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Abstract

Mixed-effects models are commonly employed in the analysis of grouped or clustered data,
where observations in a cluster cannot reasonably be assumed to independent of one-another.
In this appendix, we explain how to use the lme function in the nlme package and the lmer

function in the lme4 package to fit linear mixed-effects models to hierarchical and longitudinal
data. In the first instance, individuals are clustered into higher-level units (such as students
within schools); in the second instance repeated observations are taken on individuals, who
define the clusters. We also describe the use of the glmer function in the lme4 package for
fitting generalized linear mixed-effects models, and the nlme function in the nlme package for
fitting nonlinear mixed-effects models..

1 Introduction

The normal linear model is described in Fox and Weisberg (2011, Chapter 4). For the ith observa-
tion, i = 1, . . . , n, the model is

yi = β1x1i + β2x2i + · · ·+ βpxpi + εi

εi ∼ NID(0, σ2)

Here yi is the response, x1i, . . . , xpi are regressors for case i (Fox and Weisberg, 2011, Page 149), and
β1, . . . , βp are fixed and generally unknown parameters. In this appendix will will generally assume
x1i = 1, to accomodate an intercept. The only random variables on the right-hand side of this model
are the statistical errors εi, and these random variables are specified as independent and normally
distributed. We can think of the εi as providing a random effect, as without them the responses
yi would be completely determined by the xs. The distribution of the εi is fully determined by
the value of σ2, which we can call the error variance component. As in Fox and Weisberg (2011,
Chapter 4) the normality assumption is stronger than is needed to fit linear models with errors that
are independent with constant variance, but we include the assumption here because normality or
some other similar assumption is needed for fitting the more complex mixed models we discuss in
this appendix.

For comparison with the linear mixed model of the next section, we rewrite the linear model in
matrix form,

y = Xβ + ε

ε ∼ Nn(0, σ2In)

where y = (y1, y2, ..., yn)′ is the response vector; X is the model matrix, with typical row x′i =
(x1i, x2i, ..., xpi); β = (β1, β2, ..., βp)

′ is the vector of regression coefficients; ε = (ε1, ε2, ..., εn)′ is the
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vector of errors; Nn represents the n-variable multivariate-normal distribution; 0 is an n× 1 vector
of 0s; and In is the order-n identity matrix.

Mixed-effect models, or just mixed models, include additional random-effect terms and associated
variance and covariance components, and are often appropriate for representing clustered, and
therefore dependent, data — arising, for example, when data are collected hierarchically, when
observations are taken on related individuals such as siblings, or when data are gathered over time
on the same individuals.

There are several packages in R for fitting mixed models to data, the most commonly used of
which are the nlme (?Pinheiro et al., 2014) and lme4 (Bates et al., 2014) packages, and which
we discuss in this appendix.1 The nlme package is a part of the standard R distribution, and the
lme4 package is available on CRAN.

Section 2 describes how to fit linear mixed models using nlme and lme4. Section 3 deals with
generalized linear mixed models, fit by the glmer function in the lme4 package, and Section 4
deals with nonlinear mixed models fit by the nlme function in the nlme package. Mixed models
are a large and complex subject, and we will only scratch the surface here. Bayesian approaches,
which we do not cover, are also common and are available in R: See the complementary readings
in Section 5.

2 Linear Mixed Models

Linear mixed models (LMMs) may be expressed in different but equivalent forms. In the social
and behavioral sciences, it is common to express such models in hierarchical form, as illustrated
in Section 2.1. The lme (linear mixed effects) function in the nlme package and the lmer (linear
mixed-effects regression, pronounced “elmer”) function in the lme4 package, however, employ the
Laird-Ware form of the LMM, after a seminal paper on the topic published by Laird and Ware
(1982). We describe here only problems with a two-level hierarchy, such as students in schools,
although more levels of hierarchy are possible (e.g., students within schools; schools within districts;
districts within states; and so on). The model we describe extends to more levels but the subscripts
needed get unwieldy. For i = 1, . . . ,M groups, we have

yij = β1x1ij + · · ·+ βpxpij (1)

+bi1z1ij + · · ·+ biqzqij + εij

bik ∼ N(0, ψ2
k),Cov(bik, bik′) = ψkk′

εij ∼ N(0, σ2λijj),Cov(εij , εij′) = σ2λijj′

where

� yij is the value of the response variable for the jth of ni observations in the ith of M groups
or clusters.

� β1, . . . , βp are the fixed-effect coefficients, which are identical for all groups.

� x1ij , . . . , xpij are the fixed-effect regressors for observation j in group i; the first regressor is
usually for the regression constant, x1ij = 1.

1nlme stands for nonlinear mixed effects, even though the package also includes the lme function for fitting linear
mixed models. Similarly, lme4 stands for linear mixed effects with S4 classes, but also includes functions for fitting
generalized linear and nonlinear mixed models.
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� bi1, . . . , biq are random effects for group i, assumed to have a multivariate normal distribution.
The random effects are different in each group. The bik are thought of as random variables,
not as parameters, and are similar in this respect to the errors εij .

� z1ij , . . . , zqij are the random-effect regressors. In many cases the zs are a subset of the xs and
may include all of the xs.

� ψ2
k are the variances and ψkk′ the covariances among the random effects. The variances and

covariances of the random effects are the same in each group. In some applications, the ψs
are parametrized in terms of a relatively small number of fundamental parameters.

� εij is the error for observation j in group i. The errors for group i are assumed to have a
multivariate normal distribution.

� σ2λijj′ is the covariance between errors εij and εij′ in group i. Generally, the λijj′ are
parametrized in terms of a few basic parameters, and their specific form depends upon context.
For example, when observations are sampled independently within groups and are assumed
to have constant error variance (as in the application developed in Section 2.1), λijj = 1,
λijj′ = 0 (for j 6= j′), and thus the only free parameter to estimate is the common error
variance, σ2. The lmer function in the lme4 package handles only models of this form. In
contrast, if the observations in a “group” represent longitudinal data on a single individual,
then the structure of the λs may be specified to capture autocorrelation among the errors, as
is common in observations collected over time. The lme function in the nlme package can
handle autocorrelated and heteroscedastic errors (as in the application in Section 2.4, which
employs autocorrelated errors).

� The random effects in different groups i 6= i′ are uncorrelated, so Cov(bik, bi′k′) = 0 and
Cov(εij , εi′j′) = 0, even if j = j′.

The matrix form of this model is equivalent but considerably simpler to write down,

yi = Xiβ + Zibi + εi

bi ∼ Nq(0,Ψ)

εi ∼ Nni(0, σ
2Λi)

where

� yi is the ni × 1 response vector for observations in the ith group. The ni need not all be
equal.

� Xi is the ni × p model matrix of fixed-effect regressors for observations in group i.

� β is the p× 1 vector of fixed-effect coefficients, invariant across groups.

� Zi is the ni × q matrix of regressors for the random effects for observations in group i.

� bi is the q × 1 vector of random effects for group i, potentially different in different groups.

� εi is the ni × 1 vector of errors for observations in group i.

� Ψ is the q × q covariance matrix for the random effects. To conform with previous notation,
the diagonal elements are ψjj = ψ2

j and the off-diagonals are ψjj′ .
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� σ2Λi is the ni×ni covariance matrix for the errors in group i; for the lmer function the error
covariance matrix for group i is σ2Ini . Models with other specifications for Λi can be fit with
the lme function in the nlme package at the cost of increased complexity, both of specifying
a model and of computations.

2.1 An Illustrative Application to Hierarchical Data

Applications of mixed models to hierarchical data have become common in the social sciences,
and nowhere more so than in research on education. The following example is borrowed from
Raudenbush and Bryk’s influential text on hierarchical linear models (Raudenbush and Bryk, 2002),
and also appears in a paper by Singer (1998), which shows how such models can be fit by the MIXED
procedure in SAS. In this section, we will show how to model Raudenbush and Bryk’s data using
the lme function in the nlme package and the lmer function in the lme4 package.

The data for the example, from the 1982 “High School and Beyond” survey, are for 7185 high-
school students from 160 schools. There are, therefore, on average 7185/160 ≈ 45 students per
school. We have two levels of hierarchy, with schools at the first or group level, and students within
schools as the second (individual) level of hierarchy. The data are conveniently available in the data
frames MathAchieve and MathAchSchool in the nlme package:2 The first data frame pertains to
students within schools, with one row in the data frame for each of the 7185 students. Here are the
first 10 rows of this data set, all for students in school number 1224:

> library(nlme)

> head(MathAchieve, 10) # first 10 students

Grouped Data: MathAch ~ SES | School

School Minority Sex SES MathAch MEANSES

1 1224 No Female -1.528 5.876 -0.428

2 1224 No Female -0.588 19.708 -0.428

3 1224 No Male -0.528 20.349 -0.428

4 1224 No Male -0.668 8.781 -0.428

5 1224 No Male -0.158 17.898 -0.428

6 1224 No Male 0.022 4.583 -0.428

7 1224 No Female -0.618 -2.832 -0.428

8 1224 No Male -0.998 0.523 -0.428

9 1224 No Female -0.888 1.527 -0.428

10 1224 No Male -0.458 21.521 -0.428

> dim(MathAchieve)

[1] 7185 6

The second data frame pertains to the schools into which students are clustered, and there is one
row for each of the M = 160 schools. The first 10 schools are:

> head(MathAchSchool, 10) # first 10 schools

2Data sets in the nlme package are actually grouped-data objects, which behave like data frames but include extra
information that is useful when using functions from nlme. The extra features of grouped-data objects are not used
by the lme4 functions. We will mostly ignore the extra features, apart from a brief discussion later in this appendix.
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School Size Sector PRACAD DISCLIM HIMINTY MEANSES

1224 1224 842 Public 0.35 1.597 0 -0.428

1288 1288 1855 Public 0.27 0.174 0 0.128

1296 1296 1719 Public 0.32 -0.137 1 -0.420

1308 1308 716 Catholic 0.96 -0.622 0 0.534

1317 1317 455 Catholic 0.95 -1.694 1 0.351

1358 1358 1430 Public 0.25 1.535 0 -0.014

1374 1374 2400 Public 0.50 2.016 0 -0.007

1433 1433 899 Catholic 0.96 -0.321 0 0.718

1436 1436 185 Catholic 1.00 -1.141 0 0.569

1461 1461 1672 Public 0.78 2.096 0 0.683

> dim(MathAchSchool)

[1] 160 7

In the analysis that follows, we will use the following variables:

� School: an identification number for the student’s school that appears in both MathAchieve

and MathAchSchool. Although it is not required by lme or lmer, students in a specific school
are in consecutive rows of the MathAchieve data frame, a convenient form of data organiza-
tion. The schools define groups or clusters: It is unreasonable to suppose that students in
the same school are independent of one another because, for example, they have the same
teachers, textbooks, and general school environment.

� SES: the socioeconomic status of the student’s family, centered to an overall mean of 0 (within
rounding error). This is a student-level variable from the MathAch data frame, sometimes
called an inner or individual-level variable.

� MathAch: the student’s score on a math-achievement test, a student-level variable.

� Sector: a factor coded "Catholic" or "Public". This is a school-level variable and hence
is identical for all students in the same school. A variable of this kind is sometimes called
an outer variable or a contextual variable. Because the Sector variable resides in the school
data set, we need to copy it over to the appropriate rows of the student data set. Such
data-management tasks are common in preparing data for mixed-modeling.3

� MEANSES: another outer variable, giving the mean SES for students in each school; we call
outer variables that aggregate individual-level data to the group level compositional variables.

This variable appears in both data sets, but it seems to have been calculated incorrectly
because its values in MathAchSchool are slightly different from the school means computed
directly from the MathAchieve data set. We will therefore recompute it using the tapply

function (see Fox and Weisberg, 2011, Section 8.4).4

3This data-management task is implied by the Laird-Ware form of the LMM. Some software that is specifically
oriented towards modeling hierarchical data employs two data sets — one for contextual variables and one for
individual-level variables — corresponding respectively to the MathAchieveSchool and MathAchieve data sets in the
present example.

