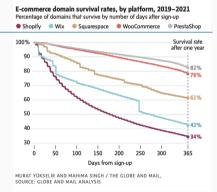
Methods of Applied Statistics I

STA2101H F LEC9101

Week 8

November 2 2022



- 1. Upcoming events No Class on November 9
- 2. Housekeeping
- 3. Recap
- 4. Observational studies and causality
- 5. Measures of risk
- 6. Generalized linear models
- 7. In the News
- 8. Office Hour Wednesday November 2: 4-5 pm in person; 7-8 pm on Zoom

Upcoming Toronto

 November 3 3.30-4.30 Statistical Sciences Seminar Room 9014, Hydro Building and online

Alexandra Schmidt, McGill U "Modelling non-Gaussian spatio-temporal processes"

 November 10 9.00-6.00 CANSSI Ontario Statistical Software Conference BL224 140 St. George St.

and online

Upcoming Part 2 London

A celebration of 50 Years of the Cox model in memory of Sir David Cox

Applied Statistics I

Upcoming Part 2

1972]

187

Regression Models and Life-Tables

By D. R. Cox

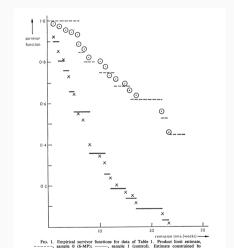
Imperial College, London

[Read before the ROYAL STATISTICAL SOCIETY, at a meeting organized by the Research Section, on Wednesday, March 8th, 1972, Mr M. J. R. HEALY in the Chair]

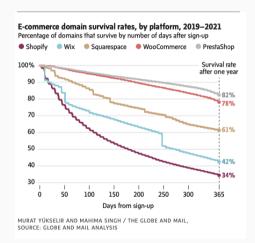
SUMMARY

The analysis of censored failure times is considered. It is assumed that on each individual are available values of one or more explanatory variables. The hazard function (age-specific failure rate) is taken to be a function of the explanatory variables and unknown regression coefficients multiplied by an arbitrary and unknown function of time. A conditional likelihood is obtained, leading to inferences about the unknown regression coefficients. Some generalizations are outlined.

Upcoming Part 2



proportionality: ⊕, sample 0; ×, sample 1. For clarity, the constrained estimates are indicated by the left ends of the defining horizontal lines.



Housekeeping

Project – see course web page for outline and marking scheme

- Homework
 - HW7 due Nov 4 (Friday)
 - HW8 posted Nov 2/3/4 due Nov 16 (Wednesday)
 - HW9 posted Nov 16/17 due Nov 23 (Wednesday)
 - HW10 (Last) posted Nov 23/24 due Dec 1 (Wednesday)
- Syllabus see course web page for updated syllabus
 - nonparametric regression (ELM-2 Ch.14, ELM-1 Ch.11)
 - survival data analysis (SM Ch.5.4, 10.8)
 - analysis of categorical responses (ELM-2 Ch. 6,7, ELM-1 Ch.5)
 - random effects and mixed models (ELM2 Ch.10, ELM-1 Ch.8)
 - longitudinal data analysis (ELM-2 Ch.11, ELM-1 Ch.9)

Applied Statistics I November 2 2022

marking

- likelihood function inference Cheatsheet
- Maximum Likelihood Estimate $\hat{\theta}$ and estimated cov matrix $\{-\ell''(\hat{\theta})\}^{-1} = j(\hat{\theta})^{-1}$
- Likelihood ratio test and nested models $w(\theta) = 2\{\ell(\hat{\theta}) \ell(\theta)\}$
- Application to binomial: regression model and saturated model
- · Residual deviance as a test of model fit
- Pearson's χ^2 correction

$$\sum_{i=1}^{m} \left[\left\{ \frac{y_i - n_i p_i(\hat{\beta})}{n_i p_i(\hat{\beta})} \right\}^2 + \left\{ \frac{n_i - y_i - n_i(1 - p_i(\hat{\beta}))}{n_i \{1 - p_i(\hat{\beta})\}} \right\}^2 \right] = \dots = 0$$

"Boxes of trout eggs were buried at five different stream locations and retrieved at 4 different times. The number of surviving eggs was recorded. The box was not returned to the stream."

