach for quantile regression”

• November 25 12.00-1.00 Toronto Data Workshop
BL 520 and zoom
Marcel Fortin and Leanne Trimble, U Toronto
“... will talk about their newly acquired data collections, software and support”
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...Upcoming Toronto

• November 28 3.30-4.30 Data Science ARES
Room 9014, Hydro Building
and online

Jishnu Das, U Pittsburgh
“Using Interpretable Machine Learning and Network Systems Approaches to
Uncover Mechanisms Underlying Pathophysiology of Immune Disorders”
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Recap

• generalized linear models: family, link, density
• generalized linear models: mean function, variance function, dispersion
• iteratively re-weighted least squares fitting; estimation of dispersion

• survival data: hazard function, survivor function, censoring
• parametric models: exponential, Gamma, Weibull, log-logistic
• likelihood function, log-likelihood, MLE, etc.
• nonparametric inference for survivor function Kaplan-Meier estimator

• regression analysis: proportional hazards model; partial likelihood
• estimation of survivor function
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Recap: Analysis of data using GLMs: overview

• choose a model, often based on type of response or on mean/variance relationship
• fit a model, using maximum likelihood estimation convergence (almost) guaranteed
• inference for individual coefficients β̂j from summary

• inference for groups of coefficients by analysis of deviance

• estimation of φ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(µ̂)

φ̂ =
1

n− p

n!

i=1

(yi − µ̂i)
2

V(µ̂i)

• analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
• diagnostics: same as for lm ELM p.124; SM p.477

• residuals: deviance or Pearson; can be standardized ELM likes 1/2 normal plots
• influential observations: uses hat matrix SMPracticals has very good GLM diagnostics

glm.diag, plot.glm.diag
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Survival data Fox & Weisberg on course web page

• one sample (y1,d1), . . . , (yn,dn)
• parametric model: Exponential, Weibull, Gamma, ...
• non-parametric: Kaplan-Meier estimator of S(·) generalizes empirical cdf

• covariates (y1,d1, x1), . . . , (yn,dn, xn)
• parametric model: Exponential, Weibull, Gamma

• semi-parametric: hazard function

λ(y; x,β) = λ0(y) exp(xTβ)

• semi-parametric: survivor function

S(y; x,β) = {S0(y)}exp(x
Tβ)
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Inference in proportional hazards model

• model
λ(y; x,β) = λ0(y) exp(xTβ)

• data (y1,d1, x1), . . . , (yn,dn, xn) y1 < y2 < ... < yn

• inference about β uses partial likelihood

Lpart(β; t, x) =
"

failures

exp(xTi β)#
j∈Ri

exp(xTj β)

• risk set Ri set of individuals still alive at the time the ith item fails
• inference

ℓ′part(β̂) = 0; − ℓ′′part(β̂)
.
= {$var(β̂)}−1

β̂ − β
.∼ N(0,$var(β̂))

2{ℓpart(β̂)− ℓpart(β0)}
.∼ χ2pApplied Statistics I November 23 2022 7



Example Fox and Weisberg, 2011

See Appendix to An R Companion to Applied Regression

> library(car)

> data(Rossi)

> Rossi[1:5, 1:10]

week arrest fin age race wexp mar paro prio educ

1 20 1 no 27 black no not married yes 3 3

2 17 1 no 18 black no not married yes 8 4

3 25 1 no 19 other yes not married yes 13 3

4 52 0 yes 23 black yes married yes 1 5

5 52 0 no 19 other yes not married yes 3 3

> mod.allison <- coxph(Surv(week,arrest) ~ fin + age + race + wexp + mar + paro

+ prio, data = Rossi)
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... Example Fox and Weisberg, 2011

> summary(mod.allison)

Call:

coxph(formula = Surv(week, arrest) ~ fin + age + race + wexp +

mar + paro + prio, data = Rossi)

n= 432, number of events= 114

coef exp(coef) se(coef) z Pr(>|z|)

finyes -0.37942 0.68426 0.19138 -1.983 0.04742 *

age -0.05744 0.94418 0.02200 -2.611 0.00903 **

raceother -0.31390 0.73059 0.30799 -1.019 0.30812

wexpyes -0.14980 0.86088 0.21222 -0.706 0.48029

marnot married 0.43370 1.54296 0.38187 1.136 0.25606

paroyes -0.08487 0.91863 0.19576 -0.434 0.66461

prio 0.09150 1.09581 0.02865 3.194 0.00140 **

“holding the other covariates constant, an additional year of age reduces the weekly hazard of re-arrest by
0.944, that is, by 5.6%
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Estimation of the survivor function Fox and Weisberg 2011; SM 10.8

•
S(y; x) = pr(Y ≥ y | x) = {S0(y)}exp(x

Tβ)

• use partial likelihood to estimate β by β̂

• estimate baseline survivor function as %S0(y) =
"

i:yi≤y

&
1− di#

j∈R〉
exp(xTj β̂)

'

• estimate survivor function for individual with covariates x+:
%S(y; x+) = {%S0(y)}exp(x

T
+β̂)

• “the survfit function estimates S(·) by default at the mean value of the covariates”
• “ we may wish to display how estimated survival depends on the value of a
covariate”

• “ this is passed to survfit through the argument newdata” see also ??survfit
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Random effects models ELM-2 Ch. 10; ELM-1 Ch. 8; SM 9.4

• single source of variation: y1, . . . , yn, independent, f (yi | xi;β,σ2) = ...