4We are not sure why the school means given in the MathAchieveSchool and MathAchieve data sets differ from
the values that we compute directly. It is possible that the values in these data sets were computed from larger
populations of students in the sampled schools.
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> mses <- with(MathAchieve, tapply(SES, School, mean))

To decode this complex command, the with function tells R to do computions using the Math-

Achieve data. The tapply function applies the mean function to the variable SES, with a separate
mean for each value of School. The result is stored in the new variable mses, and it will consist of
the mean SES for each of the 160 schools; here are the first 8:

> mses[as.character(MathAchSchool$School[1:8])] # for first 8 schools

1224 1288 1296 1308 1317 1358 1374 1433

-0.43438 0.12160 -0.42550 0.52800 0.34533 -0.01967 -0.01264 0.71200

The integers shown—for example, 1224–are the school ID numbers.
Because the student-level and school-level variables are in different data frames, we will create

a new data frame that includes both of these, because this is the format that the R functions we
use expect. We name the new data frame Bryk, and start by copying the student-level data we
want:

> Bryk <- as.data.frame(MathAchieve[, c("School", "SES", "MathAch")])

> names(Bryk) <- tolower(names(Bryk))

Using as.data.frame, we make Bryk an ordinary data frame rather than a grouped-data object.
We rename the variables to lower-case in conformity with our usual practice — data frames start
with upper-case letters, variables with lower-case letters. Here are 20 randomly selected rows of
this data set:

> set.seed(12345) # for reproducibility

> (sample20 <- sort(sample(nrow(Bryk), 20))) # 20 randomly sampled students

[1] 9 248 1094 1195 1283 2334 2783 2806 2886 3278 3317 3656 5180 5223 5278

[16] 5467 6292 6365 6820 7103

> Bryk[sample20, ]

school ses mathach

9 1224 -0.888 1.527

248 1433 1.332 18.496

1094 2467 0.062 6.415

1195 2629 0.942 11.437

1283 2639 -1.088 -0.763

2334 3657 -0.288 13.156

2783 4042 0.792 14.500

2806 4042 0.482 3.687

2886 4223 1.242 20.375

3278 4511 -0.178 15.550

3317 4511 0.342 7.447

3656 5404 0.902 18.802

5180 7232 0.442 23.591

5223 7276 -1.098 -1.525

5278 7332 -0.508 16.114
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5467 7364 -0.178 20.325

6292 8707 -0.228 18.463

6365 8800 -0.658 11.928

6820 9198 -0.538 2.349

7103 9550 0.752 4.285

Next, we add the outer variables to the data frame, in the process computing a version of SES,
called cses, that is centered at the school means:

> sector <- MathAchSchool$Sector

> names(sector) <- row.names(MathAchSchool)

> Bryk <- within(Bryk,{

+ meanses <- as.vector(mses[as.character(school)])

+ cses <- ses - meanses

+ sector <- sector[as.character(school)]

+ })

> Bryk[sample20, ]

school ses mathach sector cses meanses

9 1224 -0.888 1.527 Public -0.45362 -0.43438

248 1433 1.332 18.496 Catholic 0.62000 0.71200

1094 2467 0.062 6.415 Public 0.39173 -0.32973

1195 2629 0.942 11.437 Catholic 1.07965 -0.13765

1283 2639 -1.088 -0.763 Public -0.12357 -0.96443

2334 3657 -0.288 13.156 Public 0.36118 -0.64918

2783 4042 0.792 14.500 Catholic 0.39000 0.40200

2806 4042 0.482 3.687 Catholic 0.08000 0.40200

2886 4223 1.242 20.375 Catholic 1.33600 -0.09400

3278 4511 -0.178 15.550 Catholic -0.07086 -0.10714

3317 4511 0.342 7.447 Catholic 0.44914 -0.10714

3656 5404 0.902 18.802 Catholic 0.07702 0.82498

5180 7232 0.442 23.591 Public 0.53212 -0.09012

5223 7276 -1.098 -1.525 Public -1.17623 0.07823

5278 7332 -0.508 16.114 Catholic -0.80500 0.29700

5467 7364 -0.178 20.325 Catholic -0.08864 -0.08936

6292 8707 -0.228 18.463 Public -0.38313 0.15513

6365 8800 -0.658 11.928 Catholic 0.05125 -0.70925

6820 9198 -0.538 2.349 Catholic -1.03000 0.49200

7103 9550 0.752 4.285 Public 0.69897 0.05303

These steps are a bit tricky:

� The students’ school numbers (in school) are converted to character values, used to index
the outer variables in the school dataset. This procedure assigns the appropriate values of
meanses and sector to each student.

� To make this indexing work for the Sector variable in the school data set, the variable is
assigned to the global vector sector, whose names are then set to the row names of the school
data frame.
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Following Raudenbush and Bryk, we will ask whether students’ math achievement is related to
their socioeconomic status; whether this relationship varies systematically by sector; and whether
the relationship varies randomly across schools within the same sector.

2.1.1 Examining the Data

As in all data analysis, it is advisable to examine the data before embarking upon statistical
modeling. There are too many schools to look at each individually, so we start by selecting samples
of 20 public and 20 Catholic schools, storing each sample in a data frame:

> cat <- with(Bryk, sample(unique(school[sector == "Catholic"]), 20))

> Cat.20 <- Bryk[is.element(Bryk$school, cat), ]

> dim(Cat.20)

[1] 1027 6

> pub <- with(Bryk, sample(unique(school[sector == "Public"]), 20))

> Pub.20 <- Bryk[is.element(Bryk$school, pub), ]

> dim(Pub.20)

[1] 739 6

Thus Cat.20 contains the data for 20 randomly selected Catholic schools, and Pub.20 the data for
20 randomly selected public schools.

We use Lattice graphics provided by the lattice package (see Fox and Weisberg, 2011, Section
7.3.1) to visualize the relationship between math achievement and school-centered SES in the
sampled schools:

> library(lattice) # for Lattice graphics

> trellis.device(color=FALSE) # to get black-and-white figures

> xyplot(mathach ~ cses | school, data=Cat.20, main="Catholic",

+ type=c("p", "r", "smooth"), span=1)

> xyplot(mathach ~ cses | school, data=Pub.20, main="Public",

+ type=c("p", "r", "smooth"), span=1)

The call to trellis.device creates a graphics-device window appropriately set up for Lattice
graphics, but with non-default options. In this case, we specified monochrome graphics (color =

FALSE) so that this appendix will print well in black-and-white; the default is to use color. The
xyplot function draws a Lattice display of scatterplots of math achievement against socioeconomic
status, one scatterplot for each school, as specified by the formula mathach ~ cses | school.
The school number appears in the strip label above each plot. We created one graph for Catholic
schools (Figure 1) and another for public schools (Figure 2). The argument main to xyplot supplies
the title of each graph. Each cell or panel of the display uses data from only one school. The
argument type=c("p", "r", "smooth") specifies plotting points, the OLS regression line, and a
loess smooth; see the argument type on the help page for panel.xyplot. Because of the small
number of students in each school, we set the span for the loess smoother to 1.

Examining the scatterplots in Figures 1 and 2, there is a weak positive relationship between
math achievement and SES in most Catholic schools, although there is variation among schools:
In some schools the slope of the regression line is near 0 or even negative. There is also a positive
relationship between the two variables for most of the public schools, and here the average slope is
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Figure 1: Trellis display of math achievement by socio-economic status for 20 randomly selected
Catholic schools. The broken lines give linear least-squares fits, the solid lines local-regression fits.
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Figure 2: Trellis display of math achievement by socio-economic status for 20 randomly selected
public schools.
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larger. Considering the moderate number of students in each school, linear regressions appear to
provide a reasonable summary of the within-school relationships between math achievement and
SES.

2.1.2 Using lmList to Fit Regressions Separately to Each School

The nlme package includes the function lmList for fitting a linear model to the observations in
each group, returning a list of linear-model objects, which is itself an object of class "lmList".5

Here, we fit the regression of math-achievement scores on centered socioeconomic status for each
school, creating separate "lmList" objects for Catholic and public schools:

> cat.list <- lmList(mathach ~ cses | school, subset = sector=="Catholic",

+ data=Bryk)

> pub.list <- lmList(mathach ~ cses | school, subset = sector=="Public",

+ data=Bryk)

Several methods exist for manipulating "lmList" objects. For example, the generic intervals

function has a method for objects of this class that returns by default 95-percent confidence intervals
for the regression coefficients; the confidence intervals can be plotted, as follows:

> plot(intervals(cat.list), main="Catholic")

> plot(intervals(pub.list), main="Public")

The resulting graphs are shown in Figures 3 and 4. In interpreting these graphs, we need to be
careful to take into account that we have not constrained the scales for the plots to be the same, and
indeed the scales for the intercepts and slopes in the public schools are wider than in the Catholic
schools. Because the SES variable is centered to 0 within schools, the intercepts are interpretable as
the average level of math achievement in each school. It is clear that there is substantial variation
in the intercepts among both Catholic and public schools; the confidence intervals for the slopes,
in contrast, overlap to a much greater extent, but there is still apparent school-to-school variation.

Parallel boxplots provide a different visualization of the estimated intercepts and slopes that is
easier to summarize. First, we save the coefficient estimates:

> cat.coef <- coef(cat.list)

> head(cat.coef, 6)

(Intercept) cses

7172 8.067 0.9945

4868 12.310 1.2865

2305 11.138 -0.7821

8800 7.336 2.5681

5192 10.409 1.6035

4523 8.352 2.3808

> pub.coef <- coef(pub.list)

> head(pub.coef, 6)

5A similar function is included in the lme4 package.
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Figure 3: 95-percent confidence intervals for the intercepts and slopes of the within-schools regres-
sions of math achievement on centered SES, for Catholic schools.
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Figure 4: 95-percent confidence intervals for the intercepts and slopes of the within-schools regres-
sions of math achievement on centered SES, for public schools.
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Figure 5: Boxplots of intercepts and slopes for the regressions of math achievement on centered
SES in Catholic and public schools..

(Intercept) cses

8367 4.553 0.2504

8854 4.240 1.9388

4458 5.811 1.1318

5762 4.325 -1.0141

6990 5.977 0.9477

5815 7.271 3.0180

The calls to coef extract matrices of regression coefficients from the lmList objects, with rows
representing schools. Then, we draws separate plots for the intercepts and for the slopes:

> old <- par(mfrow=c(1, 2))

> boxplot(cat.coef[, 1], pub.coef[, 1], main="Intercepts",

+ names=c("Catholic", "Public"))

> boxplot(cat.coef[, 2], pub.coef[, 2], main="Slopes",

+ names=c("Catholic", "Public"))

> par(old) # restore

Setting the plotting parameter mfrow to 1 row and 2 columns produces the side-by-side pairs of
boxplots in Figure 5; mfrow is then returned to its previous value. The Catholic schools have a
higher average level of math achievement than the public schools, while the average slope relating
math achievement to SES is larger in the public schools than in the Catholic schools.

2.1.3 Fitting a Hierarchical Linear Model with lme

Following Raudenbush and Bryk (2002) and Singer (1998), we will fit a hierarchical linear model
to the math-achievement data. This model consists of two sets of equations: First, within schools,
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we have the regression of math achievement on the individual-level covariate SES; it aids inter-
pretability of the regression coefficients to center SES at the school average; then the intercept for
each school estimates the average level of math achievement in the school. Using centered SES, the
individual-level equation for individual j in school i is

mathachij = α0i + α1icsesij + εij (2)

Second, at the school level, and also following Raudenbush, Bryk, and Singer, we will entertain
the possibility that the school intercepts and slopes depend upon sector and upon the average level
of SES in the schools:

α0i = γ00 + γ01meansesi + γ02sectori + u0i (3)

α1i = γ10 + γ11meansesi + γ12sectori + u1i

This kind of formulation is sometimes called a coefficients-as-outcomes model.6

Substituting the school-level Equations 3 into the individual-level Equation 2 produces

mathachij = γ00 + γ01meansesi + γ02sectori + u0i

+(γ10 + γ11meansesi + γ12sectori + u1j)csesij + εij

Rearranging terms,

mathachij = γ00 + γ01meansesi + γ02sectori + γ10csesij

+γ11meansesicsesij + γ12sectoricsesij

+u0i + u1icsesij + εij

Here, the γs are fixed effect coefficients, while the us (and the individual-level errors εij) are random
effects.

Finally, rewriting the model in the notation of the LMM (Equation 1),

mathachij = β1 + β2meansesi + β3sectori + β4csesij (4)

+β5meansesicsesij + β6sectoricsesij

+bi1 + bi2csesij + εij

The change is purely notational, using βs for fixed effects and bs for random effects. (In the data
set, however, the school-level variables — that is, meanses and sector — are attached to the
observations for the individual students, as previously described.) We place no constraints on the
covariance matrix of the random effects7, so

Ψ = V

[
bi1
bi2

]
=

[
ψ2
1 ψ12

ψ12 ψ2
2

]
(5)

Also the individual-level errors are independent within schools, with constant variance:

V (εi) = σ2Ini

6This coefficients-as-outcomes model assumes that the regressions of the within-school intercepts and slopes on
school mean SES are linear. We invite the reader to examine this assumption by creating scatterplots of the within-
school regression coefficients for Catholic and public schools, computed in the previous section, against school mean
SES, modifying the hierarchical model in light of these graphs if the relationships appear nonlinear. For an analysis
along these lines, see the discussion of the High School and Beyond data in Fox (2016, Chap. 23).

