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Today Start Recording

1. Upcoming events, HW 3
Office Hour Menday-Oet47pm-8:30pm — Tuesday Oct 5 7pm - 8 pm, Zoom
2. Linear Regression Part 3: recap, checking model assumptions, collinearity,
model-building, p > n

3. In the News

4. Third hour - HW 1 Comments
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+ Non-Central Squared Copulas: Properties and Applications
* Thursday 3.30 Link

About Bouchra Nasri

Dr. Nasri is Assistant Professor in Statistics at the Scholl of Public Health of Univesité de
Montréal. Her research interests are dependence modelling, time series, and more
recently spatial modelling. The main applications targeted by her research projects are
related to climate change, public health and infectious diseases modelling. Dr. Nasri is
an associate director of the new infectious diseases network OMNI-REUNIS.

« Friday Oct 1 Toronto Data Workshop Zoom link
Toronto Data Workshop this Friday at noon (Toronto time) focuses on the recent Canadian election, with presentations from

Professor David Andrews on elections forecasting;

Professor Daniel Rubenson on the Canadian Election Study;

Johnson Vo on his model of the 2021 election; and

Eric Zhu, Brian Diep, Ashely (Jing Yuan) Zhang, Kristin (Xi Yu Huang), and Tanvir Hyder on their model of the 2021 election.

Link: https://utoronto.zoom.us/j/84277066292
Meeting ID: 842 7706 6292

Passcode: data_4_lyf
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https://www.statistics.utoronto.ca/events/non-central-squared-copulas-properties-and-applications
https://utoronto.zoom.us/j/84277066292
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https://utstat.toronto.edu/reid/sta2101f/Hw3Questions.pdf

Linear regression recap

- Analysis of variance: vy = (y — XB) (v — XB) + 5"X"X3
Source DF SS MS
Regression p—1 SSgec  RegMS = SSgec/(p — 1)
Residual n—p RSS  ResMS=RSS/(n—p)

Total (corrected) n—1 TSS

__ RegMS

= Reshis ~ Fp-1n-p under

- regression SS can be further partitioned depends on the order
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... Linear regression recap

Analysis of variance:

> summary (modell)

Call:
dell
CEOEICTT ) Im(formula = lpsa ~ ., data = prostate)
Analysis of Variance Table ..
Coefficients:

Estimate Std. Error t value Pr(>|A

R g L
esponse: -psa (Intercept) 0.669337 1.296387 0.516 0.60!

Df Sum Sq Mean Sq F value Pr(>F)

lcavol 1 69.003 69.003 137.4962 < 2.2e-16 *xx Leavol 0.587022  0.087920  6.677 2.1le
; lveight 0.454467 0.170012 2.673 0.00:
lweight 1 5.949 5.949 11.8531 0.0008832 x**x* age 6 GREET G008 . EE 6.0
age 10,420 0.420  0.8369 0.3627958 1bph 0.107054 0.058449 1.832 0.07(
Loph 1 1.069 1.069 2.1302 0.1479839 o 0766157 0. 244300 3 136 0 00
svi 1 5.952 5.952 11.8594 0.0008806 #xx . o 100474 0001015 -1.159 0.2
lep 1 0.129°0.129  0.2576 0.6130533 gleason 0.045142  0.157465 0.287 0.77!
gleason 1 0.708 0.708 1.4098 0.2382837 pegds o 004595 0004451 1094 0 30
pEgas 1 0.526 0.526 1.0476 0.3088604
Residuals 88 44.163  0.502

Residual standard error: 0.7084 on 88 degrees
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... Linear regression recap

Analysis of variance:

> dropl(modell)
Single term deletions

anova(modell)
Analysis of Variance Table Model:
lpsa ~ lcavol + lweight + age + 1lbph + svi + 1

