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Week 10

November 24 2021



Today Start Zoom

1. Upcoming events

2. In the News

3. Theory of GLMs

4. Reminder: HW10 ready Nov 25, due Dec 2, is the final HW for the term
5. Reminder: Final Project due Dec 17 23.59 PhD Dec 20 09.00

6. Office Hour Nov 24 16.30 – 18.00 this week only
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Upcoming

• Monday Nov 29 3.30 Data Science ARES series
Policy Questions, Messy Data: Three approaches to turning messy data into
information for public policy Link

Dr. Krista Gile, U MASS
• Friday Nov 26 Toronto Data Workshop Zoom link

Kieran Campbell U of T
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https://canssiontario.utoronto.ca/event/ares_krista_gile/
https://utoronto.zoom.us/j/84277066292


... Upcoming

• Thursday Nov 4 3.30
Diffusion Schrödinger Bridges with Applications
to Score-Based Generative Modelling

Arnaud Doucet, U Oxford

Zoom Link
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https://us02web.zoom.us/j/85634840295?pwd=dGttQTRSTjdPbjl1MXBERWVHbWRaQT09


Project

• Part I 3–5 pages, non-technical
1. a description of the scientific problem of interest
2. how (and why) the data being analyzed was collected
3. preliminary description of the data (plots and tables)
4. non-technical summary for a non-statistician of the analysis and conclusions

• Part II 3–5 pages, technical
1. models and analysis
2. summary for a statistician of the analysis and conclusions

• Part III Appendix
R script or .Rmd file; additional plots; additional analysis; References
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Project Marking

• 40 points total

• Part I:
description of data and scientific problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough
quality of the presentation 5

• Part II:
summary of the modelling and methods 5 justification for choices
suitability and thoroughness of the analysis 10 model checks, data checks

• Part III:
relevance of additional material 5
complete and reproducible submission 5
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Recap

• binomial regression: deviance residuals, Pearson residuals, Pearson X2,
non-canonical link functions

• Poisson regression: deviance residuals, Pearson residuals, Pearson X2,
non-canonical link functions HW 8

• overdispersion, quasi-Poisson, quasi-Binomial

• measures of risk: odds ratio, risk ratio, risk difference, prospective/retrospective
sampling

• glm theory Part I
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Residuals thanks Adewale

I managed to compute the residuals following the formula on the slides and got results
which agree exactly with R. I used the formula

rDI = sign(yi − p̂i)
!
2[yi log{yi/nip̂i}+ (ni − yi) log{(ni − yi)/(ni − nip̂i)}].

The only difference just being substituting the ”±” with ”sign(yi − ŷi). Since the data is
bernoulli, I used ni = and p̂i = ŷi.
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In the News

• Guardian, Nov 14 Spiegelhalter & Masters
“On Covid we need to be careful when we talk about numbers”

• Simply Statistics, Nov 10 Peng
Thinking about failure in data analysis
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https://www.theguardian.com/theobserver/commentisfree/2021/nov/14/on-covid-we-need-to-be-careful-when-we-talk-about-numbers
https://simplystatistics.org/posts/2021-11-10-thinking-about-failure-in-data-analysis/


In the News

Nature Behaviour, Nov Wagenmakers et al.
Seven steps towards more transparency in statistical practice
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https://www.nature.com/articles/s41562-021-01211-8.pdf


... in the News

Science Advances May 2021 Serra-Garcia & Gneezy
Nonreplicable publications are cited more than replicable ones

“the distribution of citation counts is highly
right-skewed. We hence use Poisson
regression models for the main
specification in the paper.”

Applied Statistics I November 24 2021 10

https://www.science.org/doi/10.1126/sciadv.abd1705


... in the News

J Am. Medical Assoc. Nov 4, 2021 Tenforde et al.
Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease
Severity

“We used a test-negative case-control
design to assess the association between
hospitalization for COVID-19 and prior
vaccination with an mRNA COVID-19 vaccine.
In this analysis, case patients were those
hospitalized with COVID-19 and control
patients were those hospitalized for other
reasons.”
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https://jamanetwork.com/journals/jama/fullarticle/2786039?utm_campaign=articlePDF&utm_medium=articlePDFlink&utm_source=articlePDF&utm_content=jama.2021.19499


... in the News

medRXiv preprint; Roessler et al.
Post COVID-19 in children, adolescents and adults: results of a matched cohort study

“We used a test-negative case-control
design to assess the association between
hospitalization for COVID-19 and prior
vaccination with an mRNA COVID-19 vaccine.
In this analysis, case patients were those
hospitalized with COVID-19 and control
patients were those hospitalized for other
reasons.”
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medrxiv.org/content/10.1101/2021.10.21.21265133v1


... Recap: glm theory Part I SM 10.3; ELM 6.1,2

• f (yi;µi,φi) = exp{yiθi − b(θi)
φi

+ c(yi;φi)}

• E(yi | xi) = b′(θi) = µi defines µi as a function of θi

• g(µi) = xTi β = ηi links the n observations together via covariates

• g(·) is the link function; ηi is the linear predictor

• Var(yi | xi) = φib′′(θi) = φiV(µi)