• if observations arise in groups, or repeated measurements on the same individual,
then sets of observations may be correlated

• or it may be natural to model more than one source of randomness
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One-way layout

• blood data: seven measurements on six subjects
• possible model

yij = µ+ αi + εij, j = 1, . . . , 7; i = 1, . . . , 6
• using linear model formulation, rather than glm
• if parameters αi viewed as constants, then interpretation is

αi − αi′ = E(yij)− E(yi′j)

• e.g. expected difference in response between subject i and subject i′

• depending on the context, this may not be of interest
• e.g. if the subjects are a random sample, meant to represent a population
• if we view αi as random, e.g. αi ∼ N(0,σ2α), then σ2α is the between-subject variance
• if εij is modelled as N(0,σ2ε), then σ2ε is within-subject variance
• interest may well focus on estimation of these two components of variance, and
possibly estimation of µ, the population mean
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In contrast SM Example 9.2
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Analysis of variance: one-factor design SM 9.2.1; LM-2 Ch.15; LM-1 Ch.14

• design: one factor with I levels; J responses at each level
• model

yij = µ+ αi + εij, j = 1, . . . J; i = 1, . . . I; εij ∼ (0,σ2)

Analysis of variance table
Term degrees of freedom sum of squares mean square F-statistic

treatment (I− 1)
!

ij(ȳi. − ȳ..)2
!

ij(ȳi. − ȳ..)2/(I− 1) MStreatment/MSerror
error I(J− 1)

!
ij(yij − ȳi.)2

!
ij(yij − ȳi.)2/{I(J− 1)}

total(corrected) IJ− 1
!

ij(yij − ȳ..)2

Term degrees of freedom sum of squares mean square F-statistic
treatment (I− 1) SSbetween MSbetween MSbetween/MSwithin
error I(J− 1) SSwithin MSwithin

total(corrected) IJ− 1 SStotal
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Components of variance SM 9.4

• in some settings, the one-way layout refers to sampled groups
• not an assigned treatment
• e.g. a sample of people, with several measurements taken on each person
• yij = µ+ αi + εij as before, but with different assumptions
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...components of variance SM 9.4

• yij = µ+ αi + εij, εij ∼ (0,σ2ε), αi ∼ (0,σ2α) i = 1, . . . , I; j = 1 . . . J
• variance of response within subjects
• variance of response between subjects

• as above,
!

ij

(yij − ȳ..)2 =
!

ij

(ȳi. − ȳ..)2 +
!

ij

(yij − ȳi.)2

SST = SSbetween + SSwithin

• E(SSwithin) = I(J− 1)σ2ε ,E(SSbetween) = (I− 1)(Jσ2α + σ2ε)

• SSwithin ∼ σ2χ2I(J−1) SSbetween ∼ (Jσ2α + σ2ε)χ
2
I−1 leads to F-test for H0 : σ2α = 0

• and estimates σ̃2ε = SSwithin/I(J− 1), σ̃2α = (MSbetween −MSwithin)/J
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Example SM Ex 9.2

> anova(lm(y ~ subject, data = sticky))

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

subject 5 1465.9 293.18 2.3198 0.06327 .

Residuals 36 4549.7 126.38

---

> (293.18-126.38)/7

[1] 23.82857
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... Example SM 9.2

> library(lme4)

> mmod <- lmer(y ~ 1 +(1|subject), data = sticky)

> summary(mmod)

Linear mixed model fit by REML [’lmerMod’]

Formula: y ~ 1 + (1 | subject)

Data: sticky

...

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 23.83 4.881

Residual 126.38 11.242

Number of obs: 42, groups: subject, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.905 2.642 15.86
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Nested variation SM 9.4

• we might have more than one level of variation
• SM Example: H hospitals; S surgeons at each hospital; P patients treated by each
surgeon

• response is a measure of success of surgery assume continuous

• linear model:

yhsp = µ+ bh + ahs + εhsp, h = 1, . . . ,H; s = 1, . . . , S;p = 1, . . .P

• patient 1 treated by surgeon 1 in hospital 1 has no relation to patient 1 treated by
surgeon 1 in hospital 2, etc.