7We are assuming, however, that the random effects for group i are independent of the random effects for any
other group i′.
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Even though the individual-level errors are assumed to be independent, observations in the same
school are correlated,

Var(mathachij) = σ2 + ψ2
1 + cses2ijψ

2
2 + 2csesijψ12

Cov(mathachij ,mathachij′) = ψ2
1 + csesijcsesij′ψ

2
2 + (csesij + csesij′)φ12

while observations in different groups are uncorrelated.
As mentioned in Section 2, LMMs are fit with the lme function in the nlme package. Specifying

the fixed effects in the call to lme is identical to specifying a linear model in a call to lm (see Chapter
4 of the text). Random effects are specified via the random argument to lme, which takes a one-sided
model formula.

Before fitting a mixed model to the math-achievement data, we reorder the levels of the factor
sector so that the contrast for sector will use the value 0 for the public sector and 1 for the
Catholic sector, in conformity with the coding employed by Raudenbush and Bryk (2002) and by
Singer (1998):8

> Bryk$sector <- factor(Bryk$sector, levels=c("Public", "Catholic"))

> contrasts(Bryk$sector)

Catholic

Public 0

Catholic 1

Having established the contrast-coding for sector, the LMM in Equation 4 is fit as follows:

> bryk.lme.1 <- lme(mathach ~ meanses*cses + sector*cses,

+ random = ~ cses | school,

+ data=Bryk)

The formula for the random effects includes only the term for centered SES. As in a linear-model
formula, a random intercept is implied unless it is explicitly excluded (by specifying -1 in the
random formula). By default, lme fits the model by restricted maximum likelihood (REML), which
in effect corrects the maximum-likelihood estimator for degrees of freedom (see the complementary
readings in Section 5).

> summary(bryk.lme.1)

Linear mixed-effects model fit by REML

Data: Bryk

AIC BIC logLik

46524 46592 -23252

Random effects:

Formula: ~cses | school

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.5426 (Intr)

8Recoding changes the values of the fixed effects coefficient estimates but does not change other aspects of the
fitted model.
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cses 0.3182 0.391

Residual 6.0598

Fixed effects: mathach ~ meanses * cses + sector * cses

Value Std.Error DF t-value p-value

(Intercept) 12.128 0.1993 7022 60.86 0.0000

meanses 5.333 0.3692 157 14.45 0.0000

cses 2.945 0.1556 7022 18.93 0.0000

sectorCatholic 1.227 0.3063 157 4.00 0.0001

meanses:cses 1.039 0.2989 7022 3.48 0.0005

cses:sectorCatholic -1.643 0.2398 7022 -6.85 0.0000

Correlation:

(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.075 0.019

sectorCatholic -0.699 -0.356 -0.053

meanses:cses 0.019 0.074 0.293 -0.026

cses:sectorCatholic -0.052 -0.027 -0.696 0.077 -0.351

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.15926 -0.72319 0.01705 0.75445 2.95822

Number of Observations: 7185

Number of Groups: 160

The output from the summary method for lme objects consists of several panels:

� The first panel gives the AIC (Akaike information criterion) and BIC (Bayesian information
criterion), which can be used for model selection (Fox and Weisberg, 2011, Section 4.5), along
with the log of the maximized restricted likelihood.

� The next panel displays estimates of the variance and covariance parameters for the random
effects, in the form of standard deviations and correlations. Thus, ψ̂1 = 1.543, ψ̂2 = 0.318,
σ̂ = 6.060, and ψ̂12 = 0.391 × 1.543 × 0.318 = 0.192. The term labelled Residual is the
estimate of σ.

� The table of fixed effects is similar to output from lm; to interpret the coefficients in this
table, refer to the hierarchical form of the model given in Equations 2 and 3, and to the
Laird-Ware form of the LMM in Equation 4 (which orders the coefficients differently from
the lme output). In particular, the fixed-effect intercept coefficient β̂1 = 12.128 represents an
estimate of the average level of math achievement in public schools, which are the baseline
category for the dummy regressor for sector. The remaining coefficient estimates could be
interpreted similarly to coefficients in a linear model. In particular, the apparent significance
of the interaction terms suggests that main effect terms should not be interpreted without
considering the interactions. We prefer to do this interpretation using the effects plots that
we will introduce shortly.

� The panel labelled Correlation gives the estimated sampling correlations among the fixed-
effect coefficient estimates. These coefficient correlations are not usually of direct interest.
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Very large correlations, however, are indicative of an ill-conditioned model — the analog of
high collinearity in a linear model.

� Some information about the standardized within-group residuals (ε̂ij/σ̂), the number of ob-
servations, and the number of groups, appears at the end of the output.

The model we fit assumes that each school has its own slope and intercept sampled from a
bivariate normal distribution with covariance matrix Ψ given by Equation 5 (page 15). Testing
if the elements of Ψ are 0 can be of interest in some problems. We can test hypotheses about
the variances and covariances of random effects by deleting random-effects terms from the model.
Tests are based on the change in the log of the maximized restricted likelihood, calculating log
likelihood-ratio statistics. When LMMs are fit by REML, we must be careful, however, to compare
models that are identical in their fixed effects.

For the current illustration, we may proceed as follows:

> bryk.lme.2 <- update(bryk.lme.1,

+ random = ~ 1 | school) # omitting random effect of cses

> anova(bryk.lme.1, bryk.lme.2)

Model df AIC BIC logLik Test L.Ratio p-value

bryk.lme.1 1 10 46524 46592 -23252

bryk.lme.2 2 8 46521 46576 -23252 1 vs 2 1.124 0.57

> bryk.lme.3 <- update(bryk.lme.1,

+ random = ~ cses - 1 | school) # omitting random intercept

> anova(bryk.lme.1, bryk.lme.3)

Model df AIC BIC logLik Test L.Ratio p-value

bryk.lme.1 1 10 46524 46592 -23252

bryk.lme.3 2 8 46740 46795 -23362 1 vs 2 220.6 <.0001

Each of these likelihood-ratio tests is on 2 degrees of freedom, because excluding one of the random
effects removes not only its variance from the model but also its covariance with the other random
effect. The large p-value in the first of these tests suggests no evidence of the need for a random
slope for centered SES, or equivalently that ψ12 = ψ2

2 = 0. The small p-value for the second test
suggests that ψ2

1 6= 0, and even accounting for differences due to sector and mean school SES, the
average math achievement varies from school to school.

A more careful formulation of these tests takes account of the fact that each null hypothesis
places a variance (but not covariance) component on a boundary of the parameter space. Con-
sequently, the null distribution of the LR test statistic is not simply chisquare with 2 degrees of
freedom, but rather a mixture of chisquare distributions.9 Moreover, it is reasonably simple to
compute the corrected p-value:

> pvalCorrected <- function(chisq, df){

+ (pchisq(chisq, df, lower.tail=FALSE) +

+ pchisq(chisq, df - 1, lower.tail=FALSE))/2

+ }

> pvalCorrected(1.124, df=2)

9See the complementary readings in Section 5 for discussion of this point.
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[1] 0.4296

> pvalCorrected(220.6, df=2)

[1] 6.59e-49

Here, therefore, the corrected p-values are similar to the uncorrected ones.
Model bryk.lme.2, fit above, omits the non-significant random effects for cses; the resulting

fixed-effects estimates are nearly identical to those for the initial model bryk.lme.1, which includes
these random effects:

> summary(bryk.lme.2)

Linear mixed-effects model fit by REML

Data: Bryk

AIC BIC logLik

46521 46576 -23252

Random effects:

Formula: ~1 | school

(Intercept) Residual

StdDev: 1.541 6.064

Fixed effects: mathach ~ meanses * cses + sector * cses

Value Std.Error DF t-value p-value

(Intercept) 12.128 0.1992 7022 60.88 0.0000

meanses 5.337 0.3690 157 14.46 0.0000

cses 2.942 0.1512 7022 19.46 0.0000

sectorCatholic 1.225 0.3061 157 4.00 0.0001

meanses:cses 1.044 0.2910 7022 3.59 0.0003

cses:sectorCatholic -1.642 0.2331 7022 -7.05 0.0000

Correlation:

(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.000 0.000

sectorCatholic -0.699 -0.356 0.000

meanses:cses 0.000 0.000 0.295 0.000

cses:sectorCatholic 0.000 0.000 -0.696 0.000 -0.351

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.17012 -0.72488 0.01485 0.75424 2.96551

Number of Observations: 7185

Number of Groups: 160

This model is sufficiently simple, despite the interactions, to interpret the fixed effects from
the estimated coefficients, but even here it is likely easier to visualize the model in effect plots (as
discussed for linear models in Fox and Weisberg, 2011, Section 4.3.3). Our effects package has
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Figure 6: Effect displays for the high-order terms in the LMM fit to the High School and Beyond
data, bryk.lme.2.

methods for mixed models fit by functions in the nlme and lme4 packages. In the present example,
we can use the allEffects function to graph the high-order fixed effects in the LMM we fit to
the High School and Beyond Data – that is, the interactions between mean and centered SES and
between mean SES and sector – producing Figure 6:

> library(effects)

> plot(allEffects(bryk.lme.2), rug=FALSE)

It is clear from these graphs that the impact of a student’s SES on math achievement rises as the
mean level of math achievement in his or her school rises, and is larger in public schools than in
Catholic schools.

2.1.4 Fitting a Hierarchical Linear Model with lmer

We can perform the same analysis employing lmer in the lme4 package. For example, to fit the
initial hiearchical model considered in the previous section:

> library(lme4)

> bryk.lmer.1 <- lmer(mathach ~ meanses*cses + sector*cses + (cses | school),

+ data=Bryk)

> summary(bryk.lmer.1)

Linear mixed model fit by REML ['lmerMod']

Formula: mathach ~ meanses * cses + sector * cses + (cses | school)

Data: Bryk
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REML criterion at convergence: 46504

Scaled residuals:

Min 1Q Median 3Q Max

-3.159 -0.723 0.017 0.754 2.958

Random effects:

Groups Name Variance Std.Dev. Corr

school (Intercept) 2.380 1.543

cses 0.101 0.318 0.39

Residual 36.721 6.060

Number of obs: 7185, groups: school, 160

Fixed effects:

Estimate Std. Error t value

(Intercept) 12.128 0.199 60.9

meanses 5.333 0.369 14.4

cses 2.945 0.156 18.9

sectorCatholic 1.227 0.306 4.0

meanses:cses 1.039 0.299 3.5

cses:sectorCatholic -1.643 0.240 -6.9

Correlation of Fixed Effects:

(Intr) meanss cses sctrCt mnss:c

meanses 0.256

cses 0.075 0.019

sectorCthlc -0.699 -0.356 -0.053

meanses:css 0.019 0.074 0.293 -0.026

css:sctrCth -0.052 -0.027 -0.696 0.077 -0.351

The estimates of the fixed effects and variance/covariance components are the same as those ob-
tained from lme (see page 16), but the specification of the model is slightly different: Rather than
using a random argument as in lme, the random effects in lmer are given directly in the model
formula, enclosed in parentheses; as in lme, a random intercept is implied if it is not explicitly
removed. An important difference between lme and lmer, however, is that lmer can accommodate
crossed random effects, while lme cannot: Suppose, for example, that we were interested in teacher
effects on students’ achievement. Each student in a high school has several teachers, and so students
would not be strictly nested within teachers.

A subtle difference between the lme and lmer output is that the former includes p-values for
the Wald t-tests of the estimated coefficients while the latter does not. The p-values in lmer are
suppressed because the Wald tests can be inaccurate. We address this issue in Section 2.2.

As in the previous section, let us proceed to remove the random slopes from the model, com-
paring the resulting model to the initial model by a likelihood-ratio text:

> bryk.lmer.2 <- lmer(mathach ~ meanses*cses + sector*cses + (1 | school),

+ data=Bryk)

> anova(bryk.lmer.1, bryk.lmer.2)
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refitting model(s) with ML (instead of REML)

Data: Bryk

Models:

bryk.lmer.2: mathach ~ meanses * cses + sector * cses + (1 | school)

bryk.lmer.1: mathach ~ meanses * cses + sector * cses + (cses | school)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

bryk.lmer.2 8 46513 46568 -23249 46497

bryk.lmer.1 10 46516 46585 -23248 46496 1 2 0.61

Out of an abundance of caution, anova refits the models using ML rather than REML, because
LR tests of models fit by REML that differ in their fixed effects are inappropriate. In our case,
however, the models compared have identical fixed effects and differ only in the random effects. A
likelihood-ratio test is therefore appropriate even if the models are fit by REML. We can obtain
this test by specifying the argument refit=FALSE:

> anova(bryk.lmer.1, bryk.lmer.2, refit=FALSE)

Data: Bryk

Models:

bryk.lmer.2: mathach ~ meanses * cses + sector * cses + (1 | school)

bryk.lmer.1: mathach ~ meanses * cses + sector * cses + (cses | school)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

bryk.lmer.2 8 46521 46576 -23252 46505

bryk.lmer.1 10 46524 46592 -23252 46504 1.12 2 0.57

The results are identical to those using lme.

