
Methods of Applied Statistics I
STA2101H F LEC9101

Week 1

September 15 2021

 



Today Start Recording

1. Course introduction: technical issues, course details, evaluation, syllabus, people

2. Upcoming events of interest

3. Review of linear regression

4. In the news: excess deaths

5. Computing: RStudio, RMarkdown
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Technical Issues Thanks, Prof Bolton

• If you are having technical di&culties
• If possible, send me a message in chat
• Try leaving the class and re-joining
• Try switching to Chrome if you are using something else
• Don’t panic, the lecture is being recorded and both the recording and the slides will be
posted

• If Prof is having technical di&culties
• Check the chat to see if there’s any information there
• If I’ve disappeared completely, give me 15 minutes before closing the call
• Look for an announcement on Quercus
• Don’t panic, Prof, you’ll %gure it out
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Course Description My web page(s)

STA 2101F: Methods of Applied Statistics I
Wednesday, 10am – 1 pm Eastern September 15 – December 8 2021

Updated September 14

From the calendar:
This course will focus on principles and methods of applied statistical science. It

is designed for MSc and PhD students in Statistics, and is required for the Applied
Paper of the PhD comprehensive exams. The topics covered include: planning of
studies, review of linear models, analysis of random and mixed effects models, model
building and model selection, theory and methods for generalized linear models, and
an introduction to nonparametric regression. Additional topics will be introduced
as needed in the context of case studies in data analysis.
Prerequisites: ECO374H1/ECO375H1/STA302H1 (regression); STA305H1 (design
of studies)

Course Delivery:
On September 15 and 22, the class will be delivered online at the scheduled time
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Course Description Quercus

STA 2101F: Methods of Applied Statistics I
Wednesday, 10am – 1 pm Eastern September 15 – December 8 2021

Updated September 14

From the calendar:
This course will focus on principles and methods of applied statistical science. It

is designed for MSc and PhD students in Statistics, and is required for the Applied
Paper of the PhD comprehensive exams. The topics covered include: planning of
studies, review of linear models, analysis of random and mixed effects models, model
building and model selection, theory and methods for generalized linear models, and
an introduction to nonparametric regression. Additional topics will be introduced
as needed in the context of case studies in data analysis.
Prerequisites: ECO374H1/ECO375H1/STA302H1 (regression); STA305H1 (design
of studies)

Course Delivery:
On September 15 and 22, the class will be delivered online at the scheduled time
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Course Description

• Course Delivery
Piazza, Noti!cations

• Grading

• Academic Integrity

• Computing

• References Modules

• Contact
Use Piazza for course questions; email for personal questions
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Course Introductions

• about me−→

• TA: Ruoyong Xu

• Please turn on your camera to introduce yourself

• Name, program, current location (city)
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Today

1. Course introduction: technical issues, course details, evaluation, syllabus, people

2. Upcoming events of interest

3. Review of linear regression

4. Steps in analysis

5. In the news: excess deaths
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Upcoming events 1 Thursday

• Weekly Department Seminar Series Sep 16 15.30 EDT
• Selective Inference on Trees
• via Zoom
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Upcoming events 2 September 17 13.00 EDT

• Launch of Data Sciences Institute, U of T Register here

• Speakers:
• Jennifer Chayes, UC Berkeley
• Andrew Gelman, Columbia
• Rob Tibshirani, Stanford
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Upcoming events 3 September 20,21 16.00 EDT

• Distinguished Lecture Series in Statistical Sciences Register here

• September 20, 2021, 4-5pm Eastern - Bayesian Modelling and Analysis of
Challenging Data: Making New Sources of Data Trustworthy

• September 21, 2021, 4-5pm Eastern - Bayesian Modelling and Analysis of Challenging
Data: Identifying the Intrinsic Dimension of High-Dimensional Data
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Today Start Recording

1. Course introduction: technical issues, people, course details, evaluation, syllabus
Timer

2. Upcoming events of interest

3. Review of linear regression

4. Steps in analysis

5. In the news: excess deaths
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Y = X β + "
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1

• Equivalently:
yi =
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1

• Equivalently:
yi =

• Standard Assumptions
• yi independent equivalently !i independent y is o"en called response
• E(!i) = 0 why?
• var(!i) = σ2 constant
• xi known, β to be estimated xi o"en called explanatory variables
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Review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• Model:
Yn×1 = Xn×pβp×1 + "n×1

• Equivalently:
yi =

• Standard Assumptions
• yi independent equivalently !i independent y is o"en called response
• E(!i) = 0 why?
• var(!i) = σ2 constant
• xi known, β to be estimated xi o"en called explanatory variables

• More concisely:
E(Y | X) = , var(Y | X) =

I ??
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

Nice big equation:
!