• interpretation? bh departure from average success (µ) in hospital h
• ahs

• depending on the context, we may treat factors as fixed, or random
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... Nested variation SM 9.4

Term degrees of freedom sum of squares Expected mean square

between hospitals (H− 1) Σh,s,p(ȳh.. − ȳ...)2 PSσ2b + Pσ2a + σ2

between surgeons, H(S− 1) Σh,s,p(ȳhs. − ȳh..)2 Pσ2a + σ2

within hospitals

between patients HS(P− 1) Σh,s,p(yhsp − ȳhs.)2 σ2

within surgeons

linear model:

yhsp = µ+ bh + ahs + εhsp, h = 1, . . . ,H; s = 1, . . . , S;p = 1, . . .P

bh ∼ N(0,σ2b), ahs ∼ N(0,σ2a), εhsp ∼ N(0,σ2)

see also ELM-2 §10.8 (ELM-1 §8.6) for another exampleApplied Statistics I November 23 2022 20



Mixed effects models ELM-2 10; ELM-1 8; SM 9.4.2

• more usual to have a model with some fixed effects: treatments, explanatory
variables (age, income, ...)

• and some random effects: cluster, family, school, hospital, ...
• the general form of a linear mixed effect model is

y = Xβ + Zγ + ε

• model matrix Xn×p, fixed effects β
• model matrix Z, random effects γ
• if we assume ε ∼ N(0,σ2I), then model is

Y | γ ∼ N(Xβ + Zγ,σ2I)
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... Mixed effects models ELM-2 10; ELM-1 8; SM 9.4.2

•
Y | γ ∼ N(Xβ + Zγ,σ2I)

• If in addition γ ∼ N(0,σ2D),
•

Y ∼ N{Xβ,σ2(I+ ZDZT)}

marginal distribution

• but still conditional on X and Z explanatory variables

• unknown parameters: β, D, and σ2

• could estimate by maximum likelihood Y ∼ N(Xβ,σ2V), V = I+ ZDZT

•
L(β,σ2,D; Y) = 1

(2π)n/2|σ2V|1/2
exp− 1

2σ2 (y − Xβ)TV−1(y − Xβ)

• default in lme4 is to use “REML” restricted maximum likelihood
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... Mixed effects models ELM-2 10; ELM-1 8; SM 9.4.2

• inference for fixed effects:

β̂ ∼ N(β,σ2{XT(I+ ZDZT)−1X}−1)

• need estimates of D and σ2 σ2D = var(γ)

• the normal distribution is only approximate, when D is estimated
• and can be a poor approximation, if true var(γ) is very small
• we might also want to test whether some components of variance are 0
• standard likelihood theory does not apply boundary

• extensive discussion in ELM 10.2 rather confusing

• conceptually simpler to think of N(0,D) as a prior distribution for γ, and compute
(or sample from) the posterior distribution AS II
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Rat growth data SM Ex 9.18

• repeated measurements on the 30 individuals, at 5 time points
• might expect that regression relationship against time is similar for each individual,
subject to random variation

• model yjt = β0 + bj0 + (β1 + bj1)xjt + εjt, t = 1, . . . , 5
• xjt takes values 0, 1, 2, 3, 4 for t = 1, 2, 3, 4, 5
• same for each j
• data(rat.growth, library="SMPracticals")

• (bj0,bj1)
.∼ N2(0,Ωb), εjt

.∼ N(0,σ2) independent
• two fixed parameters β0, β1
• four variance/covariance parameters: σ2b0,σ2b1, cov(b0,b1),σ2
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... Example 9.18
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... Example 9.18
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... Example 9.18

• maximum likelihood estimates of fixed effects: β̂0 = 156.05(2.16), β̂1 = 43.27(0.73)
• weight in week 1 is estimated to be about 156 units, and average increase per week
estimated to be 43.27

• there is large variability between rats: estimated standard deviation of 10.93 for
intercept, 3.53 for slope

• there is little correlation between the intercepts and slopes

with(rat.growth, plot( y ~ week , type="l"))

> separate.lm = lm(y ~ week + factor(rat)+ week:factor(rat), data = rat.growth)

> rat.mixed = lmer(y ~ week + (week|rat), data = rat.growth) # REML is the default

> summary(rat.mixed) # compare Table 9.28
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... Example 9.18

> summary(rat.mixed}

Linear mixed model fit by REML [’lmerMod’]

Formula: y ~ week + (week | rat)

Data: rat.growth

...

Random effects:

Groups Name Variance Std.Dev. Corr

rat (Intercept) 119.54 10.933

week 12.49 3.535 0.18

Residual 33.84 5.817

Number of obs: 150, groups: rat, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 156.0533 2.1590 72.28

week 43.2667 0.7275 59.47

“the estimated mean weight in week 1 is 156,
but the variability from rat to rat has

standard deviation of about 11 about this.

The slopes show similarly large variation.

The measurement error variance σ̂2 = 5.822
is smaller than the inter-rat variation

in intercepts but exceed that for slopes”
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Generalized linear mixed models

• linear model: random effect induces correlation

• binary regression:
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