2.2 Wald Tests for Linear Mixed Models

As we mentioned, it is inappropriate to perform likelihood-ratio tests for fixed effects when a LMM
is fit by REML. Though it is sometimes recommended that ML be used instead to obtain LR tests
of fixed effects, ML estimates can be substantially biased when there are relatively few higher-level
units. Wald tests can be performed, however, for the fixed effects in a LMM estimated by REML,
but as we also mentioned, Wald tests obtained for individual coefficients by dividing estimated fixed
effects by their standard errors can be inaccurate. The same is true of more complex Wald tests
on several degrees of freedom — for example, F -tests for terms in a linear mixed model.

One approach to obtaining more accurate inferences in LMMs fit by REML is to adjust the
estimated covariance matrix of the fixed effects to reduce the typically downward bias of the coeffi-
cient standard errors, as suggested by Kenward and Roger (1997), and to adjust degrees of freedom
for t and F tests (applying a method introduced by Satterthwaite, 1946). These adjustments are
available for linear mixed models fit by lmer in the Anova and linearHypothesis functions in the
car package, employing infrastructure from the pbkrtest package. For example,

> library(car)

> Anova(bryk.lmer.2, test="F")

Analysis of Deviance Table (Type II Wald F tests with Kenward-Roger df)

Response: mathach

F Df Df.res Pr(>F)
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meanses 209.2 1 156 < 2e-16

cses 409.4 1 7023 < 2e-16

sector 16.0 1 154 9.8e-05

meanses:cses 12.9 1 7023 0.00033

cses:sector 49.6 1 7023 2.0e-12

In this case, with many schools and a moderate number of students within each school, the KR
tests are essentially the same as Wald chisquare tests using the naively computed covariance matrix
for the fixed effects:

> Anova(bryk.lmer.2)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: mathach

Chisq Df Pr(>Chisq)

meanses 209.2 1 < 2e-16

cses 409.4 1 < 2e-16

sector 16.0 1 6.3e-05

meanses:cses 12.9 1 0.00033

cses:sector 49.6 1 1.9e-12

2.3 Examining the Random Effects: Computing BLUPs

The model bryk.lmer.2 includes a random intercept for each school. A natural question to ask in
this problem is which schools have the largest intercepts, as these would be the highest achieving
schools, and which schools have the smallest intercepts, as these are the schools that have the
lowest math achievement. The model is given by Equation 4 (on page 15), with bi2 = 0, and so the
intercept for the ith school is β1 + bi1 for public schools and β1 + bi1 + β3 for Catholic schools. In
either case bi1 represents the difference between the mean for the i-th school and the mean for that
school’s sector.

Estimates for the intercept β1 and for β3 can be obtained from the summary output shown
previously, and can be retrieved from the fitted model with

> fixef(bryk.lmer.2)

(Intercept) meanses cses sectorCatholic

12.128 5.337 2.942 1.225

meanses:cses cses:sectorCatholic

1.044 -1.642

The bi1 are random variables that are not directly estimated from the fitted model. Rather, lme4
computes the mode of the conditional distribution of each bi1 given the fitted model as predictions
of the bi1. Here are the first 6 of them:

> school.effects <- ranef(bryk.lmer.2)$school

> head(school.effects, 6)

(Intercept)

8367 -3.6626
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8854 -2.5948

4458 -0.5416

5762 -1.0094

6990 -2.7383

5815 -0.7584

Such “estimated” random effects (with “estimated” in quotes because the random-effect coefficients
are random variables, not parameters) are often called best linear unbiased predictors or BLUPs.

The ranef function is very complicated because it needs to be able to accomodate complex
models with one or more levels of hierarchy, and with one or more random effect per level in the
hierarchy. The command ranef(bryk.lmer.2)$school returns the random effects for schools as a
matrix with one column.

To judge the size of the school random effects, the standard deviation of mathach for all students
is about 7 units, and the average number of students per school is about 45, so the standard error of
school average achievement is about 7/

√
45 ≈ 1. A school intercept random effect of 2, for example,

correponds to 2 standard deviations above average, and −2 is 2 standard deviations below average.
Because the random effects are assumed to be normally distributed, we should expect to find few
random effects predicted to be larger than about 3 or smaller than about −3.

The bottom and top 5 performing Catholic Schools can be identified as follows:

> cat <- MathAchSchool$Sector == "Catholic" # TRUE for Catholic, FALSE for Public

> cat.school.effects <- school.effects[cat, 1, drop=FALSE]

> or <- order(cat.school.effects[, 1]) # order school effects

> cat.school.effects[or, , drop=FALSE][c(1:5, 66:70), , drop=FALSE]

(Intercept)

6990 -2.738

4868 -2.041

9397 -1.872

6808 -1.723

2658 -1.709

4292 1.701

2629 1.801

8193 2.810

8628 3.128

3427 4.215

The argument drop=FALSE is used in several places to force R to keep a one-column matrix as a
matrix to preserve the row names, corresponding to school numbers. For public schools, we get

> pub.school.effects <- school.effects[!cat, 1, drop=FALSE]

> or <- order(pub.school.effects[, 1]) # order the school effects for Catholic Schools

> pub.school.effects[or, , drop=FALSE][c(1:5, 86:90), , drop=FALSE]

(Intercept)

8367 -3.663

4523 -3.546

3705 -3.180

7172 -2.766
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8854 -2.595

6089 2.030

9198 2.077

6170 2.109

2655 3.053

7688 3.169

Possibly apart from school 6990, there were no extremely poorly performing Catholic schools, while
there seem to be 2 or 3 highly performing schools. The public schools include a few very poorly
performing schools and 2 highly performing schools.

2.4 An Illustrative Application to Longitudinal Data

To illustrate the use of linear mixed models in longitudinal research, we draw on data described by
Davis et al. (2005) on the exercise histories of 138 teenaged girls hospitalized for eating disorders
and of 93 comparable “control” subjects.10 The data are in the data frame Blackmore in the car
package:

> head(Blackmore, 20)

subject age exercise group

1 100 8.00 2.71 patient

2 100 10.00 1.94 patient

3 100 12.00 2.36 patient

4 100 14.00 1.54 patient

5 100 15.92 8.63 patient

6 101 8.00 0.14 patient

7 101 10.00 0.14 patient

8 101 12.00 0.00 patient

9 101 14.00 0.00 patient

10 101 16.67 5.08 patient

11 102 8.00 0.92 patient

12 102 10.00 1.82 patient

13 102 12.00 4.75 patient

15 102 15.08 24.72 patient

16 103 8.00 1.04 patient

17 103 10.00 2.90 patient

18 103 12.00 2.65 patient

20 103 14.08 6.86 patient

21 104 8.00 2.75 patient

22 104 10.00 6.62 patient

The variables are:

� subject: an identification code; there are several observations for each subject, but because
the girls were hospitalized at different ages, the number of observations and the age at the
last observation vary.

10These data were generously made available to us by Elizabeth Blackmore and Caroline Davis of York University.
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� age: the subject’s age in years at the time of observation; all but the last observation for each
subject were collected retrospectively at intervals of 2 years, starting at age 8.

� exercise: the amount of exercise in which the subject engaged, expressed as estimated hours
per week.

� group: a factor indicating whether the subject is a "patient" or a "control".11

2.4.1 Examining the Data

Initial examination of the data suggested that it is advantageous to take the log of exercise: Doing
so makes the exercise distribution for both groups of subjects more symmetric and linearizes the
relationship of exercise to age.12 Because there are some 0 values of exercise, we use “started”
logs in the analysis reported below (transformations are discussed in Fox and Weisberg, 2011,
Section 3.4), adding 5 minutes (5/60 of an hour) to each value of exercise prior to taking logs
(and using logs to the base 2 for interpretability):

> Blackmore$log.exercise <- log2(Blackmore$exercise + 5/60)

As in the analysis of the math-achievement data in the preceding section, we begin by sampling
20 subjects from each of the patient and control groups, plotting log.exercise against age for
each subject:

> pat <- with(Blackmore, sample(unique(subject[group == "patient"]), 20))

> Pat.20 <- groupedData(log.exercise ~ age | subject,

+ data=Blackmore[is.element(Blackmore$subject, pat),])

> con <- with(Blackmore, sample(unique(subject[group == "control"]), 20))

> Con.20 <- groupedData(log.exercise ~ age | subject,

+ data=Blackmore[is.element(Blackmore$subject, con),])

> print(plot(Con.20, main="Control Subjects",

+ xlab="Age", ylab="log2 Exercise",

+ ylim=1.2*range(Con.20$log.exercise, Pat.20$log.exercise),

+ layout=c(5, 4), aspect=1.0),

+ position=c(0, 0, 0.5, 1), more=TRUE)

> print(plot(Pat.20, main="Patients",

+ xlab="Age", ylab="log2 Exercise",

+ ylim=1.2*range(Con.20$log.exercise, Pat.20$log.exercise),

+ layout=c(5, 4), aspect=1.0),

+ position=c(0.5, 0, 1, 1))

The graphs appear in Figure 7.

� Each Lattice plot is constructed by using the default plot method for grouped-data objects.
Grouped-data objects, provided by the nlme package, are enhanced data frames, incorporat-
ing a model formula that gives information about the structure of the data. In this instance,
the formula log.exercise ~ age | subject, read as “log.exercise depends on age given

11To avoid the possibility of confusion, we point out that the variable group represents groups of independent
patients and control subjects, and is not a factor defining clusters. Clusters in this longitudinal data set are defined
by the variable subject.

12We invite the reader to examine the distribution of the exercise variable, before and after log-transformation.
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Figure 7: log2 exercise by age for 20 randomly selected patients and 20 randomly selected control
subjects.
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subject,” indicates that log.exercise is the response variable, age is the principal within-
subject covariate (actually, in this application, it is the only within-subject covariate), and
the data are grouped by subject.

� To make the two plots comparable, we have exerted direct control over the scale of the vertical
axis (set to slightly larger than the range of the combined log-exercise values), the layout of
the plot (5 columns, 4 rows),13 and the aspect ratio of the plot (the ratio of the vertical to
the horizontal size of the plotting region in each panel, set here to 1.0).

� The print method for Lattice objects, normally automatically invoked when the returned
object is not assigned to a variable, simply plots the object on the active graphics device. So
as to print both plots on the same “page,” we have instead called print explicitly, using the
position argument to place each graph on the page. The form of this argument is c(xmin,

ymin, xmax, ymax), with horizontal (x) and vertical (y) coordinates running from 0, 0 (the
lower-left corner of the page) to 1, 1 (the upper-right corner). The argument more=TRUE in
the first call to print indicates that the graphics page is not yet complete.

There are few observations for each subject, and in many instances, no strong within-subject
pattern. Nevertheless, it appears as if the general level of exercise is higher among the patients
than among the controls. As well, the trend for exercise to increase with age appears stronger and
more consistent for the patients than for the controls.

We pursue these impressions by fitting regressions of log.exercise on age for each subject.
Because of the small number of observations per subject, we should not expect very good estimates
of the within-subject regression coefficients. Indeed, one of the advantages of mixed models is that
they can provide improved estimates of the within-subject coefficients (the random effects plus the
fixed effects) by pooling information across subjects.14

> pat.list <- lmList(log.exercise ~ I(age - 8) | subject,

+ subset = group=="patient", data=Blackmore)

> con.list <- lmList(log.exercise ~ I(age - 8) | subject,

+ subset = group=="control", data=Blackmore)

> pat.coef <- coef(pat.list)

> con.coef <- coef(con.list)

> old <- par(mfrow=c(1, 2))

> boxplot(pat.coef[,1], con.coef[,1], main="Intercepts",

+ names=c("Patients", "Controls"))

> boxplot(pat.coef[,2], con.coef[,2], main="Slopes",

+ names=c("Patients", "Controls"))

> par(old)

Boxplots of the within-subjects regression coefficients are shown in Figure 8. We changed the origin
of age to 8 years, which is the initial observation for each subject, so the intercept represents level
of exercise at the start of the study. As expected, there is a great deal of variation in both the
intercepts and the slopes. The median intercepts are similar for patients and controls, but there is
somewhat more variation among patients. The slopes are higher on average for patients than for
controls, for whom the median slope is close to 0.

