
Methods of Applied Statistics I
STA2101H F LEC9101

Week 8

November 3 2021

 



Today Start Recording

1. Upcoming events

2. Logistic Regression

3. Poisson Regression

4. In the News

5. Homework, Project (Hour 3)
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Upcoming Reading Week!! Nov 8-13

• Thursday Nov 4 3.30

Precise High-Dimensional Asymptotics for AdaBoost Zoom Link
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Upcoming Reading Week!! Nov 8-13

• Thursday Nov 4 3.30

Precise High-Dimensional Asymptotics for AdaBoost Zoom Link

• Friday Nov 5 Toronto Data Workshop Zoom link
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Recap

• last of linear models: factorial treatment structure, CR and RB designs, interaction
plots, estimation of variance, comparison of group means

• regression with binomial response y: logistic transform, 'tting by ML, interpretation
of coe(cients, Challenger data, linear predictor, variance-covariance matrix

• estimation of β; estimation of var(β), based on likelihood theory statistics secret sauce
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Inference based on the likelihood function
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Inference based on the likelihood function

• model: yi ∼ f (yi; θ), i = 1, . . . ,n independent
• joint density: f (y; θ) =

!n
i=1 f (yi; θ)

• likelihood function L(θ; y) = f (y; θ)
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Inference based on the likelihood function

• model: yi ∼ f (yi; θ), i = 1, . . . ,n independent
• joint density: f (y; θ) =

!n
i=1 f (yi; θ)

• likelihood function L(θ; y) = f (y; θ)

• log-likelihood function ℓ(θ; y) = log L(θ; y) =
"n

i=1 log f (yi; θ)
• maximum likelihood estimate θ̂ = arg sup ℓ(θ; y); ℓ′(θ̂) = 0
• Fisher information j(θ) = −ℓ′′(θ)

• two theorems:
(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

asymptotically normal
• likelihood ratio statistic

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

p is dimension of θ
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... Inference based on the likelihood function

• two theorems:

(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p
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... Inference based on the likelihood function

• two theorems:

(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

• two approximations

θ̂k
.∼ N({θk, j−1(θ̂)kk}

w(θ) .∼ χ2p
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... Inference based on the likelihood function

• two theorems:

(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

• two approximations

θ̂k
.∼ N({θk, j−1(θ̂)kk}

w(θ) .∼ χ2p

• compare two models using change in likelihood ratio statistic nested models
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... Inference based on the likelihood function
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... inference based on the likelihood function

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

maximum likelihood estimate ∂ℓ(β; y)/∂β = 0

β̂0 = 5.08498, β̂1 = −0.11560 j(β) ≡ −
∂2ℓ(β)

∂β∂βT

var(β̂) .
= j−1(β̂)

> vcov(logitmodcorrect)

(Intercept) temperature

(Intercept) 9.3175983 -0.142564339

temperature -0.1425643 0.002211221
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Nested models

• Comparing two models:
• likelihood ratio test

2{ℓA(β̂A)− ℓB(β̂B)}

compares the maximized log-likelihood function under model A and model B
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Nested models

• Comparing two models:
• likelihood ratio test

2{ℓA(β̂A)− ℓB(β̂B)}

compares the maximized log-likelihood function under model A and model B
• example
model A: logit(pi) = β0 + β1x1i + β2x2i, βA = (β0,β1,β2)

model B: logit(pi) = β0 + β1x1i, βB = (β0,β1)
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Nested models

• Comparing two models:
• likelihood ratio test

2{ℓA(β̂A)− ℓB(β̂B)}

compares the maximized log-likelihood function under model A and model B
• example
model A: logit(pi) = β0 + β1x1i + β2x2i, βA = (β0,β1,β2)

model B: logit(pi) = β0 + β1x1i, βB = (β0,β1)

• when model B is nested in model A, LRT is approximately χ2ν distributed, under
model B

• ν = dim(A)− dim(B)
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... nested models

