## **Methods of Applied Statistics I**

STA2101H F LEC9101

Week 8

November 2 2022



- 1. Upcoming events No Class on November 9
- 2. Housekeeping
- 3. Recap
- 4. Observational studies and causality
- 5. Measures of risk
- 6. Generalized linear models
- 7. In the News
- 8. Office Hour Wednesday November 2: 4-5 pm in person; 7-8 pm on Zoom

Upcoming Toronto

 November 3 3.30-4.30 Statistical Sciences Seminar Room 9014, Hydro Building and online

## Alexandra Schmidt, McGill U "Modelling non-Gaussian spatio-temporal processes"

 November 10 9.00-6.00 CANSSI Ontario Statistical Software Conference BL224 140 St. George St.

and online



Upcoming Part 2 London



A celebration of 50 Years of the Cox model in memory of Sir David Cox





**Applied Statistics I** 

**Upcoming Part 2** 

1972]

187

#### Regression Models and Life-Tables

By D. R. Cox

Imperial College, London

[Read before the ROYAL STATISTICAL SOCIETY, at a meeting organized by the Research Section, on Wednesday, March 8th, 1972, Mr M. J. R. HEALY in the Chair]

#### SUMMARY

The analysis of censored failure times is considered. It is assumed that on each individual are available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined.

**Upcoming Part 2** 



proportionality: ⊕, sample 0; ×, sample 1. For clarity, the constrained estimates are indicated by the left ends of the defining horizontal lines.



## Housekeeping

Project – see course web page for outline and marking scheme

- Homework
  - HW7 due Nov 4 (Friday)
  - HW8 posted Nov 2/3/4 due Nov 16 (Wednesday)
  - HW9 posted Nov 16/17 due Nov 23 (Wednesday)
  - HW10 (Last) posted Nov 23/24 due Dec 1 (Wednesday)
- Syllabus see course web page for updated syllabus
  - nonparametric regression (ELM-2 Ch.14, ELM-1 Ch.11)
  - survival data analysis (SM Ch.5.4, 10.8)
  - analysis of categorical responses (ELM-2 Ch. 6,7, ELM-1 Ch.5)
  - random effects and mixed models (ELM2 Ch.10, ELM-1 Ch.8)
  - longitudinal data analysis (ELM-2 Ch.11, ELM-1 Ch.9)

Applied Statistics I November 2 2022

marking

- likelihood function inference Cheatsheet
- Maximum Likelihood Estimate  $\hat{\theta}$  and estimated cov matrix  $\{-\ell''(\hat{\theta})\}^{-1} = j(\hat{\theta})^{-1}$
- Likelihood ratio test and nested models  $w(\theta) = 2\{\ell(\hat{\theta}) \ell(\theta)\}$
- Application to binomial: regression model and saturated model
- · Residual deviance as a test of model fit
- Pearson's  $\chi^2$  correction

$$\sum_{i=1}^{m} \left[ \left\{ \frac{y_i - n_i p_i(\hat{\beta})}{n_i p_i(\hat{\beta})} \right\}^2 + \left\{ \frac{n_i - y_i - n_i(1 - p_i(\hat{\beta}))}{n_i \{1 - p_i(\hat{\beta})\}} \right\}^2 \right] = \dots = 0$$

"Boxes of trout eggs were buried at five different stream locations and retrieved at 4 different times. The number of surviving eggs was recorded. The box was not returned to the stream."

J. Hinde, C.G.B. Demétrio/Computational Statistics & Data Analysis 27 (1998) 151-170

159

Table 3 Trout egg data

| Location in stream | Survival period (weeks) |         |        |         |  |
|--------------------|-------------------------|---------|--------|---------|--|
|                    | 4                       | 7       | 8      | 11      |  |
| 1                  | 89/94                   | 94/98   | 77/86  | 141/155 |  |
| 2                  | 106/108                 | 91/106  | 87/96  | 104/122 |  |
| 3                  | 119/123                 | 100/130 | 88/119 | 91/125  |  |
| 4                  | 104/104                 | 80/97   | 67/99  | 111/132 |  |
| 5                  | 49/93                   | 11/113  | 18/88  | 0/138   |  |