13Notice the unusual ordering in specifying the layout — columns first, then rows.
14Pooled estimates of the random effects provide so-called best-linear-unbiased predictors (or BLUPs) of the regres-

sion coefficients for individual subjects. See help(predict.lme), Section 2.3, and the complementary readings.
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Figure 8: Coefficients for the within-subject regressions of log2 exercise on age, for patients and
control subjects.
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2.4.2 Fitting a Mixed Model with Autocorrelated Errors

We proceed to fit a LMM to the data, including fixed effects for age (again, with an origin of 8),
group, and their interaction, and random intercepts and slopes:

> bm.lme.1 <- lme(log.exercise ~ I(age - 8)*group,

+ random = ~ I(age - 8) | subject, data=Blackmore)

> summary(bm.lme.1)

Linear mixed-effects model fit by REML

Data: Blackmore

AIC BIC logLik

3630 3669 -1807

Random effects:

Formula: ~I(age - 8) | subject

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 1.4436 (Intr)

I(age - 8) 0.1648 -0.281

Residual 1.2441

Fixed effects: log.exercise ~ I(age - 8) * group

Value Std.Error DF t-value p-value

(Intercept) -0.2760 0.18237 712 -1.514 0.1306

I(age - 8) 0.0640 0.03136 712 2.041 0.0416

grouppatient -0.3540 0.23529 229 -1.504 0.1338

I(age - 8):grouppatient 0.2399 0.03941 712 6.087 0.0000

Correlation:

(Intr) I(g-8) grpptn

I(age - 8) -0.489

grouppatient -0.775 0.379

I(age - 8):grouppatient 0.389 -0.796 -0.489

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.7349 -0.4245 0.1228 0.5280 2.6362

Number of Observations: 945

Number of Groups: 231

Examining the naive t-tests for the fixed effects, we start as usual with the test for the interactions,
and in this case the interaction of age with group is highly significant, reflecting a much steeper
average trend in the patient group. In light of the interaction, tests for the main effects of age and
group are not of interest.15

15The pbkrtest package will not provide corrected standard errors and degrees of freedom for models fit by lme

(as opposed to lmer).
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We turn next to the random effects, and test whether the random intercepts and slopes are nec-
essary, omitting each in turn from the model and calculating a likelihood-ratio statistic, contrasting
the refitted model with the original model:

> bm.lme.2 <- update(bm.lme.1, random = ~ 1 | subject)

> anova(bm.lme.1, bm.lme.2) # test for random slopes

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 8 3630 3669 -1807

bm.lme.2 2 6 3644 3673 -1816 1 vs 2 18.12 0.0001

> bm.lme.3 <- update(bm.lme.1, random = ~ I(age - 8) - 1 | subject)

> anova(bm.lme.1, bm.lme.3) # test for random intercepts

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 8 3630 3669 -1807

bm.lme.3 2 6 3834 3863 -1911 1 vs 2 207.9 <.0001

The tests are highly statistically significant, suggesting that both random intercepts and random
slopes are required.

Let us next consider the possibility that the within-subject errors (the εijs in the mixed model
of Equation 1 on page 2) are autocorrelated, as may well be the case, because the observations
are taken longitudinally on the same subjects. The lme function incorporates a flexible mecha-
nism for specifying error-correlation structures, and supplies constructor functions for several such
structures.16 Most of these correlation structures, however, are appropriate only for equally spaced
observations. An exception is the corCAR1 function, which permits us to fit a continuous first-order
autoregressive process in the errors. Suppose that εit and εi,t+s are errors for subject i separated
by s units of time, where s need not be an integer; then, according to the continuous first-order
autoregressive model, the correlation between these two errors is ρ(s) = φ|s| where 0 ≤ φ < 1.
This appears a reasonable specification in the current context, where there are at most ni = 5
observations per subject.

Fitting the model with CAR1 errors to the data produces a convergence failure:

> bm.lme.4 <- update(bm.lme.1, correlation = corCAR1(form = ~ age | subject))

Error in lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore, :

nlminb problem, convergence error code = 1

message = iteration limit reached without convergence (10)

The correlation structure is given in the correlation argument to lme (here as a call to corCAR1);
the form argument to corCAR1 is a one-sided formula defining the time dimension (here, age) and
the group structure (subject). With so few observations within each subject, it is difficult to sepa-
rate the estimated correlation of the errors from the correlations among the observations induced by
clustering, as captured by subject-varying intercepts and slopes. This kind of convergence problem
is a common occurrence in mixed-effects modeling.

We will therefore fit two additional models to the data, each including either random intercepts
or random slopes (but not both) along with autocorrelated errors:

16A similar mechanism is provided for modeling non-constant error variance, via the weights argument to lme. See
the documentation for lme for details. In contrast, the lmer function in the lme4 package does not accommodate
autocorrelated errors, which is why we used lme for this example.
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> bm.lme.5 <- update(bm.lme.1, random = ~ 1 | subject,

+ correlation = corCAR1(form = ~ age |subject)) # random intercepts (not slopes)

> bm.lme.6 <- update(bm.lme.1, random = ~ I(age - 8) - 1 | subject,

+ correlation = corCAR1(form = ~ age |subject)) # random slopes (not intercepts)

These models and our initial model without autocorrelated errors (bm.lme.1) are not properly
nested for likelihood-ratio tests — indeed bm.lme.5 and bm.lme6 have the same number of param-
eters — but we can examine the maximimzed restricted log-likilihood under the models along with
the AIC and BIC model-selection criteria:

> table <- matrix(0, 3, 3)

> table[, 1] <- c(logLik(bm.lme.1), logLik(bm.lme.5), logLik(bm.lme.6))

> table[, 2] <- c(BIC(bm.lme.1), BIC(bm.lme.5), BIC(bm.lme.6))

> table[, 3] <- c(AIC(bm.lme.1), AIC(bm.lme.5), AIC(bm.lme.6))

> colnames(table) <- c("logLik", "BIC", "AIC")

> rownames(table) <- c("bm.lme.1", "bm.lme.5", "bm.lme.6")

> table

logLik BIC AIC

bm.lme.1 -1807 3669 3630

bm.lme.5 -1795 3639 3605

bm.lme.6 -1803 3654 3620

All of these criteria point to model bm.lme.5, with random intercepts, a fixed age slope (within
patient/control groups), and autocorrelated errors.

Although we expended some effort in modeling the random effects, the estimates of the fixed
effects, and their standard errors, do not depend critically on the random-effect specification of the
model, also a common occurrence:

> compareCoefs(bm.lme.1, bm.lme.5, bm.lme.6)

Call:

1: lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,

random = ~I(age - 8) | subject)

2: lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,

random = ~1 | subject, correlation = corCAR1(form = ~age | subject))

3: lme.formula(fixed = log.exercise ~ I(age - 8) * group, data = Blackmore,

random = ~I(age - 8) - 1 | subject, correlation = corCAR1(form = ~age |

subject))

Est. 1 SE 1 Est. 2 SE 2 Est. 3 SE 3

(Intercept) -0.2760 0.1824 -0.3070 0.1895 -0.3178 0.1935

I(age - 8) 0.0640 0.0314 0.0728 0.0317 0.0742 0.0365

grouppatient -0.3540 0.2353 -0.2838 0.2447 -0.2487 0.2500

I(age - 8):grouppatient 0.2399 0.0394 0.2274 0.0397 0.2264 0.0460

The summary for model bm.lme.5 is as follows:

> summary(bm.lme.5)
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Linear mixed-effects model fit by REML

Data: Blackmore

AIC BIC logLik

3605 3639 -1795

Random effects:

Formula: ~1 | subject

(Intercept) Residual

StdDev: 1.15 1.529

Correlation Structure: Continuous AR(1)

Formula: ~age | subject

Parameter estimate(s):

Phi

0.6312

Fixed effects: log.exercise ~ I(age - 8) * group

Value Std.Error DF t-value p-value

(Intercept) -0.30697 0.18950 712 -1.620 0.1057

I(age - 8) 0.07278 0.03168 712 2.297 0.0219

grouppatient -0.28383 0.24467 229 -1.160 0.2472

I(age - 8):grouppatient 0.22744 0.03974 712 5.723 0.0000

Correlation:

(Intr) I(g-8) grpptn

I(age - 8) -0.553

grouppatient -0.775 0.428

I(age - 8):grouppatient 0.441 -0.797 -0.556

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.9431 -0.4640 0.1732 0.5869 2.0220

Number of Observations: 945

Number of Groups: 231

There is, therefore, a moderately large estimated error autocorrelation, φ̂ = .631.
To get a more concrete sense of the fixed effects, using model bm.lme.5 (which includes auto-

correlated errors and random intercepts, but not random slopes), we employ the predict method
for lme objects to calculate fitted values for patients and controls across the range of ages (8 to 18)
represented in the data:

> pdata <- expand.grid(age=seq(8, 18, by=2), group=c("patient", "control"))

> pdata$log.exercise <- predict(bm.lme.5, pdata, level=0)

> pdata$exercise <- 2^pdata$log.exercise - 5/60

> pdata

age group log.exercise exercise

1 8 patient -0.590801 0.5806

2 10 patient 0.009641 0.9234

3 12 patient 0.610082 1.4430
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Figure 9: Fitted values representing estimated fixed effects of group, age, and their interaction.

4 14 patient 1.210523 2.2309

5 16 patient 1.810964 3.4254

6 18 patient 2.411405 5.2366

7 8 control -0.306970 0.7250

8 10 control -0.161409 0.8108

9 12 control -0.015847 0.9057

10 14 control 0.129715 1.0107

11 16 control 0.275277 1.1269

12 18 control 0.420838 1.2554

Specifying level=0 in the call to predict produces estimates of the fixed effects. The expression
2^pdata$log.exercise - 5/60 translates the fitted values of exercise from the log2 scale back to
hours/week.

Finally, we plot the fitted values (Figure 9):

> plot(pdata$age, pdata$exercise, type="n",

+ xlab="Age (years)", ylab="Exercise (hours/week)")

> points(pdata$age[1:6], pdata$exercise[1:6], type="b", pch=19, lwd=2)

> points(pdata$age[7:12], pdata$exercise[7:12], type="b", pch=22, lty=2, lwd=2)

> legend("topleft", c("Patients", "Controls"), pch=c(19, 22),

+ lty=c(1,2), lwd=2, inset=0.05)

Essentially the same graph (Figure 10) can be constructed by the effects package, with the added
feature of confidence intervals for the estimated effects:

> plot(Effect(c("age", "group"), bm.lme.5, xlevels=list(age=seq(8, 18, by=2)),

+ transformation=list(link=function(x) log2(x + 5/60),

+ inverse=function(x) 2^x - 5/60)),
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Figure 10: Plot produced using the Effect function in the effects package.

+ multiline=TRUE, ci.style="bars",

+ xlab="Age (years)", ylab="Exercise (hours/week)",

+ rescale.axis=FALSE, rug=FALSE, colors=c("black", "black"),

+ key.args=list(x = 0.20, y = 0.75, corner = c(0, 0), padding.text = 1.25),

+ main="")

It is apparent that the two groups of subjects have similar average levels of exercise at age 8, but
that thereafter the level of exercise increases much more rapidly for the patient group than for the
controls.

