
Methods of Applied Statistics I
STA2101H F LEC9101

Week 4

October 6 2021



Today Start Recording

1. Upcoming events, HW 4
Office Hour Monday Oct 11 7pm-8.30pm

2. Project and HW 4

3. Linear Regression Part 4: recap, collinearity, model-building, p > n

4. Types of studies

5. Third hour – HW 2 Comments, HW 3 help
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Upcoming

• Bayesian inference for star clusters Thursday Oct 7 3.30 Zoom Link

• Friday Oct 8 Toronto Data Workshop Zoom link
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https://us02web.zoom.us/j/84157208263?pwd=NVYrcCtzOTRJM0dNRkZoUGRyUlphZz09
https://utoronto.zoom.us/j/84277066292


Project Piazza

1. The data source
2. The size of the data – number of observations and number of covariates
3. the response variable(s)
4. a description of the potential covariates
5. the scientific questions of interest

When you submit your final project, it will consist of (at least) the following parts:

1. a description of the scientific problem of interest
2. how (and why) the data being analyzed was collected
3. preliminary description of the data (plots and tables)
4. models and analysis
5. summary for a statistician of the analysis and conclusions
6. non-technical summary for a non-statistician of the analysis and conclusions
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https://piazza.com/class/ktd8b03r5rsm1?cid=47


Linear regression recap

• plot(model1) https://data.library.virginia.edu/diagnostic-plots/
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https://data.library.virginia.edu/diagnostic-plots/


... recap
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... Recap

• residuals: ε̂i = yi − ŷi

• Var(ε̂) = σ2(I− H), Var(yj − ŷj) = σ2(1− hjj) 0 < hjj < 1,Σhjj = p

• i.e. don’t all have the same variance

• hat matrix H = X(XTX)−1XT Hy = X(XTX)−1XTy = Xβ̂ = ŷ

• standardized residuals: ri =
ε̂i

σ̃(1− hii)1/2
approx var 1

• Cook’s distance Ci =
(ŷ − ŷ−i)T(ŷ − ŷ−i)

pσ̃2 =
r2i hii

p(1− hii)
measure of influence

high leverage or high residual
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... Recap

• Model structure: E(y | X) = Xβ, Var(Y | X) = σ2I

• added variable plots:
plot residuals from y on X−j against residuals from xj on X−j
(slope of this line is β̂j – nice exercise) partial regression plots

• partial residual plots:
plot β̂jxj + ε̂ against xj note: all components obtained from original fit

better for outliers better for nonlinearityApplied Statistics I October 6 2021 7



Collinearity LM-2 §7.3, LM-1 §5.3, SM §8.7.2

• simple model yi = β0 + β1x1i + β2x2i + εi, i = 1, . . .n
• if x1 ⊥ x2, then interpretation of β1 and β2 clear
• if x1 = x2 then β1 and β2 not separately identifiable
• usually we’re somewhere in between, at least in observational studies
• may be very difficult to dis-entangle effects of correlated covariates
• example: health effects of air pollution
• measurable increase in mortality on high-pollution days
• measurable increase in mortality on high-temperature days
• high temperatures and high levels of pollutants tend to co-occur +++
• mathematically, XTX is nearly singular, or at least ill-conditioned, so calculation of
its inverse is subject to numerical errors

• if p > n then XTX not invertible, no LS solution ridge, Lasso more next week
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... Collinearity LM-2 §7.3, LM-1 §5.3, SM §8.7.2

> model1

Call:

lm(formula = lpsa ~ ., data = prostate)

> X <- model.matrix(model1)

> X[1,]

(Intercept) lcavol lweight age lbph svi lcp

1.0000000 -0.5798185 2.7695000 50.0000000 -1.3862940 0.0000000 -1.3862900

gleason pgg45

6.0000000 0.0000000

> e <- eigen(t(X[,-1])%*%X[,-1])

[1] 1.00000 2.78186 47.66094 52.22787 85.98499 103.73114 153.85414 243.30248

> vif(X)

(Intercept) lcavol lweight age lbph svi lcp

2.004951 2.054115 1.363704 1.323599 1.375534 1.956881 3.097954

gleason pgg45

2.473411 2.974361
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... Collinearity LM-2 §7.3, LM-1 §5.3, SM §8.7.2

