
Methods of Applied Statistics I

STA2101H F LEC9101

Week 6

October 20 2021

Today

- 1. Upcoming events, Project
- 2. Linear Regression Part 6: randomization designs, random effects, factorial experiments
- 3. Logistic Regression
- 4. In the News
- 5. Third hour HW Comments HW3, HW4

Syllabus – update

${\bf Syllabus} \,\, {\bf Updated} \,\, {\bf Oct} \,\, {\bf 19}$

STA 2101F: Methods of Applied Statistics I 2021

Week	Date	Methods	References
1	Sept 15	Review of Linear Re-	LM-2 Ch.2-4; LM-1
		gression	Ch.2-3; CD Ch.1; SM
			Ch.8.2.1, 8.3
2	Sept 22	Model compari-	LM-2 Ch.1,3, Ch.14-
		son, diagnostics,	1,2; LM-1 Ch.1,3,
		collinearity, factors,	Ch.13; CD Ch.1
		steps in analysis,	
		components of inves-	
		tigation, design and	
		analysis	
_	~		
3	Sept 29	. ,	LM-2 Ch.6; LM-1
		diagnostics; Model	Ch. 4; CD Ch.1,2
		Selection, Types of	
0 2021		Studies	

Upcoming

Thursday Oct 21 3.30
 A top-down approach to understanding deep learning Zoom Link

Weijie Su, University of Pennsylvania

Short Bio

Weijie Su is an Assistant Professor in the Department of Statistics and Data Science of The Wharton School and the Department of Computer and Information Science, at the University of Pennsylvania. He is a co-director of Penn Research in Machine Learning. Prior to joining Penn, he received his Ph.D. in statistics from Stanford University in 2016 and his bachelor's degree in mathematics from Peking University in 2011. His research interests span privacy-preserving data analysis, ostorthization, high-dimensional statistics, and

deep learning theory. He is a recipient of the Stanford Theodore Anderson Dissertation Award in 2016, an NSF CAREER Award in 2019, and an Alfred Sloan Research Fellowship in 2020.

Friday Oct 22 Toronto Data Workshop
 Zoom link

Toronto Data Workshop this Friday, 22 October, at noon (Toronto time) hosts Tegan Maharaj, Faculty of Information, University of Toronto.

Professor Maharaj writes:

I study AI systems and "what goes into" them, e.g. their real-world deployment context, and the effects that has on learning behaviour and generalization. I do that because I want to be able to use AI systems responsibly for problems I think are important, like impact and risk assessments for climate change, AI alignment, ecological management and other common-good problems. My website is: teganmaharaj.org.

... Upcoming

Monday Oct 25 3.30
 Opinionated practices for teaching reproducibility: motivation, guided instruction and practice
 Register

roject Dataset List

- OECD: https://stats.oecd.org/ In addition, there is a special R package for the OECD database.
- 2. Ontario Government: https://data.ontario.ca/en/
- Covid: https://www.openicpsr.org/openicpsr/search/covid19/studies
 repository for data examining the social, behavioral, public health, and economic impact of the novel coronavirus global pandemic
- 4. General: A great source for datasets is the Google dataset search page.
- Climate data: NOAA Climate Data Store (CDS) contains an abundance of forecast, reanalysis, observation and climate model datasets spanning many different temporal and spatial ranges. This data can be found here.
- Medicine: Some articles in Nature Medicine have linked datasets. A couple of such articles related to COVID19 are below:

Immune response data

- <u>predictors of COVID19 epidemic</u> The latter dataset is posted on https://figshare.com/ platform that is hosting other datasets too.
- General: You can find datasets in the UCI Machine Learning Repository: (but these are kind of tired) https://archive.ics.uci.edu/ml/datasets.php
- Urban: Here is the link to Toronto open data portal https://open.toronto.ca/ There are many data set related to our cityl For example transportation, housing, environment, etc.

retrieve the data at EuroStat (https://ec.europa.eu/eurostat/home). The data includes

9. Economics: I found a database including quarterly economic measures for a large October 20 20 1 mmber of indicators, for each country separately, and for the entire EU block. We can

Recap: Design of studies

- · design of studies: systematic error, random error, estimation of uncertainty
- plan of analysis, role of individual studies
- unit of analysis; unit of interpretation

ecological bias

• interaction: between factors, between factor and continuous variables

- "treatment" is not assigned to units, only observed
- any observed effect of treatment cannot be assumed to be causal