- $Y_i \sim Bin(n_i, p_i) \Rightarrow E(Y_i) = n_i p_i$ ,  $Var(Y_i) = n_i p_i (1 p_i)$
- variance is determined by the mean
- bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial, data = troutegg)

```
summary(bmod)
```

Null deviance: 1021.469 on 19 degrees of freedom
## Residual deviance: 64.495 on 12 degrees of freedom
## ATC: 157.03

- quasi-binomial:  $E(Y_i) = n_i p_i$ ,  $Var(Y_i) = \phi n_i p_i (1 p_i)$
- estimate  $\phi$ ?

over-dispersion parameter

• usually use  $X^2/(n-p)$ , where

$$X^2 = \sum \frac{(y_i - n_i \hat{p}_i)^2}{n \hat{p}_i (1 - \hat{p}_i)}$$

- the estimation of over-dispersion, and use of t- and F-tests, is approximate
- there isn't a binomial model with this structure
- · but it is sometimes a handy fudge
- a more formal approach is to find a more flexible distribution for responses that are binary, or proportions
- for example, the beta distribution on (0,1) has two parameters

ELM-2 §3.6

$$f(y \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \quad 0 < y < 1$$

•

$$E(Y) = \mu = \frac{\alpha}{\alpha + \beta}, \quad var(Y) = \frac{\mu(1 - \mu)}{1 + \alpha + \beta} = \frac{\mu(1 - \mu)}{1 + \phi}, \quad \phi = \alpha + \beta$$

•  $logit(\mu_i) = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}$ , etc.

 $1/(1+\phi)$  is now the overdispersion parameter

## **Measures of risk**

- see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

$$logit(p_i) \sim \beta_0 + \beta_1 z_i, \quad i = 1, \ldots, n$$

- no difference between groups  $\iff$  odds-ratio  $\equiv$  1  $\iff$   $\beta_1 = 0$
- odds ratio of 3 or more is considered "large"

## ... Measures of risk

- we might be interested in risk ratio  $\frac{p_1}{p_0}$  instead of odds ratio  $\frac{p_1(1-p_0)}{p_0(1-p_1)}$
- also called relative risk
- if  $p_1$  and  $p_0$  are both small, (y = 1 is rare), then

$$\frac{p_1}{p_0} \approx \frac{p_1(1-p_0)}{p_0(1-p_1)}$$

- sometimes  $p_1/p_0$  can be large but if  $p_1$  and  $p_0$  are both small the risk difference  $p_1-p_0$  might also be very small
- ullet in order to estimate the difference we need to know the baseline risk  $p_{
  m o}$
- bacon sandwiches www.youtube.com/watch?v=4szyEbU94ig
- risk calculator https://realrisk.wintoncentre.uk/p1

## RealRisk make sense of your stats





Odds ratio 0.64; baseline risk 41.4%







Odds ratio 0.64; baseline risk 41.4%

1 / 1000 3 / 1000 (2 extra cases)

## Odds ratio 2.91; baseline risk 1/1000

Whether we sample prospectively or retrospectively, the odds ratio is the same

|                 | Lung cancer |          |  |
|-----------------|-------------|----------|--|
|                 | 1           | 0        |  |
|                 | cases       | controls |  |
| smoke = 1 (yes) | 688         | 650      |  |
| smoke = o (no)  | 21          | 59       |  |
|                 | 709         | 709      |  |

retro: 
$$OR = \frac{(688/709)/(21/709)}{(650/709)/(59/709)} = \frac{688 \times 59}{650 \times 21} = 2.97$$

prosp: 
$$OR = \frac{\{688/(688+650)\}/\{650/(688+650)\}}{21/(21+59)/\{59/(21+59)\}} = \frac{688\times59}{650\times21} = 2.97$$

## Types of observational studies

- secondary analysis of data collected for another purpose
- estimation of some feature of a defined population

could in principle be found exactly

- tracking across time of such features
- · study of a relationship between features, where individuals may be examined
  - at a single time point
  - · at several time points for different individuals
  - · at different time points for the same individual
- census
- meta-analysis: statistical assessment of a collection of studies on the same topic