> logitmodcorrect <- glm(cbind(r,m-r) ~ temperature, family = binomial, data = shuttle2)

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> summary(logitmodcorrect2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.520195 3.486784 0.723 0.4698

temperature -0.098297 0.044890 -2.190 0.0285 *

pressure 0.008484 0.007677 1.105 0.2691

---

Null deviance: 24.230 on 22 degrees of freedom

Residual deviance: 16.546 on 20 degrees of freedom

AIC: 36.106

Number of Fisher Scoring iterations: 5
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... nested models

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> anova(logitmodcorrect,logitmodcorrect2)

Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature

Model 2: cbind(r, m - r) ~ temperature + pressure

Resid. Df Resid. Dev Df Deviance

1 21 18.086

2 20 16.546 1 1.5407
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0

• Under Model B, the change in deviance is (approximately) an observation from a χ21
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...nested models

• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0

• Under Model B, the change in deviance is (approximately) an observation from a χ21

• Pr(χ21 ≥ 1.5407) = 0.22: this is a p-value for testing H0 : β2 = 0

ELM-1 p.30

Applied Statistics I November 3 2021 13

1 Model A Po e

Rodel B preBjp

0
Tother test p I has palm of

residdianceconstant y



Con!dence intervals

• con'dence intervals for β1
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Con!dence intervals

• con'dence intervals for β1

• based on normal approximation: β̂1 ±#s.e.(β̂1) ∗ 1.96
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Con!dence intervals

• con'dence intervals for β1

• based on normal approximation: β̂1 ±#s.e.(β̂1) ∗ 1.96
• (-0.208, -0.023)
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Con!dence intervals

• con'dence intervals for β1

• based on normal approximation: β̂1 ±#s.e.(β̂1) ∗ 1.96
• (-0.208, -0.023)

• based on pro'le log-likelihood ℓp(β1), details to follow
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Con!dence intervals

• con'dence intervals for β1

• based on normal approximation: β̂1 ±#s.e.(β̂1) ∗ 1.96
• (-0.208, -0.023)

• based on pro'le log-likelihood ℓp(β1), details to follow

• confint(logitmodcorrect):

( -0.2122262, -0.0244701 )

ELM-1 p. 31
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Binary data ELM-2, Ch.2

• each response is Binary: yi = 0, 1 instead of 0, 1, . . . ,mi

• explanatory variables xTi as usual
• same model

pr(yi = 1 | xi) = pi(β) =
exp(xTi β)

1+ exp(xTi β)
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Binary data ELM-2, Ch.2

• each response is Binary: yi = 0, 1 instead of 0, 1, . . . ,mi

• explanatory variables xTi as usual
• same model

pr(yi = 1 | xi) = pi(β) =
exp(xTi β)

1+ exp(xTi β)

• example: SM 10.18
• example HW6: “The math group, the single dependent variable of this work, was
coded as a dichotomous variable (1: math group vs. 0: nonmath group).”

• “To classify the math vs. nonmath groups, we also executed a binary logistic
regression.”
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Binary data ELM-2, Ch.2

• each response is Binary: yi = 0, 1 instead of 0, 1, . . . ,mi

• explanatory variables xTi as usual
• same model

pr(yi = 1 | xi) = pi(β) =
exp(xTi β)

1+ exp(xTi β)

• example: SM 10.18
• example HW6: “The math group, the single dependent variable of this work, was
coded as a dichotomous variable (1: math group vs. 0: nonmath group).”

• “To classify the math vs. nonmath groups, we also executed a binary logistic
regression.”

