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needed to determine which color scoring is most appropriate. It is advanta-
geous to treat ordinal predictors in a quantitative manner when such models
fit well. The model is simpler and easier to interpret, and tests of the
predictor effect are more powerful when it has a single parameter rather
than several parameters. In Section 6.4 we discuss this issue further.

5.4.7 Standardized and Probability-Based Interpretations

To compare effects of quantitative predictors having different units, it can be
helpful to report standardized coefficients. One approach fits the model to

Ž .standardized predictors, replacing each x by x y x rs . Then, eachj j j x j

regression coefficient represents the effect of a standard deviation change in
a predictor, controlling for the other variables. Equivalently, for each j one

ˆ Ž .can multiply unstandardized estimate � by s see also Note 5.9 .j x j

Regardless of the units, many find it difficult to understand odds or odds
ratio effects. The simpler interpretation of the approximate change in the

Ž .probability based on a linearization of the model Section 5.1.1 applies
also to multiple predictors. Consider a setting of predictors at which
Ž̂ .P Y s 1 s � . Then, controlling for the other predictors, a 1-unit increase inˆ

ˆ Ž .x corresponds approximately to a � � 1 y � change in � . For instance, atˆ ˆ ˆj j
Ž .predictor settings at which � s 0.5 for fit 5.14 , the approximate effect ofˆ

Ž .Ž .Ž .a 1-cm increase in width is 0.478 0.5 0.5 s 0.12. This is considerable,
since a 1-cm change in width is less than half a standard deviation.

This linear approximation deteriorates as the change in the predictor
increases. More precise interpretations use the probability formula directly.
To describe the effect of x , one could set the other predictors at theirj
sample means and compute the estimated probabilities at the smallest and
largest x values. These are sensitive to outliers, however. It is often morej
sensible to use the quartiles.

Ž .For fit 5.14 , the sample means are 26.3 for x and 0.873 for c. The lower
and upper quartiles of x are 24.9 and 27.7. At x s 24.9 and c s c, � s 0.51.ˆ
At x s 27.7 and c s c, � s 0.80. The change in � from 0.51 to 0.80 over theˆ ˆ
middle 50% of the range of width values reflects a strong width effect. Since
c takes only values 0 and 1, one could instead report this effect separately for
each. Also, when an explanatory variable is a dummy, it makes sense to
report the estimated probabilities at its two values rather than at quartiles,
which could be identical. At x s 26.3, � s 0.40 when c s 0 and � s 0.71ˆ ˆ
when c s 1. This color effect, differentiating dark crabs from others, is also
substantial.

Table 5.9 shows a way to present effects that can be understandable to
those not familiar with odds ratios. It also shows results of the extension of

Ž .model 5.14 , permitting interaction. The estimated width effect is then
greater for the lighter-colored crabs. However, the interaction is not signifi-
cant.
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( )TABLE 5.9 Summary of Effects in Model 5.14 with Crab Width
and Color as Predictors of Presence of Satellites

Variable Estimate SE Comparison Change in Probability

No interaction model
Intercept y12.980 2.727

ŽColor 0 s dark,
. Ž .1 s other 1.300 0.526 1, 0 at x 0.31 s 0.71 y 0.40

Ž . Ž .Width, x cm 0.478 0.104 UQ, LQ at c 0.29 s 0.80 y 0.51
Interaction model

Intercept y5.854 6.694
ŽColor 0 s dark,

.1 s other y6.958 7.318
Ž . Ž .Width, x cm 0.200 0.262 UQ, LQ at c s 0 0.13 s 0.43 y 0.30

Ž .Width � color 0.322 0.286 UQ, LQ at c s 1 0.29 s 0.84 y 0.55

5.5 FITTING LOGISTIC REGRESSION MODELS

The mechanics of ML estimation and model fitting for logistic regression are
special cases of the GLM fitting results of Section 4.6. With n subjects, we

Ž .treat the n binary responses as independent. Let x s x , . . . , x denotei i1 i p
setting i of values of p explanatory variables, i s 1, . . . , N. When explana-
tory variables are continuous, a different setting may occur for each subject,