"""""#

y1
...
...
yn

$

%%%%%&
=

!

"""""#

x11 . . . x1p
...

...
...

...
...

...
xn1 . . . xnp

$

%%%%%&

!

""#
...

$

%%&+

!

"""""#

...

...

$

%%%%%&
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

Nice big equation:
!

"""""#

y1
...
...
yn

$

%%%%%&
=

!

"""""#

x11 . . . x1p
...

...
...

...
...

...
xn1 . . . xnp

$

%%%%%&

!

""#
...

$

%%&+

!

"""""#

...

...

$

%%%%%&

Or, if you prefer:

yi = xi1β1 + xi2β2 + · · ·+ xipβp + "i, "i i = 1, . . . ,n
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

Nice big equation:
!

"""""#

y1
...
...
yn

$

%%%%%&
=

!

"""""#

x11 . . . x1p
...

...
...

...
...

...
xn1 . . . xnp

$

%%%%%&

!

""#
...

$

%%&+

!

"""""#

...

...

$

%%%%%&

Or, if you prefer:

yi = xi1β1 + xi2β2 + · · ·+ xipβp + "i, "i i = 1, . . . ,n

Or, if you prefer:

E(yi | xi) = xT

i β, var(yi | xi) = σ2, i = 1, . . . ,n

yi independent

Applied Statistics I September 15 2021 13

B Eia

Bp En

D D
osystematic random

add'lass



... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o)en not completely clear: X might be *xed by design, or measured on each
individual e.g.?

Applied Statistics I September 15 2021 14



... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o)en not completely clear: X might be *xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o)en not completely clear: X might be *xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o)en not completely clear: X might be *xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic

• o)en not emphasized: interpretation of βj
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o)en not completely clear: X might be *xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic

• o)en not emphasized: interpretation of βj
• version 1: e&ect on the expected response of a unit change in jth explanatory variable,

all other variables held %xed
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... review of Linear Regression LM-2 Ch.2-4; LM-1 Ch.1-3; SM 8.1-3

• o)en not completely clear: X might be *xed by design, or measured on each
individual e.g.?

• If measured, then should we consider its distribution? E.g. should our model be
(yi, xT

i ) ∼ ?? some (p+ 1)-dimensional distribution

• Almost always in regression settings we condition on X, as on previous slide
ancillary statistic

• o)en not emphasized: interpretation of βj
• version 1: e&ect on the expected response of a unit change in jth explanatory variable,

all other variables held %xed
• version 2:

βj =
∂E(yi | xij)

∂xij
∂E(y | xj)

∂xj
notation ambiguous, see CD §6.5.2
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Least squares estimation

• De*nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2
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Least squares estimation

• De*nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,
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Least squares estimation

• De*nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,

• Equivalently,
β̂LS :=

L2 distance

Applied Statistics I September 15 2021 15

Is up IlYf Xfl I win
Y xpIlyxp



Least squares estimation

• De*nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,

• Equivalently,
β̂LS :=

L2 distance
• Equivalently, β̂LS is the solution of the score equation

XT(y − Xβ) = 0

?how?

Applied Statistics I September 15 2021 15

for

Caniff
eg'sJessie I Fei



Least squares estimation

• De*nition

β̂LS := min
β

n'

i=1
(yi − xT

i β)
2

• Equivalently,

• Equivalently,
β̂LS :=

L2 distance
• Equivalently, β̂LS is the solution of the score equation

XT(y − Xβ) = 0

?how?
• Solution

β̂LS =

check dimensions
Applied Statistics I September 15 2021 15
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

ASIDE: here and following all assume X is *xed
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

• Expected value
E(β̂LS) =

why?

ASIDE: here and following all assume X is *xed
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

• Expected value
E(β̂LS) =

why?

• Least squares estimates are unbiased

ASIDE: here and following all assume X is *xed
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... least squares estimation

• Solution
β̂LS = (XTX)−1(XTy)

check dimensions

• Expected value
E(β̂LS) =

why?