• V(·) is the variance function
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GLM Models: Examples

• Normal: f (yi;µi,σ2) =
1√

(2π)σ exp{− 1
2σ2 (yi − µ2i )} exp{ yiθi−b(θi)

φi
+ c(yi;φi)}

• Binomial: f (ri;pi) =
"
mi
ri

#
prii (1− pi)mi−ri ; yi = ri/mi

• ELM (p.115) uses ai(φ) in place of φi, later (p.117) ai(φ) = φ/wi;
SM uses φi, later (p. 483) φi = φai
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GLM Models: Examples

• Normal: f (yi;µi,σ2) =
1√

(2π)σ exp{− 1
2σ2 (yi − µ2i )}

= exp{
yiµi − (1/2)µ2i

σ2
− (1/2) log σ2 − y2i /2σ

2 − (1/2) log
√
(2π)}

φi = σ2, θi = µi, b(µi) = µ2i /2,b
′(µi) = µi,b′′(µi) = 1

• Binomial: f (ri;pi) =
"
mi
ri

#
prii (1− pi)mi−ri ; yi = ri/mi

= exp[miyi log{pi/(1− pi)}+mi log(1− pi) + log

"
mi
miyi

#
]

φi = 1/mi, θi = log{pi/(1− pi)}, b(pi) = − log(1− pi), pi = E(yi)

• ELM (p.115) uses ai(φ) in place of φi, later (p.117) ai(φ) = φ/wi;
SM uses φi, later (p. 483) φi = φai
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... Examples SM 10.3.1; ELM 6.1

Family Canonical link Variance function φi

Normal η = µ 1 σ2

Binomial η = log{µ/(1− µ)} µ(1− µ) 1/mi
Poisson η = log(µ) µ 1
Gamma η = 1/µ µ2 1/ν
Inverse Gaussian η = 1/µ2 µ3 ξ

Gamma: f (yi;µi, ν) =
1

Γ(ν)

"
ν

µi

#ν

yν−1i exp(− ν

µi
)yi

= exp[− ν

µi
yi − ν log(

1
µi
) + (ν − 1) log(yi) + ν log(ν)− log{Γ(ν)}]

= exp{ν( yi
−µi

− log(
1
µi
) + (ν − 1) log(yi)− log Γ(ν) + ν log(ν)}
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Inference

• ℓ(β; y) =
$

{yiθi − b(θi)
φi

+ c(yi,φi)} b′(θi) = µi; b′′(θi) = V(µi)

• g(µi) = g{b′(θi)} = ηi = xT

i β

• ∂ℓ(β; y)
∂βj

=
$ ∂ℓi

∂θi

∂θi
∂βj

=
$ yi − b′(θi)

φi

∂θi
∂βj

• g′(b(θi))b′′(θi)
∂θi
∂βj

=g′(µi)V(µi)
∂θi
∂βj

= xij

• ∂ℓ(β; y)
∂βj

=
$ yi − µi

φig′(µi)V(µi)
xij =

$ yi − µi
aiφg′(µi)V(µi)

xij
when φi = aiφ

ELM has φi = φ/wi
• matrix notation:

∂ℓ(β)

∂β
= XTu(β), X =

∂η

∂βT
, u = (u1, . . . ,un), ui =

yi − µi
φig′(µi)V(µi)Applied Statistics I November 24 2021 17



... Inference

• ℓ(β; y) =
$

{yiθi − b(θi)
φi

+ c(yi,φi)} b′(θi) = µi; b′′(θi) = V(µi)

• g(µi) = g{b′(θi)} = ηi = xT

i β

• ∂ℓ(β; y)
∂βj

=
$ ∂ℓi

∂θi

∂θi
∂βj

=
$ yi − b′(θi)

φi

∂θi
∂βj

• g′(b(θi))b′′(θi)
∂θi
∂βj

= g′(µi)V(µi)
∂θi
∂βj

= xij

• ∂ℓ(β; y)
∂βj

=
$ yi − µi

φig′(µi)V(µi)
xij =

$ yi − µi
aiφg′(µi)V(µi)

xij
when φi = aiφ

ELM has φi = φ/wi
• matrix notation:

∂ℓ(β)

∂β
= XTu(β), X =

∂η

∂βT
, u = (u1, . . . ,un), ui =

yi − µi
φig′(µi)V(µi)
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Scale parameter φi

• in most cases, either φi is known, or φi = φai, where ai is known

• Normal distribution, φ = σ2

• Binomial distribution φi = m−1
i

• Gamma distribution, φ = 1/ν

Family Canonical link Variance function φi

Normal η = µ 1 σ2

Binomial η = log{µ/(1 − µ)} µ(1 − µ) 1/mi
Poisson η = log(µ) µ 1
Gamma η = 1/µ µ2 1/ν
Inverse Gaussian η = 1/µ2 µ3 ξ