•

var(β̂j) = σ2

!
1

1− R2j

"
1

Σi(xij − x̄j)2
R2j from xj on X−j

LM-2 §7.3; LM-1 §5.3

• variance inflation factor
1

1− R2j
vif(X[,-1])

•
XTX = UΛUT , Λ = diag(λ1, . . . ,λp), λ1 ≥ ... ≥ λp ≥ 0

UTU = I

• XTX invertible ⇐⇒ λp > 0, but if several λ’s are small, it is nearly singular
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... Collinearity LM-2 §7.3, LM-1 §5.3, SM §8.7.2

• condition number (of X): λ1/λp “> 30 considered large”; LM

•

(β̂ − β)T(β̂ − β) = ||β̂ − β||22
d
= σ2

p#

j=1

Z2j /λj, Z1, . . . , Zp
iid∼ N(0, 1)

•

E(β̂ − β)T(β̂ − β) = σ2
p#

j=1

λ−1
j , var(β̂ − β)T(β̂ − β) = 2σ4

p#

j=1

λ−2
j

SM, but d1 = λp

• “statistical interpretation of condition number is not clear-cut” SM

• “a more systematic approach to dealing with weak design matrices
is ridge regression” SM, choose regularization parameter by cross-validation
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Aside: standardizing dummy variables

• ridge regression: argmin
β

(y − Xβ)T(y − Xβ) + λ

p#

j=1

β2j

• lasso regression argmin
β

(y − Xβ)T(y − Xβ) + λ

p#

j=1

|βj|

• need to center and scale columns of X so that β’s are all on the same scale
• what about dummy variables?
• Hesterburg, 2021: don’t scale dummy variables; instead scale other variables to
match the SD of dummy variables with the same standardized skewness

handles highly unbalanced dummy covariates

• LM-2 §7.2: “A binary predictor taking the values of 0/1 with equal probability has a
standard deviation of 1/2. This suggests scaling the other continuous predictors by
two SDs rather than one.” x = ±1?
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Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

• “analyses should be as simple as possible, but no simpler”
• What variables should we keep in the model ?
• Hierarchical models: some models have a natural hierarchy: polynomials, factorial
structure, auto-regressive, sinusoidal, ...

• in these models the ‘highest’ level of the hierarchy is removed first
• e.g. y = β0 + β1x + β2x2 + ε should *not* be simplified to y = β0 + β2x2 + ε

• e.g. if interaction terms are included, then main effects and other 2nd-order terms
also need to be included: y = β0 + β1x1 + β2x2 + β12x1x2 + β11x21 + β22x22 + ε

• *not* y = β0 + β1x1 + β2x2 + β12x1x2 + ε unless x = 0/1

• y = β0 + β1 sin(2πx) + β2 cos(2πx) + β3 sin(4πx) + β4 cos(4πx) + ε

• yt = β0 + αyt−1 + ε yt = β0 + α1yt−1 + α2yt−2ε *not* yt = β0 + α2yt−2 + ε
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

• testing procedures: forward selection, backward selection, stepwise selection

• it is quite common to fit all explanatory variables, and then drop if p > 0.05
• if estimates and estimated standard errors don’t change very much, may be okay
• if estimates and estimated standard errors change a lot, cause for concern
• if estimates change sign, points to possibly extreme confounding

• importance of retained explanatory variables probably overstated p-values

• procedures not directly linked to final objectives of prediction or explanation
• tends to pick models that are smaller than desirable for prediction LM-2 10.2, LM-1, 8.2

• “should be discouraged” LM-2 10.2
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... Model Selection LM-2 Ch.10; LM-1 Ch.8; SM, Ch.8.7

• Criterion-based procedures: AIC,BIC, Mallows Cp, R2a most widely used

• AIC = n log(RSS/n) + 2p balance between fit and simplicity
RSS: residual sum of squares