Response: lpsa pagds

Df Sum Sq Mean Sq F value Pr(>F) Df Sum of Sq . o
lcaYol 1 69.003 69.003 137.4962 < 2.2e-16 **x* <none> G 5.5
lweight 1 5.949 5.949 11.8531 0.0008832 *x*x* il G SPLET (GUEER —oEE
age 1 0.420 0.420 0.8369 0.3627958 lweight 1 3 E861 47.749 B3.749
leh 1 1.069 1.069 2.1302 0.1479839 age 1 | BEOE B —E G
svi 1 5.952 5.952 11.8594 0.0008806 x**x* i 1 1.6835 45.847 -56.693
lcp 1 0.129 0.129 0.2576 0.6130533 svi 1 4 95EE 491099 50,046
gleason 1 0.708 0.708 1.4098 0.2382837 lep 1 9. GA) A4 R 5. GG
pggés 1 0.526 0.526 1.0476 0.3088604 Gloecam 0.0412 44.204 60,931
Residuals 88 44.163 0.502 — 1 R A
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... Linear regression recap LM §3.2

« same principle can be used to test for sets of variables

- or for testing any linear constraint on 3 AB=c
F1,I/ = t12/

- numerator degrees of freedom for F-statistic depend on the rank of A

- sometimes only an F-test can be used to assess the effect
of an explanatory variable when?
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LM Ch3

* §3.3: permutation test - doesn’t rely on normal assumption

+ §3.5: confidence intervals for §; and regions for (3;, 8;) confint; ellipse see Fig3.2

* §3.6: bootstrap inference for §; resample &
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Model checking

plot (modell)
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... Model checking SM 8.6, LM-2 Ch. 6, L

Model assumptions

Residuals vs Fitted Normal Q-Q
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... Model checking

- residuals: ¢ =

« Var(é) =
+ i.e. don't all have the same variance

« hat matrix H =

standardized residuals: r; =

+ Cook’s distance C; =
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... Model checking

- residuals: & = y; — i

° Var(é) = 0’2(I — H), Var(yl — )71) = 0’2(1 — h”) 0 < hjj < 1,):hjj =3
+ i.e. don't all have the same variance

- hat matrix H = X(X™X)~'X" Hy = X(X™X)"'XTy = X3 = §
. . €
- standardized residuals: r; = 5(1——;1,-,-)1/2 approx var 1
_ G N 2h::
- Cook’s distance C; = v y_')N(zy yi) = it measure of influence
pé p(1— h;)

high leverage or high residual
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... Model checking

- standard diagnostics check for non-constant variance, influential observations
« and for normality of residuals using qgnorm

+ assumption of independence across i may be more important

but more difficult to assess

+ exception: observations collected over time LM-2, §6.1.3, LM-1 §4.1.3
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Aside on normal plots
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... Aside Chenghui Zheng

library(ggplot2); library(nullabor); library(tidyverse)

df5_frame <- data.frame(x = rt(30, df = 5))

lineup_df5_data <- lineup(
method = null_dist("x", dist = "norm", params = list(mean = 0, sd = 1)),
true = df5_frame, n=12)

lineup_df5_data %>%
ggplot (aes(sample = x)) +
geom_qq_line() +
geom_qq() +
facet_wrap(~ .sample)

Applied Statistics | ~ September 29 2021 16



Model structure LM-2 §6.3, LM-1 §4.3

« Modely = Xj3 + ¢, alternatively,
E(y | X) = X3, Var(Y|X) =2l
+ plots of y against each column of x can be helpful

¢ for(i in 1:8){plot(prostatel,i],prostate[,9]... }
- added variable plots can be more helpful partial regression plots
+ plot residuals from y on X_; against residuals from x; on X_; slope of this line is 5;
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Partial residual plots LM-2 Fig 6.13, LM-1 Fig 443
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Partial residual plots LM-2 Fig 6.13, LM-1 Fig 443
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So many techniques

Read Chapter 6 of LM-2 or Chapter 4 of LM-1, replicating the results

Read Section 8.6 of SM, working through the algebra PhD, Stats
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Collinearity LM-2 §7.3, LM-1 §5.3

« simple model y; = Bo + B1X4j + BaXoj + €, I=1,...n

« if X; L x,, then interpretation of 3, and 3, clear

« if X, = x, then B; and 3, not separately identifiable

« usually we're somewhere in between, at least in observational studies

« may be very difficult to dis-entangle effects of correlated covariates

- example: health effects of air pollution

+ measurable increase in mortality on high-pollution days

+ measurable increase in mortality on high-temperature days

+ high temperatures and high levels of pollutants tend to co-occur +++

- mathematically, X*X is nearly singular, or at least ill-conditioned, so calculation of
its inverse is subject to numerical errors