• Least squares estimates are unbiased
• Variance really variance-covariance matrix

var(β̂LS) = (XTX)−1XTvar(y)X(XTX)−1 = (XTX)−1XTσ2IX(XTX)−1 = σ2(XTX)−1

ASIDE: here and following all assume X is *xed
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and

• the likelihood function is

L(β,σ2; y) = 1
(2πσ2)n/2 exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)
,
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and

• the likelihood function is

L(β,σ2; y) = 1
(2πσ2)n/2 exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)
,

• the log-likelihood function is

ℓ(β,σ2; y) = −n2 log(σ2)− 1
2σ2 (y − Xβ)T(y − Xβ),

constants in params don’t matter
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What about the normal distribution? SM §8.2

• If we further assume "i ∼ N(0,σ2) (and independent across i), then

• y | X ∼ N(Xβ,σ2I), and

• the likelihood function is

L(β,σ2; y) = 1
(2πσ2)n/2 exp

(
− 1
2σ2 (y − Xβ)T(y − Xβ)

)
,

• the log-likelihood function is

ℓ(β,σ2; y) = −n2 log(σ2)− 1
2σ2 (y − Xβ)T(y − Xβ),

constants in params don’t matter
• the maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)

• distribution of β̂j is
N(βj,σ2(XTX)−1jj ), j = 1, . . . ,p
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)

• distribution of β̂j is
N(βj,σ2(XTX)−1jj ), j = 1, . . . ,p

• maximum likelihood estimate of σ2 is 1n (y − Xβ̂)T(y − Xβ̂)
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... what about the normal distribution?

• maximum likelihood estimate of β is

β̂ML = (XTX)−1XTy = β̂LS

• distribution of β̂ is normal why?

β̂ ∼ N p(β,σ
2(XTX)−1)

• distribution of β̂j is
N(βj,σ2(XTX)−1jj ), j = 1, . . . ,p

• maximum likelihood estimate of σ2 is 1n (y − Xβ̂)T(y − Xβ̂)
• but we use

σ̃2 =
1

n− p (y − Xβ̂)T(y − Xβ̂)
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Pause

(1) I’m lost

(2) I’m good

(3) I’m bored
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Homework Week 1 on Quercus and home page

HW Question Week 1

STA2101F 2021

Due September 22 2021 11.59 pm

Homework to be submitted through Quercus

You can submit this HW in Word, Latex, or R Markdown, but in future please use R

Markdown. If you are using Word or Latex with a R script for the computational work, then

this R script should be provided as an Appendix. In the document itself you would just

include properly formatted output.

You are welcome to discuss questions with others, but the solutions and code must be written

independently. Any R output that is included in a solution should be formatted as part of

the discussion (i.e. not cut and pasted from the Console).

The dataset wafer concerns a study on semiconductors. You can get more information about

the data with ?wafer; you will first need library(faraway);data(wafer), and possibly

install.packages(“faraway’ ’). The questions below are adapted from LM Ch.3.

(a) Fit the linear model resist ~ x1 + x2 + x3 + x4. Extract the X matrix using the
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Inference

• If you really like likelihood theory, the expected Fisher information is SM §8.2.3

I(β,σ2) =
*
σ−2XTX 0

0 1
2nσ−4

+

I−1 gives (asymptotic) variance of MLE
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Inference

• If you really like likelihood theory, the expected Fisher information is SM §8.2.3

I(β,σ2) =
*
σ−2XTX 0

0 1
2nσ−4

+

I−1 gives (asymptotic) variance of MLE

• but just using previous slide we have

β̂j − βj
σ[{(XTX)−1}jj}]1/2

∼ N(0, 1)
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Inference

• If you really like likelihood theory, the expected Fisher information is SM §8.2.3

I(β,σ2) =
*
σ−2XTX 0

0 1
2nσ−4

+

I−1 gives (asymptotic) variance of MLE

• but just using previous slide we have

β̂j − βj
σ[{(XTX)−1}jj}]1/2

∼ N(0, 1)

• and
β̂j − βj

σ̃[{(XTX)−1}jj}]1/2
∼ tn−p
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Example LM-2 Exercise 2.4

See also Sep152021.Rmd

install.packages("faraway")

library(faraway)

data(prostate)

head(prostate)
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Example LM-2 Exercise 2.4