• BIC = n log(RSS/n) + log(n)p choose models with smallest AIC or BIC

• Cp = RSSp/σ̃2 + 2p− n: estimates average MSE of prediction
•

R2a = 1−
σ̃2model

TSS/(n− 1)
minimizing ŝe(ŷ) means minimizing σ̃2model

• SM has yet another version AICc which may be better than AIC for linear models
• Cp and R2a are only useful for linear models; AIC and BIC more general
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Model Building CD Ch.6.5

• Hierarchical principle, testing procedures, criterion-based procedures all provide
guidance on how to choose x’s

• in a linear regression model and extensions

• rote application of any of these methods gives little insight into the structure of the
model

• Empirical models: “In many fields of study the models used as a basis for
interpretation do not have a speical subject-matter base, but, rather, represnt broad
patterns of haphazard variation quite widely see in at least approximate form.”

• This is typically combined with a specification of the systematic part of the
variation, which is often, although not always, the primary focus of interest.”

• E(y | X) = Xβ how to choose the x’s
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... Model Building CD Ch.7.3

“Suppose that, at some point in the analysis, interest is focused on the role of a
particular explanatory variable or variables, xj say, on the response y. Then the
following points are relevant.

• the value, standard error, and interpretation of β̂j depends on the other variables in
the model

• relatively mechanical methods of choosing which explanatory variables to use may
be helpful in preliminary exploration, especially if p is quite large, but are insecure
as a basis for a final interpretation

• explanatory variable not of direct interest but known to have a substantial effect
should be included

• it may be essential to recognize that several different models are potentially
equally effective

• ...
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... Model Building CD Ch.7.3

“The choice of a regression model is sometimes presented as a search for a model with
as few explanatory variables as reasonably necessary to give an adequate empirical fit.
... This approach, which we do not .. in general recommend, may sometimes by
appropriate for developing simple empirical prediction equations, although even then
the important aspect of the stability fo the prediction equation is not directly
addressed”

Applied Statistics I October 6 2021 18



Example SM Eg 8.29

• nuclear plant data Cox & Snell 1981
• > library(SMPracticals); data(nuclear); head(nuclear)

cost date t1 t2 cap pr ne ct bw cum.n pt

1 460.05 68.58 14 46 687 0 1 0 0 14 0

2 452.99 67.33 10 73 1065 0 0 1 0 1 0

3 443.22 67.33 10 85 1065 1 0 1 0 1 0

4 652.32 68.00 11 67 1065 0 1 1 0 12 0

5 642.23 68.00 11 78 1065 1 1 1 0 12 0

6 345.39 67.92 13 51 514 0 1 1 0 3 0

> nuclear.lm <- lm(log(cost) ~ date + log(t1) + log(t2) + log (cap)

+ pr + ne + ct + bw + log(cum.n) + pt, data = nuclear)

> help(nuclear)
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... Example SM Eg 8.29

– could also use stepAIC or leaps::regsubsets LM-2 10.3, LM-1 8.3
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Example Cox & Snell

• transformation of variables: cost, T1, T2, cap, cum.n all converted to log
• “partly to lead to unit-free parameters whose values can be interpreted in terms of
power-law relations bewteen the original variables” Cox & Snell

• “Costs are typically relative. Moreover large costs are likely to vary more than small
ones. For consistency we also take logs of the other quantitative covariates” Davison

• backward elimination leaves six variables with residual mean square
0.0253 = 0.1592; none of the eliminated variables is significant if re-introduced

• variable PT is unbalanced
• check on the model includes interaction with PT one variable at a time
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Example Cox & Snell

e.g.

> nuclear.lm3 <- lm(log(cost) ~ date + log(cap) + NE + CT + log(cum.n) + PT,

data = nuclear); nuclear.lm3$coef

(Intercept) date log(cap) ne ct log(cum.n)

-13.26031 0.21241 0.72341 0.24902 0.14039 -0.08758

pt

-0.22610

> update(nuclear.lm3, . ~ . + pt*log(cap))$coef

(Intercept) date log(cap) ne ct log(cum.n)

-13.08645 0.21044 0.71761 0.24841 0.13998 -0.08683

pt log(cap):pt

-2.18759 0.29159
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p > n

• if p > n then XTX is not invertible
• β is not estimable
• residual sum of squares will be 0 with n explanatory variables
• no reduction in complexity; nothing learned about the relationship between y and x