« if p > nthen X™X not invertible, no LS solution ridge, Lasso more next week
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Three tasks related to linear regression

- Estimation of 3, and estimation of its standard error - for inference about E(y | x)
alternatively comparing sub-models using F-tests
« Prediction of y., say, given a new vector of explanatory variables x,
LM-2 Ch.4, LM-1 §3.5, SM §8.3.2
+ Model Selection: which explanatory variables do we need
for prediction or inference?

These same questions arise in other models such as logistic regression, analysis of
survival data, and so on, but the generic linear model is often a good starting point

. Prediction:y, =xT8+¢ Py =xTB  var(§y) = 02X (X"X) "X,
assuming ...
- error in expected response different from
prediction error E(y, — ¥, )? = 02 + var(y,)
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Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

“analyses should be as simple as possible, but no simpler”

What variables should we keep in the model ?

Hierarchical models: some models have a natural hierarchy: polynomials, factorial
structure, auto-regressive, sinusoidal, ...

+ in these models the ‘highest’ level of the hierarchy is removed first
c e.g. V= Lo+ X+ B:x* + e should *not* be simplified to y = 3o + 8> + ¢

- e.g. if interaction terms are included, then main effects and other 2nd-order terms
also need to be included: y = 8o + B1X1 + BaXa + BraXaXa + B1iX3 + BaaX2 + €

M *nOt* y = 60 =+ ﬂ1X1 =+ /82X2 =+ ﬂ12X1X2 + € unless x = 0/1
* ¥ = Bo + Bisin(27X) + [, cos(27X) + B3 sin(4mX) + [, cos(4mX) + €
*Vi=PFBotayi,+e Vi = Bo + aqyt1 + @Yt o€ *not* yy = fBo + a2yt + €

Applied Statistics | ~ September 29 2021 24



... Model Selection

- testing procedures: forward selection, backward selection, stepwise selection

* itis quite common to fit all explanatory variables, and then drop if p > 0.05

- if estimates and estimated standard errors don’t change very much, may be okay
- if estimates and estimated standard errors change a lot, cause for concern

- if estimates change sign, points to possibly extreme confounding

step(modell)

Start: AIC=-58.32

lpsa ” lcavol + lweight + age + lbph + svi + lcp + gleason +
pgg4s

Df Sum of Sq  RSS ATC
- gleason 1  0.0412 44.204 -60.231
- pggd5 1 0.5258 44.689 -59.174

- lcp 1 0.6740 44.837 -58.853
<none> 44.163 -58.322
- age 1 1.5503 45.713 -56.975

Applied plagistics || SeplpmBes2930%47 —56.693 25
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

step(modell)

Step: AIC=-61.37
lpsa ” lcavol + lweight + age + lbph + svi

Df Sum of Sq RSS AIC
<none> 45.526 -61.374
- age 1 0.9592 46.485 -61.352
- lbph 1 1.8568 47.382 -59.497
- lweight 1 3.2251 48.751 -56.735
- svi 1 5.9517 51.477 -51.456
- lcavol 1 28.7665 74.292 -15.871
Call:

Im(formula = lpsa ~ lcavol + lweight + age + lbph + svi, data = prostate)

Coefficients:
.(Intercipt) lcavol lweight age lbph svi
Applied Statistics | September 269 2021 26
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

« Criterion-based procedures most widely used
« AIC, BIC, Mallows C,, R RSS: residual sum of squares

AIC = nlog(RSS/n) +2p
BIC = nlog(RSS/n) + log(n)p

~2
R? — 1 Tmodel

= " T55/(n—1)
* SM has yet another version AIC. which may be better than AIC for linear models
* Cp and R; are only useful for linear models; AIC and BIC more general
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In the News Economist, Sep 11

-
No safe spaces for sexists
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.. In the News Economist, Sep 11