#### **Effect sizes**

- · Meta-analyses combine the results from many different studies
- it is helpful if the coefficient estimates are all on the same scale

• Example: Jüni et al., 2004 Rofecoxib trials

Relative risk (95% CI) of myocardial infarction Patients 523 0.916 0.736 13 5102 0.855 0.034 0.025 0.010 21 432 Favor us referensily Favours control online

### ... Effect sizes

- · Several 'effect estimates' have been proposed
- in the context of these meta-analyses
- relative risks, or odds-ratios, for 0,1 explanatory variables are already on a standardized scale
- A-level maths paper referred to standardized estimates of  $\beta$  after logistic regression
- this might be a re-scaling of the covariates (math ability, etc.) to standardized units

??

... Effect sizes Thanks to Ilya

To understand how Cohen's *d* for two independent groups is calculated, let's first look at the formula for the *t*-statistic:

$$t = rac{\overline{M}_1 {-} \overline{M}_2}{\mathrm{SD}_{\mathrm{pooled}} imes \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

Here  $\overline{M}_1 - \overline{M}_2$  is the difference between the means, and SD<sub>pooled</sub> is the pooled standard deviation (Lakens, 2013), and n1 and n2 are the sample sizes of the two groups that are being compared. The *t*-value is used to determine whether the difference between two groups in a *t*-test is statistically significant (as explained in the chapter on *p*-values. The formula for Cohen's  $d_-$  is very similar:

$$d_s = rac{\overline{M}_1 {-} \overline{M}_2}{\mathrm{SD}_{\mathrm{pooled}}}$$

As you can see, the sample size in each group  $(n_1 \text{ and } n_2)$  is part of the formula for a *t*-value, but it is not part of the formula for Cohen's d (the pooled standard deviation is computed by

Improving Your Statistical Inferences Which reminds me

# On the Nuisance of Control Variables in Regression Analysis

#### Paul Hünermund

Copenhagen Business School, Kilevej 14A, Frederiksberg, 2000, DK.  ${\rm phu.si@cbs.dk}$ 

#### Beyers Louw

 $\label{eq:mastricht} \begin{tabular}{ll} Maastricht University, Tongersestraat 53, 6211 LM Maastricht, NL. \\ jb.louw@maastrichtuniversity.nl \\ \end{tabular}$ 

September 28, 2022

Which reminds me Hünermand & Louw



Figure 1: Examples of causal diagrams with valid control variable  $\mathbb{Z}_1$ 

can estimate causal effect of X on Y by controlling for  $Z_1$ , but cannot estimate causal effect of  $Z_1$  on Y

- with binary data, may get complete separation of 1s and os
- leading to likelihood function not maximized at finite  $\beta$

ELM-2 2.7

- sometimes binary responses can be thought of as an indicator for the size of a
  latent variable Z,
- i.e.  $Y = 1 \iff Z > c$  for some fixed c
- distribution of Z sometimes called a tolerance distribution
- could be, e.g.  $Z \sim N(0,1)$ , then Y = 1 with probability
- if  $Z \sim \textit{Logistic}$ , then Y = 1 with probability

 $\exp(y-\mu)/\sigma$  $+\exp(y-\mu)/\sigma$ 

```
link
```

a specification for the model link function. This can be a name/expression, a literal character string, a length-one character vector, or an object of class "link-glm" (such as generated by make.link) provided it is not specified via one of the standard names given next.

The gaussian family accepts the links (as names) identity, log and inverse; the binomial family the links logit, probit, cauchit, (corresponding to logistic, normal and Cauchy CDFs respectively) log and cloglog (complementary log-log); the Gamma family the links inverse, identity and log; the poisson family the links log, identity, and sqrt; and the inverse gaussian family the links 1/mu^2, inverse, identity and log.