• we expect that few variables are “active”, i.e. are useful for explaining the variation
in y

• number of active variables usually called s, assumed s < n also s << p

• how do we find them?
•

argmin
β

{(y − Xβ)T(y − Xβ) + λ||β||0}
•

||β0|| = #{j : βj ∕= 0}
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p > n

•
argmin

β
{(y − Xβ)T(y − Xβ) + λ||β||0}

•
||β0|| = #{j : βj ∕= 0}

• non-convex optimization; a convex relaxation of this problem is

argmin
β

{(y − Xβ)T(y − Xβ) + λ||β||1}

•
||β||1 =

#

j

|βj|

• the resulting estimate β̂λ is called the Lasso estimate
• has many components β̂λ,k = 0
• there are many other approaches to regression with p > n

Applied Statistics I October 6 2021 25



p > n

> require(glmnet)

> x <- model.matrix(nuclear.lm)

> y <- log(nuclear$cost)

> nuclear.lasso <- glmnet(x,y)

> cv.glmnet(x,y)

...

Lambda Index Measure SE Nonzero

min 0.0295 24 0.0367 0.0105 6

1se 0.0566 17 0.0462 0.0115 5

> nuclear.lasso2 <- glmnet(x,y,lambda=0.0566)

> coef(nuclear.lasso2)

0.1055 . . 0.4276 . 0.08728 0.02109 . . -0.3426
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Design of Studies CD, Ch.2

• common objectives
• to avoid systematic error, that is distortion in the conclusions arising from sources
that do not cancel out in the long run

• to reduce the non-systematic (random) error to a reasonable level by replication
and other techniques

• to estimate realistically the likely uncertainty in the final conclusions
• to ensure that the scale of effort is appropriate
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... design of studies

• we concentrate largely on the careful analysis of individual studies
• in most situations synthesis of information from different investigations is needed
• but even there the quality of individual studies remains important
• examples include overviews (such as the Cochrane reviews)
• in some areas new investigations can be set up and completed relatively quickly;
design of individual studies may then be less important
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... design of studies

• formulation of a plan of analysis
• establish and document that proposed data are capable of addressing the research
questions of concern

• main configurations of answers likely to be obtained should be set out
• level of detail depends on the context
• even if pre-specified methods must be used, it is crucial not to limit analysis
• planned analysis may be technically inappropriate
• more controversially, data may suggest new research questions or replacement of
objectives

• latter will require confirmatory studies
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Unit of study and analysis

• smallest subdivision of experimental material that may be assigned to a treatment
context: Expt

• Example: RCT – unit may be a patient, or a patient-month (in crossover trial)
• Example: public health intervention – unit is often a community/school/...
• split plot experiments have two classes of units of study and analysis
• in investigations that are not randomized, it may be helpful to consider what the
primary unit of analysis would have been, had a randomized experiment been
feasible

• the unit of analysis may not be the unit of interpretation – ecological bias
systematic difference between impact of x at different levels of aggregation

• on the whole, limited detail is needed in examining the variation within the unit of
study
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Types of observational studies

• secondary analysis of data collected for another purpose
• estimation of a some feature of a defined population (could in principle be found
exactly)

• tracking across time of such features
• study of a relationship between features, where individuals may be examined

• at a single time point
• at several time points for different individuals
• at different time points for the same individual

• experiment: investigator has complete control over treatment assignment
• census
• meta-analysis: statistical assessment of a collection of studies on the same topic
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Computational advertising BIRS

David Banks, Duke University: The statistical challenges of computational advertising
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http://www.birs.ca/events/2021/5-day-workshops/21w5508/schedule


... Computational advertising Nathaniel Stevens
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... Computational advertising Nathaniel Stevens
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... Computational advertising Nathaniel Stevens
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... Computational advertising Nathaniel Stevens

https://goodui.org/leaks/
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https://goodui.org/leaks/


... Computational advertising Art Owen: Tie-breaker designs

paper

Stanford talk t
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https://arxiv.org/pdf/1808.07563.pdf
https://statweb.stanford.edu/~owen/pubtalks/tiebreaker.pdf