"correlation is not causation"

- we can try to assess the effect by controlling for other variables that may also influence the response
- but we cannot control for unmeasured variables

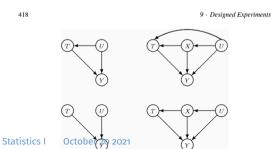
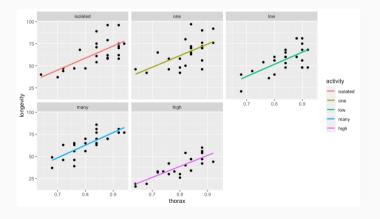



Figure 9.1 Directed acyclic graphs showing consequences of randomization. An arrow from T to Y indicates dependence of V on T and so forth. In general both response Y and treatment T may depend on properties U of units (upper left). Pandomization (lower left) makes treatments and units independent, so any observed dependence of Y on T cannot be ascribed to ioint dependence on U. The upper right graph shows the general dependence of Y. T. and covariates X on U.

Types of observational studies

- secondary analysis of data collected for another purpose
- estimation of a some feature of a defined population (could in principle be found exactly)
- tracking across time of such features
- · study of a relationship between features, where individuals may be examined
 - at a single time point
 - · at several time points for different individuals
 - · at different time points for the same individual
- census
- $\boldsymbol{\cdot}$ meta-analysis: statistical assessment of a collection of studies on the same topic

- Read Ch.14 or 13 of LM one factor variable and one continuous variable
- · Example: fruitfly

8.1 · Introduction

Table 8.2 Data and experimental setup for bicycle experiment (Box et al., 1978, pp. 368–372). The lower part of the table shows the average times for each of the eight combinations of settings of seat height, tyre pressure, and dynamo, and the average times for the eight observations at each setting, considered separately.

Setup	Day	Run	Seat height (inches)	Dynamo	Tyre pressure (psi)	Time (secs)
1	3	2	_	_	_	51
2	4	1	_	_	_	54
3	2	2	+	_	_	41
4	2	3	+	_	_	43
5	3	3	_	+	_	54
6	2	1	_	+	_	60
7	3	1	+	+	_	44
8	4	3	+	+	_	43
9	1	1	_	_	+	50
10	4	4	_	_	+	48
11	3	5	+	_	+	39
12	4	2	+	_	+	39
13	3	4	_	+	+	53
14	1	3	_	+	+	51
15	1	2	+	+	+	41
16	2	4	+	+	+	44

357

... Factorial experiments: examples

Table 8.10 Poison data (Box and Cox, 1964). Survival times in 10-hour units of animals in a 3 × 4 factorial experiment with four replicates. The table underneath gives average (standard deviation) for the poison × treatment combinations.

Treatment	Poison 1	Poison 2	Poison 3
A	0.31, 0.45, 0.46, 0.43	0.36, 0.29, 0.40, 0.23	0.22, 0.21, 0.18, 0.23
В	0.82, 1.10, 0.88, 0.72	0.92, 0.61, 0.49, 1.24	0.30, 0.37, 0.38, 0.29
C	0.43, 0.45, 0.63, 0.76	0.44, 0.35, 0.31, 0.40	0.23, 0.25, 0.24, 0.22
D	0.45, 0.71, 0.66, 0.62	0.56, 1.02, 0.71, 0.38	0.30, 0.36, 0.31, 0.33

Treatment	Poison 1	Poison 2	Poison 3	Average
A	0.41 (0.07)	0.32 (0.08)	0.21 (0.02)	0.31
В	0.88 (0.16)	0.82 (0.34)	0.34 (0.05)	0.68
C	0.57 (0.16)	0.38 (0.06)	0.24 (0.01)	0.39
D	0.61 (0.11)	0.67 (0.27)	0.33 (0.03)	0.53
Average	0.62	0.55	0.28	0.48

· completely randomized:

SM Example 9.2 - one factor with 4 levels; LM-2 15.2, LM-2 14.2

Table 9.3 Data on the teaching of arithmetic.

