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Today Start Recording

1. Upcoming events  No Class on November 9
Housekeeping

Recap

Observational studies and causality
Measures of risk

Generalized linear models
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In the News

8. Office Hour Wednesday November 2: 4-5 pm in person; 7-8 pm on Zoom
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Upcoming Toronto

+ November 3 3.30-4.30 Statistical Sciences Seminar
Room 9014, Hydro Building
and online

Alexandra Schmidt, McGill U
“Modelling non-Gaussian spatio-temporal processes”

« November 10 9.00-6.00 CANSSI Ontario Statistical Software Conference
BL224 140 St. George St.
and online
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https://www.statistics.utoronto.ca/events/modelling-non-gaussian-spatio-temporal-processes
https://canssiontario.utoronto.ca/event/statistical-software-conference/
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Upcoming Part 2 London

1972] 187

Regression Models and Life-Tables

By D. R. Cox
Imperial College, London

[Read before the ROYAL STATISTICAL SOCIETY, at a meeting organized by the
Research Section, on Wednesday, March 8th, 1972, Mr M. J. R. HEALY in the Chair]

SUMMARY

The analysis of censored failure times is considered. It is assumed that on
each individual are available values of one or more explanatory variables.
The hazard function (age-specific failure rate) is taken to be a function of
the explanatory variables and unknown regression coefficients multiplied
by an arbitrary and unknown function of time. A conditional likelihood is
obtained, leading to inferences about the unknown regression coefficients.
Some generalizations are outlined.
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Upcoming Part 2
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* Project - see course web page for outline and marking scheme

« Homework marking
« HW7 due Nov 4 (Friday)
+ HW8 posted Nov 2/3/4 due Nov 16 (Wednesday)
+ HW9 posted Nov 16/17 due Nov 23 (Wednesday)
+ HW10 (Last) posted Nov 23/24 due Dec 1 (Wednesday)

« Syllabus — see course web page for updated syllabus
+ nonparametric regression (ELM-2 Ch.4, ELM-1 Ch.11)
« survival data analysis (SM Ch.5.4, 10.8)
« analysis of categorical responses (ELM-2 Ch. 6,7, ELM-1 Ch.5)
« random effects and mixed models (ELM2 Ch.10, ELM-1 Ch.8)
+ longitudinal data analysis (ELM-2 Ch1, ELM-1 Ch.9)
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https://utstat.toronto.edu/reid/sta2101f/ProjectGuidelines.pdf
https://utstat.toronto.edu/reid/sta2101f/syllabus22-update1.pdf

« likelihood function inference Cheatsheet

« Maximum Likelihood Estimate § and estimated cov matrix {—¢"(9)}~" = j(§)~"
- Likelihood ratio test and nested models w(6) = 2{¢(8) — ¢(6)}

« Application to binomial: regression model and saturated model

+ Residual deviance as a test of model fit

+ Pearson'’s x2 correction

u nipi(3) —yi-m -]
ZH nipi(3) }+{ ni{1— pi(B)} H

Applied Statistics | November 2 2022 7


https://utstat.toronto.edu/reid/sta2101f/likelihood-cheatsheet.pdf

Overdispersion

ELM-2 §3.4, ELM-1 §2.11; SM 10.6

“Boxes of trout eggs were buried at five different stream locations and retrieved at 4 different
times. The number of surviving eggs was recorded. The box was not returned to the stream.”

J. Hinde, C.G.B. Demétrio/ Computational Statistics & Data Analysis 27 (1998) 151-170 159
Table 3
Trout egg data
Location Survival period (weeks)
in stream 4 7 8 11
1 89/94 94/98 77/86 141/155
2 106/108 91/106 87/96 104/122
3 119/123 100/130 88/119 91/125
4 104/104 80/97 67/99 111/132
5 49/93 11/113 18/88 0/138
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... Overdispersion ELM-2 §3.4, ELM-1 §2.11; SM 10.6

* Yi ~ Bin(n;, p;) = E(Y;) = nip;, Var(Y;) = nip;(1 - p;)
- variance is determined by the mean

* bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial,
data = troutegg)

summary (bmod)

Null deviance: 1021.469 on 19 degrees of freedom

## Residual deviance: 64.495 on 12 degrees of freedom
## AIC: 157.03

« quasi-binomial: E(Y;) = n;p;, Var(Y;) = ¢nipi(1 — p;)
- estimate ¢? over-dispersion parameter
« usually use X?/(n — p), where

Z (yl B nlpl
np;i(1— p;)
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... Overdispersion ELM-2 §3.4, ELM-1 §2.11; SM 10.6

- the estimation of over-dispersion, and use of t- and F-tests, is approximate
- there isn’t a binomial model with this structure
- but it is sometimes a handy fudge

- a more formal approach is to find a more flexible distribution for responses that
are binary, or proportions

« for example, the beta distribution on (0, 1) has two parameters ELM-2 §3.6
Mo+ o _
F1a.8) = ot Byt -y, o<y <
M(a)l(8)
p(r—p) _ p(1—p)
E(Y)=p= var(Y = =
M=p=tg v =L = o=t
« logit() = X B, etc. 1/(1+ ¢) is now the overdispersion parameter

Applied Statistics | November 2 2022 10



Measures of risk

- see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

1Oglt(pl) N/60+ﬁ12,‘, i:1a"'7n

« no difference between groups < odds-ratio=1 < 3, =0
+ odds ratio of 3 or more is considered “large”

Applied Statistics | November 2 2022 1



p1

« we might be interested in risk ratio — instead of odds ratio P:(1 = Po)
Po Po(1—p)

+ also called relative risk
- if p; and p, are both small, (y = 1 is rare), then

pP: . P1(1—po)

Po ~ Po(1— p1)

« sometimes p,/po can be large but if p, and p, are both small the risk difference
p: — po might also be very small

- in order to estimate the difference we need to know the baseline risk po

- bacon sandwiches www.youtube.com/watch?v=4szyEbU9s4ig

« risk calculator https://realrisk.wintoncentre.uk/p1
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https://www.youtube.com/watch?v=4szyEbU94ig
https://realrisk.wintoncentre.uk/p1
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Biostats secret sauce ELM-2 §4.3; SM §10.4.2

Whether we sample prospectively or retrospectively, the odds ratio is the same

Lung cancer

1 o
cases controls
smoke =1 (yes) | 688 650
smoke = 0 (no) 21 59
709 709

(688/709)/(21/709) _ 688 x59 _ o
(650/709)/(59/709) ~ 650 x 21

retro: OR =

{688/(688 + 650)}/{650/(688 + 650)} 688 x 59

:OR = = =2.
prosp 21/(21+459)/{59/(21 4 59)} 650 x21
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Types of observational studies

« secondary analysis of data collected for another purpose

+ estimation of some feature of a defined population
could in principle be found exactly
- tracking across time of such features

- study of a relationship between features, where individuals may be examined
- at a single time point
- at several time points for different individuals
- at different time points for the same individual

* census

+ meta-analysis: statistical assessment of a collection of studies on the same topic

Applied Statistics | November 2 2022 17



 Meta-analyses combine the results from many different studies
- it is helpful if the coefficient estimates are all on the same scale

« Example: Jiini et al., 2004 Rofecoxib trials
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https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(04)17514-4/fulltext

- Several ‘effect estimates’ have been proposed
* in the context of these meta-analyses

- Cohen’s d is a difference in means, divided by an estimate of the standard deviation
of the difference not the standard error

relative risks, or odds-ratios, for 0,1 explanatory variables are already on a
standardized scale related to probabilities

A-level maths paper referred to standardized estimates of 3 after logistic regression

this might be a re-scaling of the covariates (math ability, etc.) to standardized units

7
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... Effect sizes Thanks to Ilya

To understand how Cohen’s d for two independent groups is calculated, let’s first look at the

formula for the t-statistic:

M,-M,

SDpooled X = ar L.