## **Generalized linear models**

glm has several options for family

```
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```

Each of these is a member of the class of generalized linear models Generalized: distribution of response is not assumed to be normal

Linear: some transformation of  $E(y_i)$  is of the form  $x_i^T \beta$ 

link function

• 
$$f(y_i; \mu_i, \phi_i) = \exp\{\frac{y_i\theta_i - b(\theta_i)}{\phi_i} + c(y_i; \phi_i)\}$$

- $E(y_i \mid x_i) = b'(\theta_i) = \mu_i$  defines  $\mu_i$  as a function of  $\theta_i$
- $g(\mu_i) = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta} = \eta_i$  links the *n* observations together via covariates
- $g(\cdot)$  is the link function;  $\eta_i$  is the linear predictor
- $Var(y_i \mid x_i) = \phi_i b''(\theta_i) = \phi_i V(\mu_i)$
- $V(\cdot)$  is the variance function

## **Examples**

• Normal: 
$$f(y_i; \mu_i, \sigma^2) = \frac{1}{\sqrt{(2\pi)\sigma}} \exp\{-\frac{1}{2\sigma^2}(y_i - \mu_i^2)\}$$
  
 $= \exp\{\frac{y_i \mu_i - (1/2)\mu_i^2}{\sigma^2} - (1/2)\log \sigma^2 - y_i^2/2\sigma^2 - (1/2)\log \sqrt{(2\pi)}\}$   
 $\phi_i = \sigma^2, \quad \theta_i = \mu_i, \quad b(\mu_i) = \mu_i^2/2, b'(\mu_i) = \mu_i, b''(\mu_i) = 1$ 

• Binomial: 
$$f(r_i; p_i) = \binom{m_i}{r_i} p_i^{r_i} (1 - p_i)^{m_i - r_i}; \quad y_i = r_i / m_i$$
  
 $= \exp[m_i y_i \log\{p_i / (1 - p_i)\} + m_i \log(1 - p_i) + \log\binom{m_i}{m_i y_i}]$   
 $\phi_i = 1 / m_i, \quad \theta_i = \log\{p_i / (1 - p_i)\}, \quad b(p_i) = -\log(1 - p_i), \quad p_i = E(y_i)$ 

• ELM (§8.1/6.1) uses  $a_i(\phi)$  in place of  $\phi_i$ , later  $a_i(\phi) = \phi/w_i$ ; SM uses  $\phi_i$ , later (p. 483)  $\phi_i = \phi a_i$ 

## ... Examples

| Family           | Canonical link               | Variance function | $\phi_i$     |
|------------------|------------------------------|-------------------|--------------|
|                  |                              |                   |              |
| Normal           | $\eta = \mu$                 | 1                 | $\sigma^{2}$ |
| Binomial         | $\eta = \log\{\mu/(1-\mu)\}$ | $\mu$ (1 $-\mu$ ) | $1/m_i$      |
| Poisson          | $\eta = \log(\mu)$           | $\mu$             | 1            |
| Gamma            | $\eta=$ 1 $/\mu$             | $\mu^2$           | 1/ $ u$      |
| Inverse Gaussian | $\eta=1/\mu^2$               | $\mu^3$           | ξ            |

Gamma: 
$$f(y_i; \mu_i, \nu) = \frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu_i}\right)^{\nu} y_i^{\nu-1} \exp(-\frac{\nu}{\mu_i}) y_i$$
  

$$= \exp[-\frac{\nu}{\mu_i} y_i - \nu \log(\frac{1}{\mu_i}) + (\nu - 1) \log(y_i) + \nu \log(\nu) - \log\{\Gamma(\nu)\}]$$

$$= \exp\{\nu(\frac{y_i}{-\mu_i} - \log(\frac{1}{\mu_i}) + (\nu - 1) \log(y_i) - \log\Gamma(\nu) + \nu \log(\nu)\}$$

## **Summary**

Model:

$$\mathbb{E}(\mathbf{y}_i) = \mu_i$$

$$\mathbb{E}(\mathbf{y}_i) = \mu_i; \qquad g(\mu_i) = \mathbf{x}_i^\mathsf{T} \beta;$$

$$Var(y_i) = \phi_i V(\mu_i)$$
  $\phi_i = a_i \phi$ 

Estimation:

$$\hat{\beta} = (X^T W X)^{-1} X^T W z; \quad z = X \beta + W^{-1} u; \qquad z(\beta) = X \beta + W^{-1}(\beta) u(\beta)$$