• example wcgs data, ELM-2, Ch.2
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Binary data ELM-2 Ch.2

> data(wcgs, package="faraway")

> head(wcgs); help(wcgs) #latter not shown

age height weight sdp dbp chol behave cigs

2001 49 73 150 110 76 225 A2 25

2002 42 70 160 154 84 177 A2 20

2003 42 69 160 110 78 181 B3 0

2004 41 68 152 124 78 132 B4 20

2005 59 70 150 144 86 255 B3 20

2006 44 72 204 150 90 182 B4 0

dibep chd typechd timechd arcus

2001 B no none 1664 absent

2002 B no none 3071 present

2003 A no none 3071 absent

2004 A no none 3064 absent

2005 A yes infdeath 1885 present

2006 A no none 3102 absent
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... Binary responses

• where’s the epsilon?
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... Binary responses

• where’s the epsilon? There isn’t one
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... Binary responses

• where’s the epsilon? There isn’t one
• what’s the model? It has two parts
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... Binary responses

• where’s the epsilon? There isn’t one
• what’s the model? It has two parts
• Regression.

E(yi) = pi =
exp(xT

i β)

1+ exp(xT

i β)

• Probability distribution.
yi ∼ Bernoulli(pi)
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... Binary responses

• where’s the epsilon? There isn’t one
• what’s the model? It has two parts
• Regression.

E(yi) = pi =
exp(xT

i β)

1+ exp(xT

i β)

• Probability distribution.
yi ∼ Bernoulli(pi)

• What are these parts in linear regression?
• Regression

E(yi) = µi = xT

i β

• Probability distribution
yi ∼ Normal(µi,σ2)
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
• pi = function(xT

i β)

• di-erent observations with the same pi are called covariate classes
• Example 10.18 in SM – Table 10.8 has 23 rows of binomials

sample sizes vary from 1 to 6
• data(nodal) in library(SMPracticals) has 53 rows of binary observations
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
• pi = function(xT

i β)

• di-erent observations with the same pi are called covariate classes
• Example 10.18 in SM – Table 10.8 has 23 rows of binomials

sample sizes vary from 1 to 6
• data(nodal) in library(SMPracticals) has 53 rows of binary observations
• R expects cbind(r, m-r) in glm with binomial data
• but if all observations are binary you can get away with r only
• see ?family (check Details)
• you can also specify proportions yi/ni, but then you need to use weights
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Binomial/Binary SM Example 10.18

Can we predict nodal
involvement from other
measurements?
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... Binomial/Binary SM Example 10.18

−→ .Rmd
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Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni
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Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni

• residual deviance compares 'tted model to saturated model
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Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni

• residual deviance compares 'tted model to saturated model

• under the 'tted model, approximately distributed as χ2n−q
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Special to the binomial and Poisson

• likelihood ratio test for logistic model pi = pi(β) = expit(xT

i β), p̂i = pi(β̂)
• this model is nested in the saturated model p̃i = yi/ni

• residual deviance compares 'tted model to saturated model

• under the 'tted model, approximately distributed as χ2n−q
if each ni “large” ELM-1 p.29

> summary(Ex1018.glm)

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.710 on 22 degrees of freedom

Residual deviance: 18.069 on 17 degrees of freedom

AIC: 41.69
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... example 10.18 variable selection

> step(ex1018binom)

Coefficients:

(Intercept) stage xray acid

-3.052 1.645 1.912 1.638

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual

Null Deviance:^^I 40.71

Residual Deviance: 19.64 ^^IAIC: 39.26

– we can drop age and grade without a*ecting quality of the +t

– in other words the model can be simpli+ed by setting two regression coe,cients to zero

– several mistakes in text on pp. 491,2;

– deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version
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... example 10.18: variable selection

• step implements stepwise regression
• evaluates each 't using AIC = −2ℓ(β̂; y) + 2p
• penalizes models with larger number of parameters

• we can also compare 'ts by comparing deviances
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... example 10.18: variable selection

• step implements stepwise regression
• evaluates each 't using AIC = −2ℓ(β̂; y) + 2p
• penalizes models with larger number of parameters

• we can also compare 'ts by comparing deviances• > update(ex1018binom, . ~ . - aged - stage)

Call: glm(formula = cbind(r, m - r) ~ grade + xray + acid, family = binomial,

data = nodal2)