Group		Test result y							Average	Variance	
A (Usual)	17	14	24	20	24	23	16	15	24	19.67	17.75
B (Usual)	21	23	13	19	13	19	20	21	16	18.33	12.75
C (Praised)	28	30	29	24	27	30	28	28	23	27.44	6.03
D (Reproved)	19	28	26	26	19	24	24	23	22	23.44	9.53
E (Ignored)	21	14	13	19	15	15	10	18	20	16.11	13.11

all the examples in LM-2 Ch.15, 16; LM-1 Ch. 13,14
 SM Example 9.6 (See Table 8.10) – two factors with 3 and 4 levels, replicated

randomized blocks:

SM Example 9.3 – one treatment factor with 4 levels, one blocking factor with 8 levels

Table 9.6	Data on
weight gair	ns in pigs.

			Group							
Diet	1	2	3	4	5	6	7	8	Average	
I	1.40	1.79	1.72	1.47	1.26	1.28	1.34	1.55	1.48	
II	1.31	1.30	1.21	1.08	1.45	0.95	1.26	1.14	1.21	
III	1.40	1.47	1.37	1.15	1.22	1.48	1.31	1.27	1.33	
IV	1.96	1.77	1.62	1.76	1.88	1.50	1.60	1.49	1.70	
Average	1.52	1.58	1.48	1.37	1.45	1.30	1.38	1.36	1.43	

- LM-2 17.1; LM-1 16.1
- incomplete RB
- Latin square

SM Example 9.4 – each block has only some treatments

SM Example 9.5 – two blocking factors

- design: one factor with I levels; J responses at each level
- model

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \dots J; i = 1, \dots I; \quad \epsilon_{ij} \sim (0, \sigma^2)$$

- · parameters:
 - $\mu = \mathbb{E}(y_{ii})$ if all $\alpha_i \equiv 0$;
 - α_2 is change from μ in $\mathbb{E}(y_{2j})$ in group 2, etc. using the R convention that $\alpha_1 = 0$
 - $oldsymbol{\epsilon}_{ij}$ is noise variation in response not attributed to factor variable

•
$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 =$$

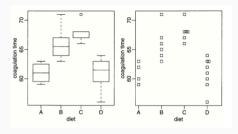
Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(I — 1)	$\sum_{ij}(\bar{y}_{i.}-\bar{y}_{})^2$	$\sum_{ij} (\bar{y}_{i.} - \bar{y}_{})^2/(I-1)$	$MS_{treatment}/MS_{error}$
error	I(J-1)	$\sum_{ij}^{y}(y_{ij}-\bar{y}_{i.})^2$	$\sum_{ij}^{r} (y_{ij} - \bar{y}_{i.})^2 / \{I(J-1)\}$	
total(corrected)	IJ − 1	$\sum_{ii}(y_{ii}-\bar{y}_{})^2$		

Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(<i>I</i> — 1)	SS _{between}	MS _{between}	MS _{between} /MS _{within}
error	I(J - 1)	SS _{within}	MS _{within}	
total(corrected)	IJ — 1	SS _{total}		_

$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{..})^2$$

$$= \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (y_{ij} - \bar{y}_{i.})^2$$

9.2 · Some Standard Designs

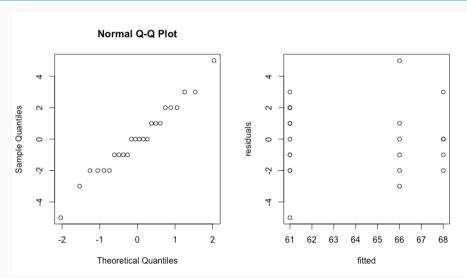

Table 9.3 Data on the teaching of arithmetic.

Group	Test result y					Average	Variance				
A (Usual)	17	14	24	20	24	23	16	15	24	19.67	17.75
B (Usual)	21	23	13	19	13	19	20	21	16	18.33	12.75
C (Praised)	28	30	29	24	27	30	28	28	23	27.44	6.03
D (Reproved)	19	28	26	26	19	24	24	23	22	23.44	9.53
E (Ignored)	21	14	13	19	15	15	10	18	20	16.11	13.11

Term	df	Sum of squares	Mean square	F
Groups	4	722.67	180.67	15.3
Residual	40	473.33	11.83	

Table 9.4 Analysis of variance for data on the teaching of arithmetic.