ny ny

Here M 1 -M 2 is the difference between the means, and SD;,o01q is the pooled standard
deviation (Lakens, 2013), and nl and n2 are the sample sizes of the two groups that are being
compared. The 7-value is used to determine whether the difference between two groups in a 7-
test is statistically significant (as explained in the chapter on p-values. The formula for Cohen’s

d_is very similar:

Improving o M,—M,
Your *" SDpooted

Statistical
Inferences

As you can see, the sample size in each group (n; and ny) is part of the formula for a z-value,

but it is not part of the formula for Cohen’s d (the pooled standard deviation is computed by
Yember 2 2022 20



https://lakens.github.io/statistical_inferences/index.html

Which reminds me

Applied Statistics |

On the Nuisance of Control Variables

in Regression Analysis

Paul Hiinermund
Copenhagen Business School, Kilevej 14A, Frederiksberg, 2000, DK.
phu.si@cbs.dk

Beyers Louw
Maastricht University, Tongersestraat 53, 6211 LM Maastricht, NL.
jb.louw@maastrichtuniversity.nl

September 28, 2022
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https://arxiv.org/pdf/2005.10314.pdf

Which reminds me

can estimate causal effect

e
L

of X on Y by controlling
for Z,, but cannot estimate

causal effect of Z, on Y

()

Figure 1: Examples of causal diagrams with valid control variable Z;
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https://arxiv.org/pdf/2005.10314.pdf

Binary/Binomial responses, extras ELM-2.7, 3.6, 4.1, 4.2

« with binary data, may get complete separation of 1s and os
- leading to likelihood function not maximized at finite 3 ELM-2 2.7

+ sometimes binary responses can be thought of as an indicator for the size of a
latent variable Z, ELM-2 4.1

s je.Y=1 <<= Z>cforsomefixedc
« distribution of Z sometimes called a tolerance distribution

- could be, e.g. Z ~ N(0,1), then Y = 1 with probability
- if Z ~ Logistic, then Y = 1 with probability _eel=p)/o

Thexp(y—p)/o

Applied Statistics | November 2 2022 23



Binary/Binomial responses, extras ELM-2.7, 3.6, 4.1, 4.2

link

a specification for the model link function. This can be a name/expression,
a literal character string, a length-one character vector,

or an object of class "link-glm" (such as generated by make.link)

provided it is not specified via one of the standard names given next.

The gaussian family accepts the links (as names) identity, log and inverse;
the binomial family the links logit, probit, cauchit,

(corresponding to logistic, normal and Cauchy CDFs respectively)

log and cloglog (complementary log-log);

the Gamma family the links inverse, identity and log;

the poisson family the links log, identity, and sqrt;

and the inverse.gaussian family the links 1/mu”2, inverse, identity and log.

Applied Statistics | November 2 2022 24



Generalized linear models

glm has several options for family

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu~2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")

quasipoisson(link = "log")

Each of these is a member of the class of generalized linear models

Generalized: distribution of response is not assumed to be normal

Linear: some transformation of E(y;) is of the form x/ 3 link function
Applied Statistics | November 2 2022 25



Generalized linear models: theory ELM-2 81,2; SM 10.3; ELM-1 61,2

* Vi i 1) = exp{w

s + (i 01)}

« E(y; | X;) = b’(6;) = u; defines y; as a function of 6;

* g(ui) = X[ 8 = n; links the n observations together via covariates
+ g(-) is the link function; n; is the linear predictor

* Var(y; | x;) = ¢ib"(6;) = V(i)

« V(.) is the variance function

Applied Statistics | November 2 2022 26



+ Normal: f(yi; s, 0?) = m exp{— (v — )}

= exp{ P OIDHE (1 15) og o2 — 4 207 — (1/2) log v/(27)}

g
¢i=0% 0=, b(u)=pi/2,b'(w)= pi,b" (i) =1
. . m; r m;—r;
+ ginomials (i py) = ("7 )71 = pA™ " yi = r/mi
1
m.