J. Hinde, C.G.B. Demétrio/Computational Statistics & Data Analysis 27 (1998) 151-170

159

Table 3 Trout egg data

Location in stream	Survival period (weeks)				
	4	7	8	11	
1	89/94	94/98	77/86	141/155	
2	106/108	91/106	87/96	104/122	
3	119/123	100/130	88/119	91/125	
4	104/104	80/97	67/99	111/132	
5	49/93	11/113	18/88	0/138	

- $Y_i \sim Bin(n_i, p_i) \Rightarrow E(Y_i) = n_i p_i$, $Var(Y_i) = n_i p_i (1 p_i)$
- variance is determined by the mean
- bmod <- glm(cbind(survive,total-survive) ~ location + period, family = binomial, data = troutegg)

```
summary(bmod)
```

Null deviance: 1021.469 on 19 degrees of freedom
Residual deviance: 64.495 on 12 degrees of freedom
ATC: 157.03

- quasi-binomial: $E(Y_i) = n_i p_i$, $Var(Y_i) = \phi n_i p_i (1 p_i)$
- estimate ϕ ?

over-dispersion parameter

• usually use $X^2/(n-p)$, where

$$X^2 = \sum \frac{(y_i - n_i \hat{p}_i)^2}{n \hat{p}_i (1 - \hat{p}_i)}$$

- the estimation of over-dispersion, and use of t- and F-tests, is approximate
- there isn't a binomial model with this structure
- · but it is sometimes a handy fudge
- a more formal approach is to find a more flexible distribution for responses that are binary, or proportions
- for example, the beta distribution on (0,1) has two parameters

ELM-2 §3.6

$$f(y \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}, \quad 0 < y < 1$$

•

$$E(Y) = \mu = \frac{\alpha}{\alpha + \beta}, \quad var(Y) = \frac{\mu(1 - \mu)}{1 + \alpha + \beta} = \frac{\mu(1 - \mu)}{1 + \phi}, \quad \phi = \alpha + \beta$$

• $logit(\mu_i) = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta}$, etc.

 $1/(1+\phi)$ is now the overdispersion parameter

Measures of risk

- see posted handout on case-control studies
- consider for simplicity binomial responses with a single binary covariate:

$$logit(p_i) \sim \beta_0 + \beta_1 z_i, \quad i = 1, \ldots, n$$

- no difference between groups \iff odds-ratio \equiv 1 \iff $\beta_1 = 0$
- odds ratio of 3 or more is considered "large"

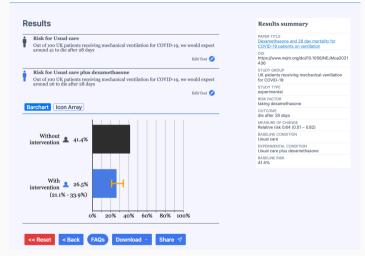
... Measures of risk

- we might be interested in risk ratio $\frac{p_1}{p_0}$ instead of odds ratio $\frac{p_1(1-p_0)}{p_0(1-p_1)}$
- also called relative risk
- if p_1 and p_0 are both small, (y = 1 is rare), then

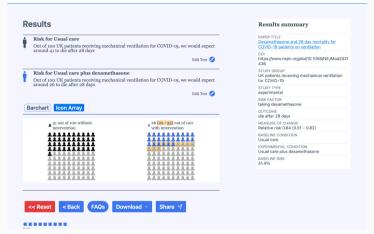
$$\frac{p_1}{p_0} \approx \frac{p_1(1-p_0)}{p_0(1-p_1)}$$

- sometimes p_1/p_0 can be large but if p_1 and p_0 are both small the risk difference p_1-p_0 might also be very small
- ullet in order to estimate the difference we need to know the baseline risk $p_{
 m o}$
- bacon sandwiches www.youtube.com/watch?v=4szyEbU94ig
- risk calculator https://realrisk.wintoncentre.uk/p1

RealRisk make sense of your stats



Odds ratio 0.64; baseline risk 41.4%



Odds ratio 0.64; baseline risk 41.4%

1 / 1000 3 / 1000 (2 extra cases)