427


```
anova(lm(coag ~ diet, data = coagulation))
```

Response: coag

Df Sum Sq Mean Sq F value Pr(>F)
diet 3 228 76.0 13.571 4.658e-05 ***
Residuals 20 112 5.6

Residuals 20 112 5.

... anova

Comparison of group means

model

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \dots J_i; i = 1, \dots I$$
group sizes unequal

- assumption $\epsilon_{ij} \sim N(O, \sigma^2)$
- $\operatorname{var}(\bar{y}_{i} \bar{y}_{i'}) =$

.

$$rac{ar{Y}_{i.} - ar{Y}_{i'.}}{ ilde{\sigma}\sqrt{\left(1/J_i + 1/J_{i'}
ight)}} \sim$$

- 95% confidence intervals
- correction for multiple testing using HSD

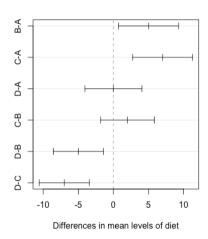
```
> options(contrasts = c("contr.sum", "contr.poly"))
> summary(lm(coag~diet, data = coagulation))
```

Call:

lm(formula = coag ~ diet, data = coagulation)

Residuals:

Coefficients:


	Estimate	blu.	ELIOI	t varue	LT (> 0)	
(Intercept)	64.000		0.498	128.54	< 2e-16	**
diet1	-3.000		0.974	-3.08	0.00589	**
diet2	2.000		0.845	2.37	0.02819	*
diet3	4.000		0.845	4.73	0.00013	**

Estimate Std Error t value Pr(\|t|)

... Comparison of group means

... Comparison of group means

95% family-wise confidence level


```
>TukeyHSD(aov(coag ~ diet, data = coagulation))
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = coag ~ diet, data = coagulation)
$diet
    diff
            lwr
                  upr p adi
B-A
          0.725
                 9.28 0.018
C-A
         2.725 11.28 0.001
D-A
      0 -4.056 4.06 1.000
C-B
         -1.824 5.82 0.477
      -5 -8.577 -1.42 0.004
D-B
D-C
     -7 -10.577 -3.42 0.000
```

> plot(.Last.value)

Multiple comparisons

Tukey's "Honest Significant Difference" adjusts for selection

based on distribution of the largest of a set of *T*-statistics

- The Bonferroni method makes an approximate correction to the p-values: $p_{reported} = p_{computed} \times number \ of \ comparisons$
- · this controls the family-wise error rate
- Benjamini-Hochberg controls the False Discovery Rate FDR; less conservative than Bonferroni
- see LM-2 Ch.15.5 (posted on class web page)

STA2212S

- in some settings, the one-way layout refers to sampled groups
- · not an assigned treatment
- e.g. a sample of people, with several measurements taken on each person
- $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ as before, but with different assumptions

		Sub	ject		
1	2	3	4	5	6
68	49	41	33	40	30
42	52	40	27	45	42
69	41	26	48	50	35
64	56	33	54	41	44
39	40	42	42	37	49
66	43	27	56	34	25
29	20	35	19	42	45

Table 9.22 Blood data: seven measurements from each of six subjects on a property related to the stickiness of their blood.

- $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$, $\epsilon_{ij} \sim (0, \sigma^2)$, $\alpha_i \sim (0, \sigma_q^2)$ $i = 1, \dots, T; j = 1 \dots R$
- · variance of response within subjects
- · variance of response between subjects
- as before,

$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (y_{ij} - \bar{y}_{i.})^2$$

• random effects induce dependence among measurements on the same subject: ntbc

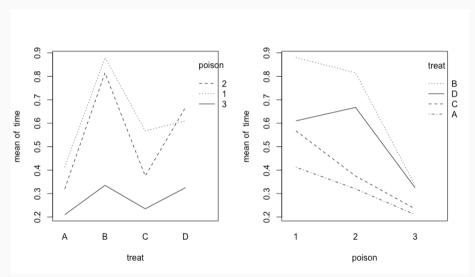
$$cov(y_{ij}, y_{ij'}) = \sigma_A^2$$

• $SS_{within} \sim \sigma^2 \chi^2_{T(R-1)}$ $SS_{between} \sim (R\sigma_A^2 + \sigma^2) \chi^2_{T-1}$ leads to F-test for $H_0: \sigma_A^2 = 0$

Table 8.10 Poison data (Box and Cox, 1964). Survival times in 10-hour units of animals in a 3 × 4 factorial experiment with four replicates. The table underneath gives average (standard deviation) for the poison × treatment combinations.