— explmiilog{pi/ (1~ p)} + milog(1  py) + g 7 )

11

¢i=1/m;, 6;=log{pi/(1—pi)}, b(p;)=—log(1—pi), pi=EW)

« ELM (884/6.) uses a;(¢) in place of ¢;, later a;(¢) = ¢/w;;
SM uses ¢;, later (p. 483) ¢; = ¢q;

Applied Statistics | November 2 2022 27



... Examples

ELM-2 8.1; SM 10.3:1

Family Canonical link Variance function ¢;
Normal n=p 1 o?
Binomial n=log{u/(1— )}t w(1-n) 1/m;
Poisson n = log(n) 1 1
Gamma n=1/u T 1/v
Inverse Gaussian 7 =1/pu? 3 £

1 v\” _ v
Gamma: f(V;; pi, v) = —— < ) %4 1'EXP(—;))/:'
1

14
= exp[——V; — vlog(
Wi 1

Yi

= exp{¥(

i

()
1

Hi

1

Applied Statistics | November 2 2022

) + (v — 1) log(y;) + v log(v) — log{I'(v)}]

- log(i) + (v — 1) log(y;) — log () + v log(v)}
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Model:

E(y;)) = wis a(u) =X B; var(y;) = ¢iV(pi) ¢ = aio
Estimation:

B o= X'WX)"X"Wz; z=X5+Wu; 2(B) = XB + W (B)u(B)
Variance:

var(B) = (X"wx)™ W is diagonal

On pp. 118-119 of ELM, this iteration is carried out in R on the bliss data
Applied Statistics | November 2 2022 29



B o= (X'WX)"'X"Wz;, z=X3+Wu; 2(B) = XB + W= (B)u(B)
var(B) = (XTwx)™ W is diagonal
Wi =
u; =

Note /3 is free of ¢ because of W and W—", but Var(3) depends on ¢
Warning: in ELM W is defined slightly differently (no ¢), so he has Var(3) = (X"WX) "¢

Applied Statistics | November 2 2022 30



B o= (X'WX)"'X"Wz;, z=X3+Wu; 2(B) = XB + W= (B)u(B)
var() = (X"wx)™ W is diagonal
W.. — 1
! $ai{g’ (1) }2V (i)
N Vi— Wi
' ¢a;g’ (wi)V (1)

Note j is free of ¢ because of W and W, but Var(3) depends on ¢
Warnings

1. in ELM W is defined slightly differently (no ¢), so he writes Var(3) = (XTWX)~"¢

2. ELM uses w; where SM uses 1/a;
Applied Statistics | November 2 2022 31



Analysis of data using GLMs: overview

- choose a model, often based on type of response or on mean/variance relationship
- fit a model, using maximum likelihood estimation convergence (almost) guaranteed
- inference for individual coefficients ; from summary

- inference for groups of coefficients by analysis of deviance

- estimation of ¢ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(ji)

_ (yl /M
- Z

« analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
- diagnostics: same as for 1m ELM p.124; SM p.477
» residuals: deviance or Pearson; can be standardized ELM likes 1/2 normal plots
« influential observations: uses hat matrix SMPracticals has very good GLM diagnostics

Im.diag, plot.glm.dia
Applied Statistics | November 2 2022 & €, P & € 32
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E-commerce domain survival rates, by platform, 2019-2021
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In PNAS Simon et al. 2022

pN AS RESEARCH ARTICLE ‘ PSYCHOLOGICAL AND COGNITIVE SCIENCES ) OPEN ACCESS

Ghock for
‘updates.

Sleep facilitates spatial memory but not navigation using
the Minecraft Memory and Navigation task

Katharine C. Simon®", Gregory D. Clemenson®, Jing Zhang®®, Negin Sattari®®, Alessandra E. Shuster?, Brandon Clayton?, Elisabet Alzueta“®,
Teji Dulai, Massimiliano de Zambotti®, Craig Stark®@®, Fiona C. Baker®®, and Sara C. Mednick®®

Edited by Thomas Albright, Salk Institute for Biological Studies, La Jolla, CA; received February 11, 2022; accepted August 4, 2022

Sleep facil hi d 1 . ing the isition and mainte-
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https://www.pnas.org/doi/epdf/10.1073/pnas.2202394119

In PNAS Simon et al. 2022
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