• ∂ℓ(β; y)
∂βj

=
$ yi − µi

φig′(µi)V(µi)
xij =

$ yi − µi
aiφg′(µi)V(µi)

xij
when φi = aiφ

• if θi = g(µi) canonical link, then g′(µi) = 1/V(µi), and
$ yixij

ai
=

$ yiµ̂ixij
aiApplied Statistics I November 24 2021 19



Solving maximum likelihood equation

• Newton-Raphson: ℓ′(β̂) = 0 ≈ ℓ′(β) + (β̂ − β)ℓ′′(β)

defines iterative scheme

• β̂(t+1) = β̂(t) − {ℓ′′(β̂(t))}−1ℓ′(β̂(t))

• Fisher scoring: −ℓ′′(β) ← E{−ℓ′′(β)} = i(β)
many books use I(β)

• β̂(t+1) = β̂(t) + {i(β̂(t))}−1ℓ′(β̂(t))

• applied to matrix version: XTu(β̂) = 0 .
= XTu(β) + (β̂ − β)XT

∂u(β)
∂βT

• change to Fisher scoring: XTu(β̂) = 0 .
= XTu(β) + (β̂ − β)XTE

%
∂u(β)
∂βT

&

β̂ = β + i(β)−1XTu(β)
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... maximum likelihood equation

β̂ = β + i(β)−1XTu(β)

• ∂2ℓ(β; y)
∂βj∂βk

=
$ −b′′(θi)

φi

"
∂θi
∂βj

#"
∂θi
∂βk

#
+
$ yi − b′(θi)

φi

∂2θi
∂βj∂βk

• E
!
−
∂2ℓ(β; y)
∂βj∂βk

"
=

# V(µi)
φi

xij
g′(µi)V(µi)

xik
g′(µi)V(µi)

=
# xijxik

φi{g′(µi)}2V(µi)
•

β̂ = β + (XTWX)−1XTu(β) = (XTWX)−1{XTWXβ + XTu(β)}
= (XTWX)−1{XTW(Xβ +W−1u(β)}
= (XTWX)−1XTWz

• does not involve φi iteratively re-weighted least squares W, z both depend on β

• derived response z = Xβ +W−1u linearized version of y
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Summary

Model:

E(yi) = µi; g(µi) = xTi β; Var(yi) = φiV(µi) φi = aiφ

Estimation:

β̂ = (XTWX)−1XTWz; z = Xβ +W−1u; z(β) = Xβ +W−1(β)u(β)

Variance:

Var(β̂) .
= (XTWX)−1 W is diagonal

On pp. 118-119 of ELM, this iteration is carried out in R on the bliss data
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Summary 2

β̂ = (XTWX)−1XTWz; z = Xβ +W−1u; z(β) = Xβ +W−1(β)u(β)
Var(β̂) .

= (XTWX)−1 W is diagonal

Wii =

ui =

Note β̂ is free of φ because of W and W−1, but Var(β̂) depends on φ

Warning: in ELM W is defined slightly differently (no φ), so he has Var(β̂) = (XTWX)−1φ̂
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Summary 2

β̂ = (XTWX)−1XTWz; z = Xβ +W−1u; z(β) = Xβ +W−1(β)u(β)
Var(β̂) .

= (XTWX)−1 W is diagonal

Wii =
1

φai{g′(µi)}2V(µi)

ui =
yi − µi

φaig′(µi)V(µi)

Note β̂ is free of φ because of W and W−1, but Var(β̂) depends on φ

Warning: in ELM W is defined slightly differently (no φ), so he has Var(β̂) = (XTWX)−1φ̂
Further, the wi on p.117 is not the same as the wi on p. 118; SM uses ai instead which
would have been better for ELM

Applied Statistics I November 24 2021 24



Analysis of data using GLMs: overview

• choose a model, often based on type of response or on mean/variance relationship
• fit a model, using maximum likelihood estimation convergence (almost) guaranteed
• inference for individual coefficients β̂j from summary

• inference for groups of coefficients by analysis of deviance

• estimation of φ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(µ̂)

φ̂ =
1

n− p

n$

i=1

(yi − µ̂i)
2

V(µ̂i)

• analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
• diagnostics: same as for lm ELM p.124; SM p.477

• residuals: deviance or Pearson; can be standardized ELM likes 1/2 normal plots
• influential observations: uses hat matrix SMPracticals has very good GLM diagnostics

glm.diag, plot.glm.diag
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The last slide about GLM theory

• special to glm

• two models, Poisson and Binomial, have no φ parameter
• this has two consequences
• the residual deviance can be used as a test of fit of the model
• two pseudo-models are available called quasibinomial, quasipoisson

• quasi-binomial: var(yi) = φpi(1− pi)
• quasi-Poisson: var(yi) = φµi

• quasi- is a quick way to fit proportion or count responses, but allow the variance to
be bigger (or rarely, smaller) than it would be under the binomial or Poisson model

• caveat – none of this works for binary data, only binomial ni ≥ 5, approx
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Blog post Jeffrey Morris Link
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https://www.covid-datascience.com/post/is-watching-the-1984-ghostbusters-movie-killing-people-a-statistician-s-perspective


Blog post Jeffrey Morris Link
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Blog post Jeffrey Morris Link
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Still time?

−→ casestudies.pdf
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