$$z(\beta) = X\beta + W^{-1}(\beta)u(\beta)$$

Variance:

$$Var(\hat{\beta}) \doteq (X^TWX)^{-1}$$

W is diagonal

## **Summary 2**

 $U_i =$ 

$$\hat{\beta} = (X^T W X)^{-1} X^T W z; \quad z = X \beta + W^{-1} u; \qquad z(\beta) = X \beta + W^{-1}(\beta) u(\beta)$$
 
$$Var(\hat{\beta}) \doteq (X^T W X)^{-1} \qquad \qquad W \text{ is diagonal}$$
 
$$W_{ii} =$$

Note  $\hat{\beta}$  is free of  $\phi$  because of W and  $W^{-1}$ , but  $Var(\hat{\beta})$  depends on  $\phi$ Warning: in ELM W is defined slightly differently (no  $\phi$ ), so he has  $Var(\hat{\beta}) = (X^TWX)^{-1}\hat{\phi}$ 

## **Summary 2**

$$\hat{\beta} = (X^T W X)^{-1} X^T W z; \quad z = X \beta + W^{-1} u; \qquad z(\beta) = X \beta + W^{-1}(\beta) u(\beta)$$
 
$$\text{Var}(\hat{\beta}) \doteq (X^T W X)^{-1} \qquad \text{W is diagonal}$$
 
$$W_{ii} = \frac{1}{\phi a_i \{g'(\mu_i)\}^2 V(\mu_i)}$$
 
$$u_i = \frac{y_i - \mu_i}{\phi a_i g'(\mu_i) V(\mu_i)}$$

Note  $\hat{\beta}$  is free of  $\phi$  because of W and W<sup>-1</sup>, but  $\mathrm{Var}(\hat{\beta})$  depends on  $\phi$ 

## Warnings

- 1. in ELM W is defined slightly differently (no  $\phi$ ), so he writes  $\widehat{\text{Var}}(\hat{\beta}) = (X^T W X)^{-1} \hat{\phi}$
- 2. ELM uses  $w_i$  where SM uses  $1/a_i$

## Analysis of data using GLMs: overview

- choose a model, often based on type of response
- fit a model, using maximum likelihood estimation
- ullet inference for individual coefficients  $\hat{eta}_j$  from summary
- inference for groups of coefficients by analysis of deviance
- estimation of  $\phi$  based on Pearson's Chi-square

typo in ELM p.121: cross out  $= \operatorname{var}(\hat{\mu})$ 

or on mean/variance relationship

convergence (almost) guaranteed

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$

- analysis of deviance: see p. 121 (near bottom)
- diagnostics: same as for lm
  - · residuals: deviance or Pearson; can be standardized
  - influential observations: uses hat matrix

likelihood ratio tests

ELM p.124; SM p.477

ELM likes 1/2 normal plots

SMPracticals has very good GLM diagnostics

glm.diag, plot.glm.diag

## In the News









shares what dominates his focus: service and performance. Andrew Willis reports ::-









## Shopify

**Applied Statistics I** 



In PNAS Simon et al. 2022



RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES





#### Sleep facilitates spatial memory but not navigation using the Minecraft Memory and Navigation task

Katharine C. Simon<sup>a,1</sup>, Gregory D. Clemenson<sup>b</sup>, Jing Zhang<sup>a</sup>, Negin Sattari<sup>a</sup>, Alessandra E. Shuster<sup>a</sup>, Brandon Clayton<sup>a</sup>. Elisabet Alzueta<sup>a</sup>. Teii Dulai<sup>c</sup>, Massimiliano de Zambotti<sup>c</sup>, Craig Stark<sup>b</sup>, Fiona C. Baker<sup>c,d</sup>, and Sara C. Mednick<sup>a</sup>

Edited by Thomas Albright, Salk Institute for Biological Studies, La Iolla, CA: received February 11, 2022; accepted August 4, 2022

Sleep facilitates hippocampal-dependent memories, supporting the acquisition and mainte-

In PNAS Simon et al. 2022