3 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) bear the same relationship to LMMs that GLMs bear
to linear models (see Fox and Weisberg, 2011, Chapters 4–5). GLMMs add random effects to the
linear predictor of a GLM and express the expected value of the response conditional on the random
effects: The link function g(·) is the same as in generalized linear models. For a GLMM with two
levels of hierarchy, the conditional distribution of yij , the response for observation j in group i,
given the random effects, is (most straightforwardly) a member of an exponential family, with mean
µij , variance

Var(yij) = φV (µij)λij

and covariances

Cov(yij , yij′) = φ
√
V (µij)

√
V (µij′)λijj′

where φ is a dispersion parameter and the function V (µij) depends on the distributional family to
which Y belongs. For example, in the binomial and Poisson families the dispersion is fixed to 1,
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and in the Gaussian family V (µ) = 1. Alternatively, for quasi-likelihood estimation, V (·) can be
given directly.17

The GLMM may therefore be written as

ηij = β1 + β2x2ij + · · ·+ βpxpij + b1iz1ij + · · ·+ bqizqij

g(µij) = E(yij |b1i, . . . , bqi) = ηij

bki ∼ N(0, ψ2
k),Cov(bki, bk′i) = ψkk′

bki, bk′i′ are independent for i 6= i′

Var(yij) = φV (µij)λij

Cov(yij , yij′) = φ
√
V (µij)

√
V (µij′)λijj′

yij , yij′ are independent for i 6= i′

where ηij is the linear predictor for observation j in cluster i; the fixed-effect coefficients (βs),
random-effect coefficients (bs), fixed-effect regressors (xs), and random-effect regressors (zs) are
defined as in the LMM.18

In matrix form, the GLMM is

ηi = Xiβ + Zibi (6)

g(µi) = g[E(yi|bi)] = ηi

bi ∼ Nq(0,Ψ)

bi,bi′ are independent for i 6= i′

E(yi|bi) = µi (7)

V (yi|bi) = φV 1/2(µi)ΛiV
1/2(µi) (8)

yi,yi′ are independent for i 6= i′

where

� yi is the ni × 1 response vector for observations in the ith of m groups;

� µi is the ni × 1 expectation vector for the response, conditional on the random effects;

� ηi is the ni × 1 linear predictor for the elements of the response vector;

� g(·) is the link function, transforming the conditional expected response to the linear predictor;

� Xi is the ni × p model matrix for the fixed effects of observations in group i;

� β is the p× 1 vector of fixed-effect coefficients;

� Zi is the ni × q model matrix for the random effects of observations in group i;

� bi is the q × 1 vector of random-effect coefficients for group i;

� Ψ is the q × q covariance matrix of the random effects;

� Λi is ni × ni and expresses the dependence structure for the conditional distribution of the
response within each group—for example, if the observations are sampled independently in
each group, Λi = Ini ;

19

17As in the generalized linear model (Fox and Weisberg, 2011, Section 10.5.3).
18 The glmer function in the lme4 package that we will use to fit GLMMs is somewhat more restrictive, setting

λkk = 1 and λkk′ = 0.
19As mentioned, this restriction is imposed by the glmer function in the lme4 package. See footnote 18.
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� V 1/2(µi) ≡ diag[
√
V (µij)]; and

� φ is the dispersion parameter.

3.1 Example: Migraine Headaches

In an effort to reduce the severity and frequency of migraine headaches through the use of biofeed-
back training, Tammy Kostecki-Dillon collected longitudinal data on migraine-headache sufferers.20

The 133 patients who participated in the study were each given four weekly sessions of biofeedback
training. The patients were asked to keep daily logs of their headaches for a period of 30 days prior
to training, during training, and post-training, to 100 days after training began. Compliance with
these instructions was low, and there is therefore quite a bit of missing data; for example, only 55
patients kept a log prior to training. On average, subjects recorded information on 31 days, with
the number of days ranging from 7 to 121. Subjects were divided into three self-selected groups:
those who discontinued their migraine medication during the training and post-training phase of
the study; those who continued their medication, but at a reduced dose; and those who continued
their medication at the previous dose.

We will use a binomial GLMM—specifically, a binary logit mixed-effects model—to analyze the
incidence of headaches during the period of the study. Examination of the data suggested that
the incidence of headaches was constant during the pre-training phase of the study, increased, as
was expected by the investigator, at the start of training, and then declined at a decreasing rate.
We decided to fit a linear trend prior to the start of training (before time 0), possibly to capture
a trend that we failed to detect in our exploration of the data; and to transform time at day 1
and later (which, for simplicity, we term “time post-treatment”) by taking the square-root.21 In
addition to the intercept, representing the level of headache incidence at the end of the pre-training
period, we include a dummy regressor coded 1 post-treatment, and 0 pre-treatment, to capture the
anticipated increase in headache incidence at the start of training; dummy regressors for levels of
medication; and interactions between medication and treatment, and between medication and the
pre- and post-treatment time trends. Thus, the fixed-effects part of the model is

logit(µij) = β1 + β2m1i + β3m2i + β4pij + β5t0ij + β6
√
t1ij

+ β7m1ipij + β8m2ipij + β9m1it0ij + β10m2it0ij

+ β11m1i

√
t1ij + β12m2i

√
t1ij

where

� µij is the probability of a headache for individual i = 1, . . . , 133, on occasion j = 1, . . . , ni,
conditional on the random effects;

� m1i and m2i are the dummy regressors for a factor medication with levels none, reduced
and continuing for no medication, reduced medication, and no change in medication;

� pij is a dummy regressor for a factor treatment with levels no and yes;

� t0ij is time (in days) pre-treatment in a variable pretime, running from −29 through 0, and
coded 0 after treatment began; and

20The data are described by Kostecki-Dillon, Monette, and Wong (1999) and were generously made available by
Georges Monette, who performed the original data analysis. The analysis reported here is similar to his.

21The original analysis of the data by Georges Monette used regression splines for time-trends, with results generally
similar to those reported here.
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� t1ij is time (in days) post-treatment in a variable posttime, running from 1 through 99, and
coded 0 pre-treatment.

This specification for the fixed-effects can be summarized in the matrix X with 12 columns corre-
ponding to the regressors multipying each of the 12 βs in the fixed-effects part of the model.

For random effects, we allow a separate random intercept for pre- and post-treatment by in-
cluding both the intercept and treatment among the random effects. In addition, we allow random
slopes for both pretreat and posttreat. The matrix Z will have 4 columns, and the correspond-
ing coviarance matrix Ψ has 4 variance terms and 6 covariance terms for a total of 10 parameters,
complexity that can cause numerical problems as we will see shortly.

The data for this example are in the KosteckiDillon data frame in the car package. We begin
with a bit of data-management to compute the variables needed from those already in the data set:

> KosteckiDillon$treatment <- factor(with(KosteckiDillon,

+ ifelse(time > 0, "yes", "no")))

> KosteckiDillon$pretreat <- with(KosteckiDillon, ifelse(time > 0, 0, time))

> KosteckiDillon$posttreat <- with(KosteckiDillon, ifelse(time > 0, time, 0))

> head(KosteckiDillon, 10)

id time dos hatype age airq medication headache sex treatment pretreat

1 1 -11 753 Aura 30 9 continuing yes female no -11

2 1 -10 754 Aura 30 7 continuing yes female no -10

3 1 -9 755 Aura 30 10 continuing yes female no -9

4 1 -8 756 Aura 30 13 continuing yes female no -8

5 1 -7 757 Aura 30 18 continuing yes female no -7

6 1 -6 758 Aura 30 19 continuing yes female no -6

7 1 -5 759 Aura 30 17 continuing yes female no -5

8 1 22 786 Aura 30 21 continuing yes female yes 0

9 1 23 787 Aura 30 21 continuing yes female yes 0

10 1 24 788 Aura 30 18 continuing yes female yes 0

posttreat

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 22

9 23

10 24

There are variables in the data set that we will not use in the example in this section; for details,
see ?KosteckiDillon.

GLMMs may be fit by the glmer function (pronounced “glimmer”) in the lme4 package. As is
also true for lmer, there is no provision for autocorrelated within-subject errors, and in the case of
a GLMM, we don’t have the alternative of using the nlme package. Even without explicit termporal
autocorrelation, however, the random effects are complex for a fairly small data set, and we will
try to simplify this part of the model. Specifying fixed and random effects in glmer is the same as
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in lmer; additionally, as for glm, we may specify a distributional family argument, which, in turn,
takes an optional link argument. In the current example, we use the default logit link for the
binomial family, and so do not have to give the link explicitly.

Our initial attempt to fit a GLMM to the migraine-headaches data produces a convergence
warning:

> mod.mig.1 <- glmer(headache ~ # warning: time-consuming!

+ medication * (treatment + pretreat + sqrt(posttreat))

+ + (treatment + pretreat + sqrt(posttreat) | id),

+ data=KosteckiDillon, family=binomial)

Warning message:

In checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with

max|grad| = 0.00623063 (tol = 0.001, component 2)

Failure to converge is a common occurence in fitting a GLMM, and the computations are
complex. In this example, the function to be maximized to find the estimates is 22-dimensional,
with 12 fixed-effects parameters and 10 more parameters in Ψ. There are multiple possible causes
for the failure to converge; sometimes changing to a different optimizer in the computations can
produce convergence. The glmer function makes provision for alternative optimizers, and after a bit
of experimentation, we were able to obtain convergence using the optimx optimizer in the optimx
package, specifying the optimization method as "nlminb"; optimx produces its own warning but
nevertheless converges to a solution:

> library(optimx)

> mod.mig.1a <- glmer(headache ~

+ medication * (treatment + pretreat + sqrt(posttreat))

+ + (treatment + pretreat + sqrt(posttreat) | id),

+ data=KosteckiDillon, family=binomial,

+ control=glmerControl(optimizer="optimx",

+ optCtrl=list(method="nlminb")))

Warning message:

In optimx.check(par, optcfg$ufn, optcfg$ugr, optcfg$uhess, lower, :

Parameters or bounds appear to have different scalings.

This can cause poor performance in optimization.

It is important for derivative free methods like BOBYQA, UOBYQA, NEWUOA.

As it turns out, the two solutions are nearly identical:

> compareCoefs(mod.mig.1, mod.mig.1a)

Call:

1: glmer(formula = headache ~ medication * (treatment + pretreat +

sqrt(posttreat)) + (treatment + pretreat + sqrt(posttreat) | id), data =

KosteckiDillon, family = binomial)

2: glmer(formula = headache ~ medication * (treatment + pretreat +

sqrt(posttreat)) + (treatment + pretreat + sqrt(posttreat) | id), data = KD,

family = binomial, control = glmerControl(optimizer = "optimx", optCtrl =
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list(method = "nlminb")))

Est. 1 SE 1 Est. 2 SE 2

(Intercept) 2.27e-01 6.12e-01 2.27e-01 6.12e-01

medicationreduced 1.96e+00 8.86e-01 1.96e+00 8.86e-01

medicationcontinuing 2.79e-01 6.86e-01 2.79e-01 6.86e-01

treatmentyes 3.38e-01 7.12e-01 3.40e-01 7.12e-01

pretreat -1.95e-02 4.18e-02 -1.97e-02 4.19e-02

sqrt(posttreat) -2.72e-01 9.21e-02 -2.72e-01 9.22e-02

medicationreduced:treatmentyes 4.51e-01 1.03e+00 4.47e-01 1.04e+00

medicationcontinuing:treatmentyes 1.16e+00 8.13e-01 1.16e+00 8.14e-01

medicationreduced:pretreat 6.22e-02 6.03e-02 6.26e-02 6.03e-02

medicationcontinuing:pretreat -6.59e-06 4.76e-02 2.40e-04 4.77e-02

medicationreduced:sqrt(posttreat) -1.05e-02 1.29e-01 -1.04e-02 1.29e-01

medicationcontinuing:sqrt(posttreat) 1.56e-02 1.13e-01 1.55e-02 1.13e-01

The convergence warning in our intial attempt was likely a false alarm; in general, glmer is conser-
vative about detecting convergence failures. Existing methods are approximations because exact
evaluation of the likelihood is intractable. The glmer function implements various numerical meth-
ods, and by default uses a Laplace approximation, which is a compromise between accuracy and
computational speed.

Type-II Wald tests for the fixed effects, computed by the Anova function in the car package,
reveal that all of the interactions are non-significant, along with the pre-treatment trend, while
the medication and treatment effects, along with the post-treatment trend, are highly statistically
significant:

> Anova(mod.mig.1a)

Analysis of Deviance Table (Type II Wald chisquare tests)

Response: headache

Chisq Df Pr(>Chisq)

medication 22.34 2 1.4e-05

treatment 13.32 1 0.00026

pretreat 0.38 1 0.53782

sqrt(posttreat) 34.60 1 4.1e-09

medication:treatment 2.38 2 0.30357

medication:pretreat 1.86 2 0.39392

medication:sqrt(posttreat) 0.06 2 0.96955

Before examining the estimated fixed effects in the model, we will attempt to simplify the
random effects, removing each random effect in turn and performing a likelihood-ratio test relative
to the initial model.