Odds ratio 2.91; baseline risk 1/1000

Whether we sample prospectively or retrospectively, the odds ratio is the same

	Lung cancer		
	1	0	
	cases	controls	
smoke = 1 (yes)	688	650	
smoke = o (no)	21	59	
	709	709	

retro:
$$OR = \frac{(688/709)/(21/709)}{(650/709)/(59/709)} = \frac{688 \times 59}{650 \times 21} = 2.97$$

prosp:
$$OR = \frac{\{688/(688+650)\}/\{650/(688+650)\}}{21/(21+59)/\{59/(21+59)\}} = \frac{688\times59}{650\times21} = 2.97$$

Types of observational studies

- secondary analysis of data collected for another purpose
- estimation of some feature of a defined population

could in principle be found exactly

- tracking across time of such features
- · study of a relationship between features, where individuals may be examined
 - at a single time point
 - · at several time points for different individuals
 - · at different time points for the same individual
- census
- meta-analysis: statistical assessment of a collection of studies on the same topic

Effect sizes

- · Meta-analyses combine the results from many different studies
- it is helpful if the coefficient estimates are all on the same scale

• Example: Jüni et al., 2004 Rofecoxib trials

Relative risk (95% CI) of myocardial infarction Patients 523 0.916 0.736 13 5102 0.855 0.034 0.025 0.010 21 432 Favor us referensily Favours control online

... Effect sizes

- · Several 'effect estimates' have been proposed
- in the context of these meta-analyses
- relative risks, or odds-ratios, for 0,1 explanatory variables are already on a standardized scale
- A-level maths paper referred to standardized estimates of β after logistic regression
- this might be a re-scaling of the covariates (math ability, etc.) to standardized units

??

... Effect sizes Thanks to Ilya

To understand how Cohen's *d* for two independent groups is calculated, let's first look at the formula for the *t*-statistic:

$$t = rac{\overline{M}_1 {-} \overline{M}_2}{\mathrm{SD}_{\mathrm{pooled}} imes \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$

Here $\overline{M}_1 - \overline{M}_2$ is the difference between the means, and SD_{pooled} is the pooled standard deviation (Lakens, 2013), and n1 and n2 are the sample sizes of the two groups that are being compared. The *t*-value is used to determine whether the difference between two groups in a *t*-test is statistically significant (as explained in the chapter on *p*-values. The formula for Cohen's d_- is very similar:

$$d_s = rac{\overline{M}_1 {-} \overline{M}_2}{\mathrm{SD}_{\mathrm{pooled}}}$$

As you can see, the sample size in each group $(n_1 \text{ and } n_2)$ is part of the formula for a *t*-value, but it is not part of the formula for Cohen's d (the pooled standard deviation is computed by

Improving Your Statistical Inferences Which reminds me

On the Nuisance of Control Variables in Regression Analysis

Paul Hünermund

Copenhagen Business School, Kilevej 14A, Frederiksberg, 2000, DK. ${\rm phu.si@cbs.dk}$

Beyers Louw

 $\label{eq:mastricht} \begin{tabular}{ll} Maastricht University, Tongersestraat 53, 6211 LM Maastricht, NL. \\ jb.louw@maastrichtuniversity.nl \\ \end{tabular}$

September 28, 2022

Which reminds me Hünermand & Louw

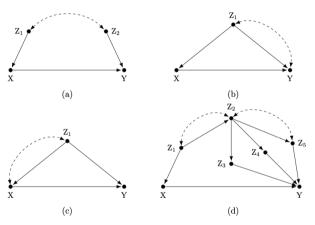


Figure 1: Examples of causal diagrams with valid control variable \mathbb{Z}_1

can estimate causal effect of X on Y by controlling for Z_1 , but cannot estimate causal effect of Z_1 on Y

- with binary data, may get complete separation of 1s and os
- leading to likelihood function not maximized at finite β

ELM-2 2.7

- sometimes binary responses can be thought of as an indicator for the size of a
 latent variable Z,
- i.e. $Y = 1 \iff Z > c$ for some fixed c
- distribution of Z sometimes called a tolerance distribution
- could be, e.g. $Z \sim N(0,1)$, then Y = 1 with probability
- if $Z \sim \textit{Logistic}$, then Y = 1 with probability

 $\exp(y-\mu)/\sigma$ $+\exp(y-\mu)/\sigma$

```
link
```

a specification for the model link function. This can be a name/expression, a literal character string, a length-one character vector, or an object of class "link-glm" (such as generated by make.link) provided it is not specified via one of the standard names given next.