Treatment	Poison 1	Poison 2	Poison 3
A	0.31, 0.45, 0.46, 0.43	0.36, 0.29, 0.40, 0.23	0.22, 0.21, 0.18, 0.23
В	0.82, 1.10, 0.88, 0.72	0.92, 0.61, 0.49, 1.24	0.30, 0.37, 0.38, 0.29
C	0.43, 0.45, 0.63, 0.76	0.44, 0.35, 0.31, 0.40	0.23, 0.25, 0.24, 0.22
D	0.45, 0.71, 0.66, 0.62	0.56, 1.02, 0.71, 0.38	0.30, 0.36, 0.31, 0.33

Treatment	Poison 1	Poison 2	Poison 3	Average
A	0.41 (0.07)	0.32 (0.08)	0.21 (0.02)	0.31
В	0.88 (0.16)	0.82 (0.34)	0.34 (0.05)	0.68
C	0.57 (0.16)	0.38 (0.06)	0.24 (0.01)	0.39
D	0.61 (0.11)	0.67 (0.27)	0.33 (0.03)	0.53
Average	0.62	0.55	0.28	0.48


• model:
$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \epsilon_{ijk}$$
, $i = 1, ..., I; j = 1, ..., I; k = 1, ..., R$

analysis of variance

comparison of means

interaction plots

```
> library(SMPracticals)
> data(poisons)
> pmod <- lm(time ~ poison + treat, data = poisons)</pre>
> anova(pmod)
Analysis of Variance Table
Response: time
            Df Sum Sq Mean Sq F value Pr(>F)
             2 1.033 0.517 23.22 3.3e-07 ***
poison
             3 0.921 0.307 13.81 3.8e-06 ***
treat
poison:treat 6 0.250 0.042 1.87 0.11
Residuals 36 0.801
                       0.022
> with(poisons, interaction.plot(treat,poison,time))
> with(poisons, interaction.plot(poison,treat,time))
```


Applied Statistics I October 20 2021

Randomized block design

$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{.j} - \bar{y}_{..})^2$$

$$= \sum_{ij} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{.j} - \bar{y}_{..})^2$$

Table 9.5 Analysis of variance table for two-way layout model.

Term	df	Sum of squares
Treatments Blocks	$T-1 \\ B-1$	$\frac{\sum_{t,b}(\overline{y}_{t.} - \overline{y}_{})^2}{\sum_{t,b}(\overline{y}_{\cdot b} - \overline{y}_{})^2}$
Residual	(T-1)(B-1)	$\sum_{t,b}(y_{tb}-\overline{y}_{t.}-\overline{y}_{.b}+\overline{y}_{})^{2}$

Estimation of σ^2

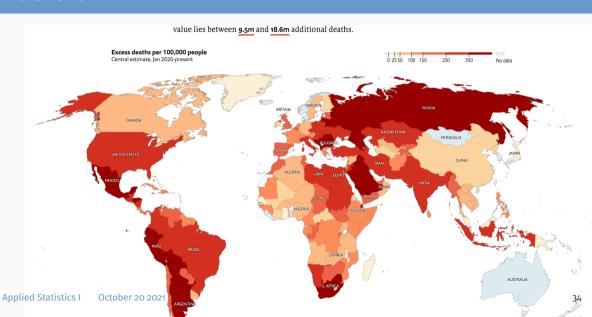
Analysis of Variance Table

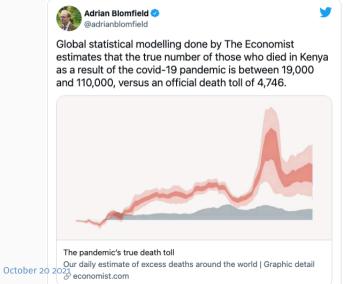
```
Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

variety 7 77524 11074.8 8.2839 1.804e-05 ***

block 4 33396 8348.9 6.2449 0.001008 **


Residuals 28 37433 1336.9


---
```

Residual standard error: 36.56 on 28 degrees of freedom

The interaction between blocks and treatments is used to estimate error. This is sometimes justified by assuming the block effects β_j are random.