Coefficients:

(Intercept) grade xray acid

-2.734 1.420 1.750 1.797

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual

Null Deviance: 40.71

Residual Deviance: 21.28 AIC: 40.9

> deviance(ex1018binom)

[1] 18.06869

> pchisq(21.28-18.07,df=2,lower=F)

[1] 0.2008896
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AIC

• as terms are added to the model, deviance always decreases
• because log-likelihood function always increases
• similar to residual sum of squares
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AIC

• as terms are added to the model, deviance always decreases
• because log-likelihood function always increases
• similar to residual sum of squares

• Akaike Information Criterion penalizes models with more parameters
•

AIC = 2{−ℓ(β̂; y) + p}

SM (4.57)

• comparison of two model 'ts by di-erence in AIC
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Deviance residuals glm.diag; library(SMPracticals)

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351
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... example 10.18: residuals

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351
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Generalized linear models

glm has several options for family

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

inverse.gaussian(link = "1/mu^2")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

Each of these is a member of the class of generalized linear models

Generalized: distribution of response is not assumed to be normal

Linear: some transformation of E(yi) is of the form xTi β link function
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Poisson regression ELM Ch.3

• the Poisson distribution is a useful starting point for data that counts events
•

f (yi | xi) =
1
y!µ

yi
i e

−µi , yi = 0, 1, . . . ,
•

f (yi | xi) = exp{yi logµi − µi − log(yi!)}
• canonical parameter

θi = log(µi)

• linear model:
log(µi) = xTi β

• equivalently
E(yi) = µi = exp(xTi β)

−→ .Rmd part 3
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HW 6

• coding 1 for ”lack math”, 0 otherwise; p.6 + data

• t-test with 84 (and 83) df; Fig 2 Welch’s t-test

• how many predictors in logistic regression? p.2,3

• conclusions p. 4
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HW4 HW Question Week 4

STA2101F 2021

Due October 14 2021 11.59 pm
Homework to be submitted through Quercus

Part 1: Data set for project Okay to submit October 21

Please submit details about the data you will use for your project. Ideally the data will have
a single response or outcome variable of interest, and several potential explanatory variables.
You should submit with this homework:

(1) the data source: both bibliographic and a web link
(2) the number of observations and the number of potential explanatory variables
(3) a description of the response variable
(4) a description of the potential explanatory variables
(5) the scientific question(s) of interest

When you submit the final project, it will consist of the parts listed in Slide 3 on October 6.

Part 2: Question(s) for marking

There has been a lot of talk this week about rapid testing in the schools. On one hand there
seems no harm in using rapid antigen tests on a regular basis, but on the other hand if a lot
of the tests give incorrect results, especially flagging as covid-related too often, then children
will unnecessarily miss school. This seems to be the main concern from the public health
o�cials who are cautioning a slower approach.

Tests for Covid19 (or any screening for that matter), are assessed by their false positive and
false negative rates, or equivalently by their sensitivity and specificity. Sensitivity of the test
is the true positive rate, i.e. Pr(T+ | C+), and 1 minus sensitivity is the false negative rate
Pr(T≠ | C+). Specificity of the test is the true negative rate, i.e. pr(T≠ | C≠), and 1 minus
specificity is the false positive rate. (My source is Wikipedia.)

(a) If a given student tests positive, compute the probability that s/he has Covid19 using
Bayes theorem. A gift:

Pr(C+ | T+) = Pr(T+ | C+)P (C+)
Pr(T+ | C+)P (C+)Pr(T+ | C≠)P (C≠) .

One point was deducted for not expanding the denominator.
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Projects

Applied Statistics I November 3 2021 32

C flsqj LSTO n.io p

Tiflq q1 TIesttito t hat
fly o

in

Fite E.i
10 s esto nolo

I



I fly E dy
set
p
4tR 3

fly Ya flyty
y yr

fly ty Iffygoldydye
y y yes