The gaussian family accepts the links (as names) identity, log and inverse; the binomial family the links logit, probit, cauchit, (corresponding to logistic, normal and Cauchy CDFs respectively) log and cloglog (complementary log-log); the Gamma family the links inverse, identity and log; the poisson family the links log, identity, and sqrt; and the inverse gaussian family the links 1/mu^2, inverse, identity and log.

Generalized linear models

glm has several options for family

```
binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")
```

Each of these is a member of the class of generalized linear models Generalized: distribution of response is not assumed to be normal

Linear: some transformation of $E(y_i)$ is of the form $x_i^T \beta$

link function

•
$$f(y_i; \mu_i, \phi_i) = \exp\{\frac{y_i\theta_i - b(\theta_i)}{\phi_i} + c(y_i; \phi_i)\}$$

- $E(y_i \mid x_i) = b'(\theta_i) = \mu_i$ defines μ_i as a function of θ_i
- $g(\mu_i) = \mathbf{x}_i^\mathsf{T} \boldsymbol{\beta} = \eta_i$ links the *n* observations together via covariates
- $g(\cdot)$ is the link function; η_i is the linear predictor
- $Var(y_i \mid x_i) = \phi_i b''(\theta_i) = \phi_i V(\mu_i)$
- $V(\cdot)$ is the variance function

Examples

• Normal:
$$f(y_i; \mu_i, \sigma^2) = \frac{1}{\sqrt{(2\pi)\sigma}} \exp\{-\frac{1}{2\sigma^2}(y_i - \mu_i^2)\}$$

 $= \exp\{\frac{y_i \mu_i - (1/2)\mu_i^2}{\sigma^2} - (1/2)\log \sigma^2 - y_i^2/2\sigma^2 - (1/2)\log \sqrt{(2\pi)}\}$
 $\phi_i = \sigma^2, \quad \theta_i = \mu_i, \quad b(\mu_i) = \mu_i^2/2, b'(\mu_i) = \mu_i, b''(\mu_i) = 1$

• Binomial:
$$f(r_i; p_i) = \binom{m_i}{r_i} p_i^{r_i} (1 - p_i)^{m_i - r_i}; \quad y_i = r_i / m_i$$

 $= \exp[m_i y_i \log\{p_i / (1 - p_i)\} + m_i \log(1 - p_i) + \log\binom{m_i}{m_i y_i}]$
 $\phi_i = 1 / m_i, \quad \theta_i = \log\{p_i / (1 - p_i)\}, \quad b(p_i) = -\log(1 - p_i), \quad p_i = E(y_i)$

• ELM (§8.1/6.1) uses $a_i(\phi)$ in place of ϕ_i , later $a_i(\phi) = \phi/w_i$; SM uses ϕ_i , later (p. 483) $\phi_i = \phi a_i$

... Examples

Family	Canonical link	Variance function	ϕ_i
Normal	$\eta = \mu$	1	σ^{2}
Binomial	$\eta = \log\{\mu/(1-\mu)\}$	μ (1 $-\mu$)	$1/m_i$
Poisson	$\eta = \log(\mu)$	μ	1
Gamma	$\eta=$ 1 $/\mu$	μ^2	1/ $ u$
Inverse Gaussian	$\eta=1/\mu^2$	μ^3	ξ

Gamma:
$$f(y_i; \mu_i, \nu) = \frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu_i}\right)^{\nu} y_i^{\nu-1} \exp(-\frac{\nu}{\mu_i}) y_i$$

$$= \exp[-\frac{\nu}{\mu_i} y_i - \nu \log(\frac{1}{\mu_i}) + (\nu - 1) \log(y_i) + \nu \log(\nu) - \log\{\Gamma(\nu)\}]$$

$$= \exp\{\nu(\frac{y_i}{-\mu_i} - \log(\frac{1}{\mu_i}) + (\nu - 1) \log(y_i) - \log\Gamma(\nu) + \nu \log(\nu)\}$$