In the News

... in the news

9/9/2021

Why the Economist's excess death model is misleading • Gordon Shotwell

Why the Economist's excess death model is misleading

The Economist has published a model which estimates that Kenyans are only detecting 4-25% of the true deaths which can be attributed to Covid. I think this is a good opportunity to learn about why many machine learning models are problematic. I'm going to talk about this particular model, but I should note that I've only spent about ten hours looking at this problem and I'm sure the authors of this model are smart thoughtful people who don't mean to mislead. That said, I think it's an excellent example of how machine learning models can lend a sheen of credibility to things that are basically unsupported assertions. When someone says that their model says something, most people assume that means that it's supporting that thing with hard data when it's often just making unsupported assertions. It's possible that the authors of this model have sound reasons about why they can make global excess death predictions based on a small unrepresentative sample of countries, but even so! think these observations are helpful for figuring out which models you should trust.

What got me started thinking about this subject was this tweet by one of the writers at The Economist suggesting that Kenya was radically undercounting deaths which have resulted from the Covid-19 nandemic.

Adrian Blomfield

@adrianblomfield

... in the news Globe & Mail Oct 14

Africa's COVID-19 cases are seven times higher than official count, WHO says

GEOFFREY YORK > AFRICA BUREAU CHIEF JOHANNESBURG PUBLISHED OCTOBER 14, 2021 1

TRENDING

- EXPLAINER Canada's COVID-19 benefits are set to expire on Oct. 23. Here's what you need to know
- Rob Carrick: So you think you'll teach vour online broker a lesson by moving your account
- Councillor Ivoti Gondek wins mayoral race in Calgary; former Liberal cabinet minister Amarieet Sohi wins in Edmonton
- Rogers family, independent directors to meet Tuesday to discuss boardroom rift

WHO Africa Link

Applied Statistics I October 20 2021 38

WHO Africa

As WHO in Africa, we are using a model to estimate the degree of underestimation. Our analysis indicates that as few as one in seven cases is being detected, meaning that the true COVID-19 burden in Africa could be around 59 million cases.

The proportion of underreporting on deaths is lower, our estimates suggest around one in three deaths are being reported. Deaths appear to be lower on the continent in part because of the predominantly younger and more active population.

Applied Statistics I October 20 2021 39

ELM, Ch.1

- simple linear regression $E(y_i \mid x_i) = \beta_0 + \beta_1 x_i$, $var(y_i \mid x_i) = \sigma^2$
- suppose $y \in \{0, 1\}$
- examples

• $E(y_i \mid x_i) =$

1 · Introduction

Table 1.3 O-ring thermal distress data. r is the number of field-joint O-rings showing thermal distress out of 6, for a launch at the given temperature (°F) and pressure (pounds per square inch) (Dalal et al., 1989).

Flight	Date	Number of O-rings with thermal distress, r	Temperature (°F)	Pressure (psi)	
1	21/4/81	0	66	50	
2	12/11/81	1	70	50	
3	22/3/82	0	69	50	
5	11/11/82	0	68	50	
6	4/4/83	0	67	50	
7	18/6/83	0	72	50	
8	30/8/83	0	73	100	
9	28/11/83	0	70	100	
41-B	3/2/84	1	57	200	
41-C	6/4/84	1	63	200	
41-D	30/8/84	1	70	200	
41-G	5/10/84	0	78	200	
51-A	8/11/84	0	67	200	
51-C	24/1/85	2	53	200	
51-D	12/4/85	0	67	200	
51-B	29/4/85	0	75	200	
51-G	17/6/85	0	70	200	
51-F	29/7/85	0	81	200	
51-I	27/8/85	0	76	200	
51-J	3/10/85	0	79	200	
61-A	30/10/85	2	75	200	
61-B	26/11/86	0	76	200	
202161	21/1/96		50	200	