See also Sep152021.Rmd

install.packages("faraway")

library(faraway)

data(prostate)

head(prostate)

model1 <- lm(lpsa ~ ., data = prostate)

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.669337 1.296387 0.516 0.60693

lcavol 0.587022 0.087920 6.677 2.11e-09 ***

lweight 0.454467 0.170012 2.673 0.00896 **

age -0.019637 0.011173 -1.758 0.08229 .
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Example LM Exercise 2.4

summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.669337 1.296387 0.516 0.60693

lcavol 0.587022 0.087920 6.677 2.11e-09 ***

lweight 0.454467 0.170012 2.673 0.00896 **

age -0.019637 0.011173 -1.758 0.08229 .

lbph 0.107054 0.058449 1.832 0.07040 .

svi 0.766157 0.244309 3.136 0.00233 **

lcp -0.105474 0.091013 -1.159 0.24964

gleason 0.045142 0.157465 0.287 0.77503

pgg45 0.004525 0.004421 1.024 0.30886

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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It’s Just a Linear Model Women in Statistics and Data Science
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

5 10 15 20

11
13

15

x

y
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

5 10 15 20

11
13

15

x

y
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i
5 10 15 20

11
13

15

x

y
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i

• yi = β0 + β1 sin(xi) + β2 cos(xi) + "i

5 10 15 20

11
13

15

x

y
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i

• yi = β0 + β1 sin(xi) + β2 cos(xi) + "i

• yi = γ0xγ11i x
γ2
2i ηi, ηi ∼ positive r.v. SM Example 8.5
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Many special cases E(Y | X) = Xβ

• yi = β0 + β1xi + "i, i = 1, . . . ,n 1st column of X?

• yi = β0 + β1xi + β2x2i + β3x3i + β4x4i + β5x5i "i

• yi = β0 ± β1 + "i

• yi = β0 + β1 sin(xi) + β2 cos(xi) + "i

• yi = γ0xγ11i x
γ2
2i ηi, ηi ∼ positive r.v. SM Example 8.5

• yi = ϕ0 +
,K

k=1 ϕksk(xi) + "i Smoothing splines, e.g.

5 10 15 20

11
13

15

x

y
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The linear model

• expected value E(y) = linear in β

−→ Sep152021.Rmd
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The linear model

• expected value E(y) = linear in β

• measured with additive error y = E(y) + ", " ∼
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The linear model

• expected value E(y) = linear in β

• measured with additive error y = E(y) + ", " ∼

• generalizations
" ∼

−→ Sep152021.Rmd
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Today

1. Course introduction: technical issues, course details, evaluation, syllabus, people

2. Upcoming events of interest

3. Review of linear regression

4. Steps in analysis

5. In the news: excess deaths
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Steps in Analysis LM-2 §1.1

• understand the physical background
• understand the objective
• make sure you know what the client wants
• put the problem into statistical terms
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Steps in Analysis LM-2 §1.1

• understand the physical background
• understand the objective
• make sure you know what the client wants
• put the problem into statistical terms

• How were the data collected:
• are the data observational or experimental? etc.
• is there nonresponse
• are there missing values
• how are the data coded
• what are the units of measurement
• beware of data entry errors
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Components of investigation CD §1.2

• start with a scienti*c question
• assess how data could shed light on this
• plan data collection
• consider of sources of variation and how careful planning can minimize their impact
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Components of investigation CD §1.2

• start with a scienti*c question
• assess how data could shed light on this
• plan data collection
• consider of sources of variation and how careful planning can minimize their impact

• develop strategies for data analysis: modelling, computation, methods of analysis
• assess the properties of the methods and their impact on the question at hand

• communicate the results: accurately but not pessimistically

• visualization strategies, conveyance of uncertainties
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In the news Economist, May 15
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... in the news Economist, May 15
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https://www.economist.com/briefing/2021/05/15/there-have-been-7m-13m-excess-deaths-worldwide-during-the-pandemic


... in the news Economist updates
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https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates


... in the news Shotwell, 2021, Sep 7
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https://shotwell.ca/posts/economist-excess-deaths/


... in the news Shotwell, 2021, Sep 7

9/9/2021 Why the Economist's excess death model is misleading • Gordon Shotwell
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... in the news Shotwell, 2021, Sep 7
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... in the news Our World in Data
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