> mod.mig.2 <- update(mod.mig.1a,

+ formula = headache ~

+ medication * (treatment + pretreat + sqrt(posttreat))

+ + (-1 + as.numeric(treatment == "yes") + pretreat + sqrt(posttreat) | id))

> anova(mod.mig.1a, mod.mig.2)
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Data: KosteckiDillon

Models:

mod.mig.2: headache ~ medication + treatment + pretreat + sqrt(posttreat) +

mod.mig.2: (-1 + as.numeric(treatment == "yes") + pretreat + sqrt(posttreat) |

mod.mig.2: id) + medication:treatment + medication:pretreat + medication:sqrt(posttreat)

mod.mig.1a: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +

mod.mig.1a: (treatment + pretreat + sqrt(posttreat) | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

mod.mig.2 18 4384 4498 -2174 4348

mod.mig.1a 22 4373 4512 -2164 4329 19.7 4 0.00057

> pvalCorrected(19.701, df=4) # no random intercepts

[1] 0.0003839

> mod.mig.3 <- update(mod.mig.1a,

+ formula = headache ~

+ medication * (treatment + pretreat + sqrt(posttreat))

+ + (pretreat + sqrt(posttreat) | id))

> anova(mod.mig.1a, mod.mig.3)

Data: KosteckiDillon

Models:

mod.mig.3: headache ~ medication + treatment + pretreat + sqrt(posttreat) +

mod.mig.3: (pretreat + sqrt(posttreat) | id) + medication:treatment +

mod.mig.3: medication:pretreat + medication:sqrt(posttreat)

mod.mig.1a: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +

mod.mig.1a: (treatment + pretreat + sqrt(posttreat) | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

mod.mig.3 18 4377 4491 -2170 4341

mod.mig.1a 22 4373 4512 -2164 4329 12.1 4 0.017

> pvalCorrected(12.092, df=4) # no random treatment

[1] 0.01188

> mod.mig.4 <- update(mod.mig.1a,

+ formula = headache ~

+ medication * (treatment + pretreat + sqrt(posttreat))

+ + (treatment + sqrt(posttreat) | id))

> anova(mod.mig.1a, mod.mig.4)

Data: KosteckiDillon

Models:

mod.mig.4: headache ~ medication + treatment + pretreat + sqrt(posttreat) +

mod.mig.4: (treatment + sqrt(posttreat) | id) + medication:treatment +

mod.mig.4: medication:pretreat + medication:sqrt(posttreat)

mod.mig.1a: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +

mod.mig.1a: (treatment + pretreat + sqrt(posttreat) | id)
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Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

mod.mig.4 18 4370 4484 -2167 4334

mod.mig.1a 22 4373 4512 -2164 4329 5.8 4 0.21

> pvalCorrected(5.7963, df=4) # no random pretreat

[1] 0.1684

> mod.mig.5 <- update(mod.mig.1, # this fails with mod.mig.1a

+ formula = headache ~

+ medication * (treatment + pretreat + sqrt(posttreat))

+ + (treatment + pretreat | id))

> anova(mod.mig.1, mod.mig.5)

Data: KosteckiDillon

Models:

mod.mig.5: headache ~ medication + treatment + pretreat + sqrt(posttreat) +

mod.mig.5: (treatment + pretreat | id) + medication:treatment + medication:pretreat +

mod.mig.5: medication:sqrt(posttreat)

mod.mig.1: headache ~ medication * (treatment + pretreat + sqrt(posttreat)) +

mod.mig.1: (treatment + pretreat + sqrt(posttreat) | id)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

mod.mig.5 18 4381 4495 -2172 4345

mod.mig.1 22 4373 4512 -2164 4329 16.2 4 0.0027

> pvalCorrected(16.214, df=4) # no random posttreat

[1] 0.001885

As in LMMs, we use our pvalCorrected function to correct chisquare tests for the variance/
covariance components, reflecting the fact that the null values of variances are on the boundary of
the parameter space. As well, we were unable to fit mod.mig.5 using optimx without producing
an error, and so we updated mod.mig.1 rather than mod.mig.1a to obtain mod.mig.5 and the
corresponding test for the random post-treatment effect.

The relatively convoluted specification of mod.mig.2, where the dummy regressor for treatment
is generated directly, rather than putting the factor treatment in the random-effects formula, is
necessary to suppress the random effect for the intercept; simply specifying -1 with the factor
treatment in the random-effects formula places two dummy regressors in the random-effects model,
fitting different intercepts for each of the two levels of treatment, and producing a model equivalent
to mod.mig.1a. This is a general property of R model formulas that we view as generally desirable,
making it difficult to fit models that violate the principal of marginality. In the current application,
however, the intercept represents the level of the headache logit immediately prior to the onset
of treatment, while the coefficient of the treatment dummy regressor represents the change in
level at the onset of treatment. It is perfectly possible that random effects are required for one of
these coefficients but not the other. Although the test for random intercepts in the presence of the
treatment factor makes for a more complicated example, we think that it is worthwhile explaining
how a test like this can be conducted.

On the basis of these tests for the fixed and random effects, we specified a final model for the
migraines data that eliminates the fixed-effect interactions with medication and the pre-treatment
trend fixed and random effects, obtaining the following estimates for the fixed effects and variance
components:
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> mod.mig.6 <- glmer(headache ~ medication + treatment + sqrt(posttreat)

+ + (treatment + sqrt(posttreat) | id),

+ data=KosteckiDillon, family=binomial,

+ control=glmerControl(optimizer="optimx",

+ optCtrl=list(method="nlminb")))

> summary(mod.mig.6)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( logit )

Formula: headache ~ medication + treatment + sqrt(posttreat) + (treatment +

sqrt(posttreat) | id)

Data: KosteckiDillon

Control: glmerControl(optimizer = "optimx", optCtrl = list(method = "nlminb"))

AIC BIC logLik deviance df.resid

4369 4439 -2174 4347 4141

Scaled residuals:

Min 1Q Median 3Q Max

-5.182 -0.646 0.260 0.580 3.690

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 1.7011 1.304

treatmentyes 1.7126 1.309 -0.12

sqrt(posttreat) 0.0571 0.239 0.11 -0.66

Number of obs: 4152, groups: id, 133

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2459 0.3438 -0.72 0.4745

medicationreduced 2.0501 0.4679 4.38 1.2e-05

medicationcontinuing 1.1553 0.3838 3.01 0.0026

treatmentyes 1.0608 0.2439 4.35 1.4e-05

sqrt(posttreat) -0.2684 0.0449 -5.98 2.2e-09

Correlation of Fixed Effects:

(Intr) mdctnr mdctnc trtmnt

medictnrdcd -0.674

mdctncntnng -0.828 0.656

treatmentys -0.215 -0.053 -0.049

sqrt(psttr) 0.016 -0.009 -0.002 -0.685

Figure 11 shows the estimated fixed effects plotted on the probability scale; as a consequence,
the post-treatment trends for the three medication conditions are not parallel, as they would be if
plotted on the logit scale:

> new.1 <- expand.grid(treatment="yes", posttreat=1:99,
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+ medication=c("reduced", "continuing", "none"))

> new.1$treatment <- factor("yes", levels=c("no", "yes"))

> new.2 <- expand.grid(treatment="no", posttreat=-29:0,

+ medication=c("reduced", "continuing", "none"))

> new.2$posttreat <- 0

> new.2$treatment <- factor("no", levels=c("no", "yes"))

> new <- rbind(new.2, new.1)

> new$p <- predict(mod.mig.6, newdata=new, re.form=NA, type="response")

> new$time <- c(rep(-29:0, 3),rep(1:99, 3))

> plot(p ~ time, type="n", data=new, xlab="Time (days)",

+ ylab="Fitted Probability of Headache")

> abline(v=0, col="gray")

> lines(p ~ time, subset = medication == "none", data=new,

+ lty=1, lwd=2)

> lines(p ~ time, subset = medication == "reduced", data=new,

+ lty=2, lwd=2)

> lines(p ~ time, subset = medication == "continuing", data=new,

+ lty=3, lwd=2)

> legend("topright", lty=1:3, lwd=2,

+ legend=c("none", "reduced", "continuing"), title="Medication",

+ inset=.02)

It is apparent from this graph that after an initial increase at the start of treatment, the incidence
of headaches declined to substantially below its pre-treatment level. As well, the incidence of
headaches was lowest among the patients who discontinued their medication, and highest among
those who reduced their medication; patients who continued their medication at pre-training levels
were intermediate in headache incidence. Of course, self-selection of the medication groups renders
interpretation of this pattern ambiguous.

4 Nonlinear Mixed Models

One extension of the nonlinear regression model (see our appendix on nonlinear regression) to
include random effects, due to Pinheiro and Bates (2000) and fit by the nlme function in the nlme
package,22is as follows (but with different notation than in the original source):

yi = f(θi,Xi) + εi (9)

θi = Aiβ + Biδi

where

� yi is the ni × 1 response vector for the ni observations in the ith of m groups.

� Xi is a ni × s matrix of explanatory variables (some of which may be categorical) for obser-
vations in group i.

� εi ∼ Nni(0,σ
2
εΛi) is a ni × 1 vector of multivariately normally distributed errors for observa-

tions in group i; the matrix Λi, which is ni×ni, is typically parametrized in terms of a much

22The lme4 package also has some facilities for fitting nonlinear mixed models, but these are preliminary at the
time that we are writing this appendix.
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Figure 11: Fixed effects from a binomial GLMM fit to the migraines data. Treatment started at
time 1.

smaller number of parameters, and Λi = Ini if the observations are independently sampled
within groups.

� θi is a ni × 1 composite coefficient vector for the observations in group i, incorporating both
fixed and random effects.

� β is the p× 1 vector of fixed-effect parameters.

� δi ∼ Nq(0,Ψ) is the q × 1 vector of random-effect coefficients for group i.

� Ai and Bi are, respectively, ni× p and ni× q matrices of known constants for combining the
fixed and random effects in group i. These will often be “incidence matrices” of 0s and 1s
but may also include level-1 explanatory variables, treated as conditionally fixed (as in the
standard linear model).

Like fundamentally nonlinear fixed-effects regression models, nonlinear mixed-effects models
(NLMMs) are uncommon in the social and behavioral sciences. As the following example illus-
trates, however, it is occasionally natural to specify a nonlinear mixed model, especially when the
parameters of the model have compelling substantive interpretations.

4.1 Example: Recovery From Coma

The data and model for this example are taken from Wong et al. (2001).23 The data pertain to
200 patients who sustained traumatic brain injuries resulting in comas of varying duration. After
awakening from their comas, patients were periodically administered a standard IQ test. In this
section, we will examine recovery of “performance IQ” (“PIQ”) post-coma; the data set, in the Wong

23We are grateful to Georges Monette for making the data and associated materials available. The analysis reported
here is very similar to that in the original source.
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data frame provided by the car package, also includes a measure of verbal IQ. Here are the first
few observations in the data set:

> head(Wong)

id days duration sex age piq viq

1 3358 30 4 Male 20.67 87 89

2 3535 16 17 Male 55.29 95 77

3 3547 40 1 Male 55.92 95 116

4 3592 13 10 Male 61.66 59 73

5 3728 19 6 Male 30.13 67 73

6 3790 13 3 Male 57.06 76 69

About half of the patients in the study (107) completed a single IQ test, but the remainder were
measured on two to five irregularly timed occasions, raising the possibility of tracing the trajectory
of IQ recovery post-coma. A mixed-effects model is very useful here because it allows us to pool the
information in the small number of observations available per patient (on average 331/200 = 1.7)
to estimate the typical within-subject trajectory of recovery along with variation in this trajectory.

After examining the data, Wong et al. posited the following asymptotic growth model for IQ
recovery:

Yij = θ1i + θ2ie
−θ3iX1ij + εij (10)

θ1i = β1 + β2
√
X2i + δ1i

θ2i = β3 + β4
√
X2i + δ2i

θ3i = β5

where the variables and parameters of the model have the following interpretations (see Figure 12):

� Yij is the PIQ of the ith patient (with patients indexed by id in the Wong data set) measured
on the jth occasion, j = 1, . . . , ni; as mentioned, ni = 1 for about half the patients.

� X1ij is the time post-coma (in days) for the ith patient at the jth occasion (the variable days

in the data set).

� X2i is the duration of the coma (in days) for the ith patient (duration in the data set).

� θ1i is the eventual, recovered level of PIQ for patient i, specified to depend linearly on the
square-root of the length of the coma, with fixed-effect parameters β1 and β2, and a random-
effect component δ1i. Were patients to recover PIQ fully, the average value of θ1i would be
100, assuming that coma patients are representative of the general population in their pre-
coma average level of IQ. Thus, the fixed-effect intercept β1 is interpretable as the expected
eventual level of PIQ for a patient in a coma of 0 days duration.

� θ2i is the negative of the amount of PIQ eventually regained by patient i, beginning at the
point of recovery from coma. Like θ1i, the coefficient θ2i has a fixed-effect component depend-
ing linearly on length of coma, with parameters β3 and β4, and a random-effect component,
δ2i.
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Figure 12: The asymptotic growth model for recovery of IQ following coma, Yij = θ1i+θ2ie
−θ3iX1ij +

εij , where Yij is the PIQ and X1ij is the time post-coma for subject i on occasion j. The parameter
θ1i represents the eventual level of PIQ for subject i; −θ2i is the amount of PIQ recovered by subject
i; and θ3 is the rate of recovery for subject i (fixed across subjects), with (loge 2)/θ3 representing
the time to half-recovery.