Davison

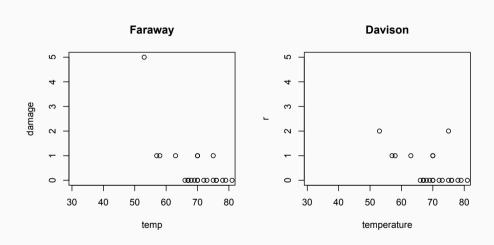


Table 1. O-Ring Thermal-Distress Data

Flight		Field		Nozzle			Leak-check pressure			
	Date	Erosion	Blowby	Erosion or blowby	Erosion	Blowby	Erosion or blowby	Joint temperature	Field	Nozzle
1	4/12/81							66	50	50
2	11/12/81	1		1				70	50	50
3	3/22/82							69	50	50
2 3 5 6 7	11/11/82							68	50	50
6	4/04/83				2		2	67	50	50
7	6/18/83							72	50	50
8	8/30/83							73	100	50
9	11/28/83							70	100	100
41-B	2/03/84	1		1	1		1	57	200	100
41-C	4/06/84	1		1	1		1	63	200	100
41-D	8/30/84	1		1	1	1	1	70	200	100
41-G	10/05/84							78	200	100
51-A	11/08/84							67	200	100
51-C	1/24/85	2, 1*	2	2		2	2	53	200	100
51-D	4/12/85				2		2	67	200	200
51-B	4/29/85				2, 1*	1	2 2 2	75	200	100
51-G	6/17/85				2	2	2	70	200	200
51-F	7/29/85				1			81	200	200
51-i	8/27/85				1			76	200	200
51-J	10/03/85							79	200	200
61-A	10/30/85		2	2	1			75	200	200
61-B	11/26/85				2	1	2	76	200	200
61-C	1/12/86	1		11	1	1	2	58	200	200
61-1	1/28/86							31	200	200
	Total	7, 1*	4	9	17, 1*	8	17			

^{*}Secondary O-ring.

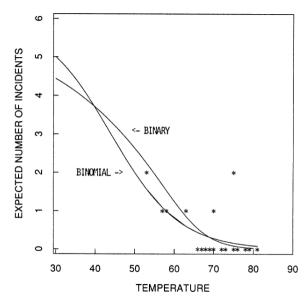


Figure 4. O-Ring Thermal-Distress Data: Field-Joint Primary O-Rings, Binomial-Logit Model, and Binary-Logit Model.

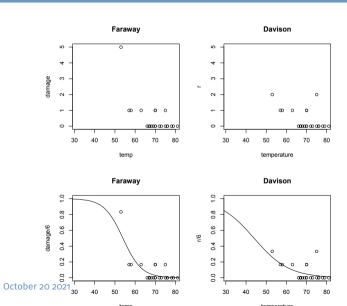
Modelling numbers/proportions of events

- $y_i \sim Bin(6, p_i), i = 1, ..., 23$
- in general: n_i trials, y_i successes, probability of success p_i
- for regression: associated covariate vector x_i , e.g. temperature
- SM uses m_i and r_i instead of n_i and y_i
- each y_i could in principle be the sum of n_i independent Bernoulli trials
- each of the n_i trials having the same probability p_i
- with the same covariate vector x_i

FELM 'covariate classes', p.26

Applied Statistics I October 20 2021 45

Challenger data: Faraway


```
> library(faraway); data(orings)
> logitmod <- glm(cbind(damage,6-damage) ~ temp, family = binomial, data = orings)
> summary(logitmod)
Call:
glm(formula = cbind(damage, 6 - damage) ~ temp, family = binomial,
    data = orings)
. . .
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.66299 3.29626 3.538 0.000403 ***
temp -0.21623 0.05318 -4.066 4.78e-05 ***
---
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 38.898 on 22 degrees of freedom
Residual deviance: 16.912 on 21 degrees of freedom
```

Challenger data: Davison

```
> library(SMPracticals) # this is for datasets in
                        #Statistical Models by Davison
> data(shuttle) # same example, different name
> shuttle2 <- data.frame(as.matrix(shuttle)) # this is a kludge to avoid
                                 #an error with head(shuttle)
> head(shuttle2)
 m r temperature pressure
1 6 0
              66
2 6 1
              70
                      50
3 6 0 69
                      50
4 6 0
      68
                      50
5 6 0
      67
                      50
6 6 0
                      50
> par(mfrow=c(2,2)) # puts 4 plots on a page
> with(orings,plot(temp,damage,main="Faraway",xlim=c(31,80)))
> with(shuttle,plot(temperature,r,main="Davison",xlim=c(31,80),
+ vlim=c(0,5))
```

Applied Statistics I October 20 2021

Challenger data fits