Ž .in which case N s n. The logistic regression model 5.8 , regarding � as a
regression parameter with unit coefficient, is

exp Ý p � xŽ .js1 j i j
� x s . 5.15Ž . Ž .i p1 q exp Ý � xŽ .js1 j i j

5.5.1 Likelihood Equations

When more than one observation occurs at a fixed x value, it is sufficient toi
record the number of observations n and the number of successes. We theni
let y refer to this success count rather than to an individual binary response.i

� 4 Ž . Ž .Then Y , . . . , Y are independent binomials with E Y s n � x , where1 N i i i
n q ��� qn s n. Their joint probability mass function is proportional to the1 N
product of N binomial functions,

N
n yyy i ii� x 1 y � xŽ . Ž .Ł i i

is1

y iN N� xŽ . ni is exp log 1 y � xŽ .Ł Ł i½ 5½ 5ž /1 y � xŽ .is1 is1i

N� xŽ . ni is exp y log 1 y � x .Ž .Ý Łi i½ 5½ 51 y � xŽ . is1ii
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Section 5.2: Inference for Logistic Regression

Ž . Ž . Ž . Ž .5.6. Albert and Anderson 1984 , Berkson 1951, 1953, 1955 , Cox 1958a , Hodges 1958 ,
Ž .and Walker and Duncan 1967 discussed ML estimation for logistic regression. For

Ž .adjustments with complex sample surveys, see Hosmer and Lemeshow 2000, Sec. 6.4
Ž . Ž .and LaVange et al. 2001 . Scott and Wild 2001 discussed the analyses of case�

control studies with complex sampling designs.
Ž .5.7. Tsiatis 1980 suggested an alternative goodness-of-fit test that partitions values for the

explanatory variables into a set of regions and adds a dummy variable to the model for
each region. The test statistic compares the fit of this model to the simpler one, testing
that the extra parameters are not needed. The idea of grouping values to check model fit

Ž .by comparing observed and fitted counts extends to any GLM Pregibon 1982 . Hosmer
Ž .et al. 1997 compared various ways of doing this.

Section 5.3: Logit Models with Categorical Predictors

5.8. The Cochran�Armitage trend test is locally asymptotically efficient for both linear and
Ž .logistic alternatives for P Y s 1 . Its efficiency against linear alternatives follows from

the approximate normality of the sample proportions, with constant Bernoulli variance
Ž .when � s 0. For the linear logit model 5.5 , its efficiency follows from its equivalence

Ž .with the score test. See Problem 9.35 and Cox 1958a for related remarks. Tarone and
Ž .Gart 1980 showed that the score test for a binary linear trend model does not depend

Ž .on the link function. Gross 1981 noted that for the linear logit model, the local
asymptotic relative efficiency for testing independence using the statistic with an
incorrect set of scores equals the square of the Pearson correlation between the true and

Ž . Ž .incorrect scores. Simon 1978 gave related asymptotic results. Corcoran et al. 2001 ,
Ž . Ž .Mantel 1963 , and Podgor et al. 1996 extended the trend test.

Section 5.4: Multiple Logistic Regression

' Ž5.9. Since the standardized logistic cdf has standard deviation �r 3 , some software e.g.,
.PROC LOGISTIC in SAS defines a standardized estimate by multiplying the unstan-

'dardized estimate by s 3r� .x j

PROBLEMS

Applications

5.1 For a study using logistic regression to determine characteristics asso-
ciated with remission in cancer patients, Table 5.10 shows the most

Ž .important explanatory variable, a labeling index LI . This index mea-
sures proliferative activity of cells after a patient receives an injection
of tritiated thymidine, representing the percentage of cells that are
‘‘labeled.’’ The response Y measured whether the patient achieved

Ž .remission 1 s yes . Software reports Table 5.11 for a logistic regres-
sion model using LI to predict the probability of remission.

 10.1002/0471249688.ch5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/0471249688.ch5 by U

niversity O
f T

oronto L
ibrarie, W

iley O
nline L

ibrary on [02/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