Summary

Model:

$$\mathbb{E}(\mathbf{y}_i) = \mu_i$$

$$\mathbb{E}(\mathbf{y}_i) = \mu_i; \qquad g(\mu_i) = \mathbf{x}_i^\mathsf{T} \beta;$$

$$Var(y_i) = \phi_i V(\mu_i)$$
 $\phi_i = a_i \phi$

Estimation:

$$\hat{\beta} = (X^T W X)^{-1} X^T W z; \quad z = X \beta + W^{-1} u; \qquad z(\beta) = X \beta + W^{-1}(\beta) u(\beta)$$

$$z(\beta) = X\beta + W^{-1}(\beta)u(\beta)$$

Variance:

$$Var(\hat{\beta}) \doteq (X^TWX)^{-1}$$

W is diagonal

Summary 2

 $U_i =$

$$\hat{\beta} = (X^T W X)^{-1} X^T W z; \quad z = X \beta + W^{-1} u; \qquad z(\beta) = X \beta + W^{-1}(\beta) u(\beta)$$

$$Var(\hat{\beta}) \doteq (X^T W X)^{-1} \qquad \qquad W \text{ is diagonal}$$

$$W_{ii} =$$

Note $\hat{\beta}$ is free of ϕ because of W and W^{-1} , but $Var(\hat{\beta})$ depends on ϕ Warning: in ELM W is defined slightly differently (no ϕ), so he has $Var(\hat{\beta}) = (X^TWX)^{-1}\hat{\phi}$

Summary 2

$$\hat{\beta} = (X^T W X)^{-1} X^T W z; \quad z = X \beta + W^{-1} u; \qquad z(\beta) = X \beta + W^{-1}(\beta) u(\beta)$$

$$\text{Var}(\hat{\beta}) \doteq (X^T W X)^{-1} \qquad \text{W is diagonal}$$

$$W_{ii} = \frac{1}{\phi a_i \{g'(\mu_i)\}^2 V(\mu_i)}$$

$$u_i = \frac{y_i - \mu_i}{\phi a_i g'(\mu_i) V(\mu_i)}$$

Note $\hat{\beta}$ is free of ϕ because of W and W⁻¹, but $\mathrm{Var}(\hat{\beta})$ depends on ϕ

Warnings

- 1. in ELM W is defined slightly differently (no ϕ), so he writes $\widehat{\text{Var}}(\hat{\beta}) = (X^T W X)^{-1} \hat{\phi}$
- 2. ELM uses w_i where SM uses $1/a_i$

Analysis of data using GLMs: overview

- choose a model, often based on type of response
- fit a model, using maximum likelihood estimation
- ullet inference for individual coefficients \hat{eta}_j from summary
- inference for groups of coefficients by analysis of deviance
- estimation of ϕ based on Pearson's Chi-square

typo in ELM p.121: cross out $= \operatorname{var}(\hat{\mu})$

or on mean/variance relationship

convergence (almost) guaranteed

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)}$$

- analysis of deviance: see p. 121 (near bottom)
- diagnostics: same as for lm
 - · residuals: deviance or Pearson; can be standardized
 - influential observations: uses hat matrix

likelihood ratio tests

ELM p.124; SM p.477

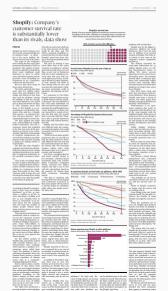
ELM likes 1/2 normal plots

SMPracticals has very good GLM diagnostics

glm.diag, plot.glm.diag

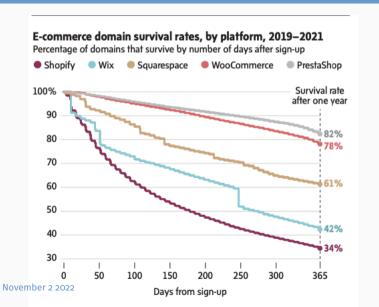
In the News

shares what dominates his focus: service and performance. Andrew Willis reports ::-



Shopify

Applied Statistics I



In PNAS Simon et al. 2022

RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES

Sleep facilitates spatial memory but not navigation using the Minecraft Memory and Navigation task

Katharine C. Simon^{a,1}, Gregory D. Clemenson^b, Jing Zhang^a, Negin Sattari^a, Alessandra E. Shuster^a, Brandon Clayton^a. Elisabet Alzueta^a. Teii Dulai^c, Massimiliano de Zambotti^c, Craig Stark^b, Fiona C. Baker^{c,d}, and Sara C. Mednick^a

Edited by Thomas Albright, Salk Institute for Biological Studies, La Iolla, CA: received February 11, 2022; accepted August 4, 2022

Sleep facilitates hippocampal-dependent memories, supporting the acquisition and mainte-

In PNAS Simon et al. 2022