* “In “The First Political Order: How Sex Shapes Governance and National Security
Worldwide”, Ms Hudson, Ms Bowen and Ms Nielsen rank 176 countries on a scale of
o to 16 for what they call the “patrilineal/fraternal syndrome”. This is a composite
of such things as unequal treatment of women in family law and property rights,
early marriage for girls, patrilocal marriage, polygamy, bride price, son preference,
violence against women and social attitudes towards it”

+ “Ms Hudson and her co-authors tested the relationship between their patrilineal
syndrome and violent political instability. They ran various regressions on their 176
countries, controlling for other things that might foster conflict, such as ethnic and
religious strife, colonial history ..
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.. In the News Economist, Sep 11

 “They did not prove that the syndrome caused instability - that would require
either longitudinal data that have not yet been collected or natural experiments
that are virtually impossible with whole countries”

- “But they found a strong statistical link. The syndrome explained three-quarters of
the variation in a country’s score on the Fragile States index compiled by the Fund
for Peace, a think-tank in Washington.” 7

« Book website
* Blog
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http://cup.columbia.edu/book/the-first-political-order/9780231194662
https://www.cupblog.org/2020/03/09/the-first-political-order-and-its-effects-on-governance-and-national-human-and-environmental-securityby-valerie-m-hudson/

.. In the News Hudson, 2021 Blog post

“Examining approximately 176 nations, we examined whether national outcomes
such as conflict, terrorism, poverty, and so forth, were significantly associated with
a subordinative first political order, while controlling for background factors such as
level of urbanization, levels of ethnic fractionalization, colonial history, and so
forth.

“Holding these characteristics constant, is that subordinative order strongly related
to national outcomes? In all we examined 122 national outcome measures related
to conflict, stability, governance, prosperity, health, demographics, education,
environmental preservation, and social progress.

“Across all 122 outcome variables, the subordination of women was both significant
and the explanatory factor with the largest or second largest effect size over 70% of
the time.
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Design of Studies CD, Ch.2

< common objectives

- to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

+ to reduce the non-systematic (random) error to a reasonable level by replication
and other techniques

- to estimate realistically the likely uncertainty in the final conclusions
- to ensure that the scale of effort is appropriate
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... design of studies

+ we concentrate largely on the careful analysis of individual studies

- in most situations synthesis of information from different investigations is needed
« but even there the quality of individual studies remains important

+ examples include overviews (such as the Cochrane reviews)

- in some areas new investigations can be set up and completed relatively quickly;
design of individual studies may then be less important
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... design of studies

- formulation of a plan of analysis

- establish and document that proposed data are capable of addressing the research
questions of concern

+ main configurations of answers likely to be obtained should be set out

+ level of detail depends on the context

- even if pre-specified methods must be used, it is crucial not to limit analysis
+ planned analysis may be technically inappropriate

- more controversially, data may suggest new research questions or replacement of
objectives

- latter will require confirmatory studies
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Unit of study and analysis

- smallest subdivision of experimental material that may be assigned to a treatment

context: Expt
+ Example: RCT - unit may be a patient, or a patient-month (in crossover trial)
« Example: public health intervention - unit is often a community/school/...
- split plot experiments have two classes of units of study and analysis

- in investigations that are not randomized, it may be helpful to consider what the
primary unit of analysis would have been, had a randomized experiment been
feasible

« the unit of analysis may not be the unit of interpretation — ecological bias
systematic difference between impact of x at different levels of aggregation

« on the whole, limited detail is needed in examining the variation within the unit of
study
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Types of observational studies

- secondary analysis of data collected for another purpose

- estimation of a some feature of a defined population (could in principle be found
exactly)
- tracking across time of such features
- study of a relationship between features, where individuals may be examined
« atasingle time point
- at several time points for different individuals
- at different time points for the same individual

« experiment: investigator has complete control over treatment assignment
. census

+ meta-analysis: statistical assessment of a collection of studies on the same topic
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Avoidance of systematic error

“distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

this can often be avoided by design, or adjustment in analysis

can arise by the entry of personal judgement into some aspect of the data
collection process

this can often be avoided by randomization and blinding
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