� θ3i is the recovery rate for patient i, treated as a fixed effect, β5, with (loge 2)/θ3i repre-
senting the time required to recover half the difference between final and (expected) initial
post-coma PIQ (the “half-recovery” time), that is, −θ2i/2. It makes substantive sense to treat
the patients’ recovery rates as potentially variable—that is as a random effect—but doing
so introduces three additional parameters (a variance component and two covariance compo-
nents) yet (as we will see below) leaves the likelihood essentially unchanged. The very small
number of observations per patient produces very little information in the data for estimating
patient-specific recovery rates.

� εij is the error for patient i on occasion j.

There are, therefore, four variance-covariance components in this model, V (εij) = σ2ε , V (δ1i) =
ψ2
1, V (δ2i) = ψ2

2, and C(δ1i, δ2i) = ψ12. Although the data are longitudinal, there are too few
observations per patient to entertain a model with serially correlated errors.

Before fitting this model, we will examine the data, both to determine whether the posited
model seems reasonable, and to provide rough guesses for the fixed-effects parameters. As in
nonlinear least squares,24. initial guesses of the fixed-effects parameters provide a starting point
for the iterative process of maximizing the likelihood in the NLMM.

> subjects <- unique(with(Wong, id))

> with(Wong, sum(days > 1000))

[1] 40

24See the appendix on nonlinear regression
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Figure 13: Scatterplot for PIQ versus days since awakening from coma (dayspc). Obervations
beyond 1000 days are not shown, and the observations for each patient are connected by gray lines.
The heavier black line is for a non-parametric regression smooth.

> plot(piq ~ days, xlab="Days Post Coma",

+ ylab="PIQ", xlim=c(0, 1000),

+ data=Wong, subset = days <= 1000)

> for (subject in subjects){

+ with(Wong, lines(days[id==subject], piq[id==subject], col="gray"))

+ }

> with(Wong, lines(lowess(days, piq), lwd=2))

Figure 13 is a scatterplot of PIQ versus number of days post-coma, with the observations for
each patient connected by lines. Forty of the 331 measurements were taken after 1000 days post-
coma, and these are omitted from the graph to allow us to discern more clearly the general pattern
of the data. The line on the plot is drawn by lowess. Mixing together the observations from
all patients makes the scatterplot difficult to interpret, but, on the other hand, there are too few
observations for each patient to establish clear individual trajectories. Nevertheless, the asymptotic
growth model is roughly consistent with the general pattern of the data, and the patients for whom
there are multiple observations do tend to improve over time.

> # selecting first row for each subject:

> Ag.iq <- aggregate(Wong, by=list(id=Wong$id), function(x) x[1])

> summary(Ag.iq)

id id days duration sex

Min. : 405 Min. : 405 Min. : 13 Min. : 0 Female: 43

1st Qu.:3710 1st Qu.:3710 1st Qu.: 42 1st Qu.: 1 Male :157

Median :5148 Median :5148 Median : 71 Median : 7

Mean :4778 Mean :4778 Mean : 375 Mean : 14
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3rd Qu.:5897 3rd Qu.:5897 3rd Qu.: 172 3rd Qu.: 14

Max. :7548 Max. :7548 Max. :11628 Max. :255

age piq viq

Min. : 6.51 Min. : 50.0 Min. : 64.0

1st Qu.:21.76 1st Qu.: 74.0 1st Qu.: 83.0

Median :27.25 Median : 84.0 Median : 91.0

Mean :32.35 Mean : 83.3 Mean : 92.1

3rd Qu.:40.98 3rd Qu.: 93.0 3rd Qu.:101.2

Max. :80.03 Max. :127.0 Max. :131.0

> plot(piq ~ sqrt(duration), data=Ag.iq,

+ xlab="Days in Coma (square-root scale)", ylab="Initial PIQ",

+ axes=FALSE, frame=TRUE, subset = duration <= 100)

> (mod <- lm(piq ~ sqrt(duration), data=Ag.iq, subset = duration <= 100))

Call:

lm(formula = piq ~ sqrt(duration), data = Ag.iq, subset = duration <=

100)

Coefficients:

(Intercept) sqrt(duration)

88.49 -1.93

> abline(mod, lwd=2, lty=2)

> with(subset(Ag.iq, duration <= 100),

+ lines(lowess(sqrt(duration), piq), lwd=2))

> axis(2)

> axis(1, at=sqrt(c(0, 5, 10, seq(20, 100, by=20))),

+ labels=c(0, 5, 10, seq(20, 100, by=20)))

Figure 14 is a scatterplot of the initial PIQ measurement for each patient against the length of
the patient’s coma (in days, on the square-root scale). These initial measurements were taken at
varying times post-coma and therefore should not be interpreted as the PIQ at time of awakening
(i.e., time 0) for each patient. The relationship of initial PIQ to square-root length of coma appears
to be reasonably linear.

Figures 13 and 14 also provide a basis for obtaining initial values of the fixed-effects parameters
in the mixed model of Equations 10:

� Figure 13 leads us to expect that the average eventual level of recovered IQ will be less than
100, but Figure 14 suggests that the average eventual level for those who spent fewer days in

a coma should be somewhat higher; we therefore use the start value β
(0)
1 = 100.

� The slope of the least-squares line in Figure 14, relating initial PIQ to the square-root of

length of coma, is −1.9, and thus we take β
(0)
2 = −2.

� The parameter β3 represents the negative of the expected eventual gain in PIQ for a patient
who spent 0 days in a coma. On the basis of Figure 13, we will guess that such patients start
on average at a PIQ of 90 and eventually recover to an average of 100, suggesting the start

value β
(0)
3 = −10.
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Figure 14: Scatterplot of the initial PIQ measurement for each patient (not necessarily taken at day
0) versus the number of days the patient spent in a coma (on the square-root scale). The broken
line is a least-squares line, while the solid line is a nonparametric-regression smooth.

� The parameter β4 represents the change in expected eventual PIQ gain with a 1-unit increase
in the length of the coma on the square-root scale. Our examination of the data does not

provide a basis for guessing the value of this parameter, and so we will take β
(0)
4 = 0.

� Recall that the time to half-recovery is (loge 2)/β5. From Figure 13, it seems reasonable to

guess that the half-recovery time is around 100 days. Thus, β
(0)
5 = (loge 2)/100 = 0.007.

With these start values for the fixed effects, maximum-likelihood estimation of the model con-
verges rapidly (but REML estimates, not shown, do not converge without simplifying the random
effects25):

> wong.mod.1 <- nlme(piq ~ theta1 + theta2*exp(-theta3*days), data=Wong,

+ fixed=list(

+ theta1 ~ 1 + sqrt(duration),

+ theta2 ~ 1 + sqrt(duration),

+ theta3 ~ 1),

+ random=list(id = list(theta1 ~ 1, theta2 ~ 1)),

+ start=list(fixed=c(100, -2, -10, 0, 0.007)))

> summary(wong.mod.1)

Nonlinear mixed-effects model fit by maximum likelihood

Model: piq ~ theta1 + theta2 * exp(-theta3 * days)

Data: Wong

AIC BIC logLik

25We invite the reader to experiment with estimation of the model by REML, adding the argument method="REML"
to the calls to nlme.
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2593 2628 -1288

Random effects:

Formula: list(theta1 ~ 1, theta2 ~ 1)

Level: id

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

theta1.(Intercept) 13.769 t1.(I)

theta2.(Intercept) 2.603 -0.995

Residual 6.736

Fixed effects: list(theta1 ~ 1 + sqrt(duration), theta2 ~ 1 + sqrt(duration), theta3 ~ 1)

Value Std.Error DF t-value p-value

theta1.(Intercept) 97.09 2.037 127 47.68 0.0000

theta1.sqrt(duration) -1.25 0.480 127 -2.59 0.0107

theta2.(Intercept) -11.15 3.208 127 -3.47 0.0007

theta2.sqrt(duration) -3.25 1.077 127 -3.02 0.0031

theta3 0.01 0.002 127 5.00 0.0000

Correlation:

t1.(I) th1.() t2.(I) th2.()

theta1.sqrt(duration) -0.724

theta2.(Intercept) -0.596 0.463

theta2.sqrt(duration) 0.463 -0.455 -0.789

theta3 -0.309 0.013 0.092 -0.380

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-3.332401 -0.365697 0.008986 0.382748 2.303102

Number of Observations: 331

Number of Groups: 200

As mentioned, adding random effects to θ3 is ineffective:

> wong.mod.2 <- update(wong.mod.1,

+ random=list(id = list(theta1 ~ 1, theta2 ~ 1, theta3 ~ 1)))

> anova(wong.mod.1, wong.mod.2)

Model df AIC BIC logLik Test L.Ratio p-value

wong.mod.1 1 9 2593 2628 -1288

wong.mod.2 2 12 2599 2645 -1288 1 vs 2 0.001631 1

The call to nlme is more or less self-explanatory:

� The right-hand side of the model-formula argument specifies the individual-level, within-
cluster effects in the model (i.e., the θs) in the form of an R expression, unlike the right-hand
side of a linear-model formula but similar to the formula argument of nls for fitting nonlinear
models by least squares (as described in the appendix on nonlinear regression).
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� Each of the elements in the list associated with the fixed argument expresses the dependence
of the individual-level effects on the fixed effects, in the form of a linear-model formula. The
implied coefficients on the right-hand side of these formulas are the fundamental fixed-effect
parameters (i.e., the βs).

� Each of the elements of the list associated with the random argument is a linear-model formula
specifying the random effects associated with each of the θs.

� Start values for the fixed-effect parameters (the βs), required by the nlme function, are given
sequentially in the fixed element of the start argument. It is also possible to specify start
values for the variance and covariance components, but we’ve not done that.

The nlme function accomodates much more complex specifications consistent with the NLMM of
Equations 9, but its use is reasonably straightforward in our application.

All of the estimated fixed-effects parameters are considerably larger than their standard errors.
The estimated correlation between the random effects δ1i and δ2i is very high, however, rδ1δ2 =
−.995. We might either simplify the model, say by eliminating random effects δ2i from the equation
for θ2i, or by reparametrizing the model to reduce the correlation between the random effects.

The estimates of the fixed effects suggest that the average final level of recovered PIQ for
individuals in a coma of 0 days duration is β̂1 = 97.1. This level declines, as anticipated, with
the length of the coma, β̂2 = −1.25. On average, patients who spend 0 days in a coma recover
−β̂3 = 11.1 PIQ points, and the average size of the recovery increases with the length of the coma,
−β̂4 = 3.25. The estimated half-recovery time is (loge 2)/β̂5 = (loge 2)/0.00825 = 84 days.

We can construct a fixed-effect display (Figure 15), showing how typical PIQ recovery varies as
a function of days post coma and length of coma:

> newdata <- expand.grid(duration=c(1, 10, 20, 50, 100, 200),

+ days=seq(0, 1000, 20))

> newdata$piq <- predict(wong.mod.1, newdata, level=0)

> plot(piq ~ days, type="n", xlab="Days Post Coma", ylab="Average PIQ",

+ ylim=c(20, 100), xlim=c(-100, 1000), data=newdata, axes=FALSE, frame=TRUE)

> axis(2)

> axis(4)

> axis(1, at=seq(0, 1000, by=100))

> for (dc in c(1, 10, 20, 50, 100, 200)){

+ with(newdata, {

+ lines(spline(seq(0, 1000, 20), piq[duration == dc]), lwd=2)

+ text(-25, piq[duration == dc][1], labels=dc, adj=0.9)

+ })

+ }

> text(-100, 95, labels="Length\nof Coma", adj=0)

5 Complementary Reading

Much of the material in this appendix is adapted from Fox (2016, Chaps. 23 and 24). A very brief
treatment of mixed models may be found in Weisberg (2014, Sec. 7.4). Snijders and Bosker (2012)
and Raudenbush and Bryk (2002) are two accessible books that emphasize hierarchical linear and,
to a lesser extent, generalized-linear models. Gelman and Hill (2007) develop mixed models in the
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Figure 15: Fixed-effect plot of average PIQ by days since recovery from coma and length of coma
in days, based on the NLMM fit to the coma-recovery data.

more general context of regression analysis; these authors also discuss Bayesian approaches to mixed
models. Stroup (2013) presents a more formal and comprehensive development of generalized linear
mixed models, treating other regression models, such as linear models, generalized linear models,
and linear mixed-effects models as special cases (and emphasizing SAS software for fitting these
models).
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