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GIVEN THESE PREVALENCES,
15 1T LIKELY THAT THE TEST
RESULT IS A FALSE POSITIVE?

l WELL, THIS CHAPTER 1S ON

Week 10

November 24 2021

BAYES' THEOREM, SO YES.

L

SOMETIMES, IF YOU UNDERSTAND
BAYES' THEOREM WELL ENOUGH,
YOU DON'T NEED IT.



Today Start Zoom

1. Upcoming events
2. In the News
3. Theory of GLMs

4. Reminder: HW10 ready Nov 25, due Dec 2, is the final HW for the term
5. Reminder: Final Project due Dec 17 23.59 PhD Dec 20 09.00

6. Office Hour Nov 24 16.30 — 18.00 this week only
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« Monday Nov 29 3.30 Data Science ARES series
Policy Questions, Messy Data: Three approaches to turning messy data into
information for public policy Link

Dr. Krista Gile, U MASS
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https://canssiontario.utoronto.ca/event/ares_krista_gile/
https://utoronto.zoom.us/j/84277066292

Monday Nov 29 3.30 Data Science ARES series
Policy Questions, Messy Data: Three approaches to turning messy data into
information for public policy Link

No. 7.2 ~l- 11 AARC~C
Dear friends,

O Frl d av N OV 26 TO ro nto Data WO r ks h O p Toronto Data Workshop this Friday, 26 November, at noon (Toronto time) hosts Professor Kieran Campbell on the

intersection of biomedical data and data science.

Dr. Kieran Campbell is an i i atthe L feld-Tz b Research Insti and an f at
the Departments of Molecul ics and istical Sci University of Toronto. His research focusses on
Bayesian models and machine learning for high dlmensmnal biomedical data, including single-cell and cancer
genomics. Recently, he has led efforts to devel | hine learning hodology to integrate single-cell
RNA and DNA sequencing data to uncover the effects of tumour clonal identity on gene expressmn as well as

hods to ically deli the tumour microenvironment from single-cell RNA-sequencing data. Such
findings can impi ouru ding of cancer progression and of why certain tumours are resistant to therapies,

Kieran Campbell U of T ning g, i s
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https://canssiontario.utoronto.ca/event/ares_krista_gile/
https://utoronto.zoom.us/j/84277066292

» Thursday Nov 4 3.30
Diffusion Schrodinger Bridges with Applications
to Score-Based Generative Modelling

Arnaud Doucet, U Oxford

Zoom Link
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https://us02web.zoom.us/j/85634840295?pwd=dGttQTRSTjdPbjl1MXBERWVHbWRaQT09

* Part | 3-5 pages, non-technical

a description of the scientific problem of interest

. how (and why) the data being analyzed was collected

. preliminary description of the data (plots and tables)

non-technical summary for a non-statistician of the analysis and conclusions

Pw N oo

« Part Il 3-5 pages, technical

1. models and analysis
2. summary for a statistician of the analysis and conclusions

« Part Il Appendix
R script or .Rmd file; additional plots; additional analysis; References
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Project Marking

* 40 points total

e Partl:
description of data and scientific problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough

quality of the presentation 5
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Project Marking

* 40 points total

e Partl:
description of data and scientific problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough

quality of the presentation 5

» Partll:
summary of the modelling and methods 5 justification for choices
suitability and thoroughness of the analysis 10 model checks, data checks
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Project Marking

* 40 points total

e Partl:
description of data and scientific problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough

quality of the presentation 5

» Part ll:
summary of the modelling and methods 5 justification for choices
suitability and thoroughness of the analysis 10 model checks, data checks
» Part lll:

relevance of additional material 5

complete and reproducible submission 5
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+ binomial regression: deviance residuals, Pearson residuals, Pearson X2,
non-canonical link functions

« Poisson regression: deviance residuals, Pearson residuals, Pearson X2,
non-canonical link functions HW 8

« overdispersion, quasi-Poisson, quasi-Binomial

« measures of risk: odds ratio, risk ratio, risk difference, prospective/retrospective
sampling

glm theory Part |
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Residuals thanks Adewale

I managed to compute the residuals following the formula on the slides and got results
which agree exactly with R. | used the formula

rp) = sign(y; — f’i)\/2[yi log{yi/nipi} + (n; — y;)log{(n; — yi)/(ni — n;p;) }].
LR o T

The only difference just being substituting the "+" with "sign(y; — ;). Since the data is
bernqulli, | used n; = and p; = y,

'Y’/ﬁ  w & “G‘M’ é\%» — ¢

}9{ )

»\ : DLF/O v a) ““f(’ (3 )
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 Guardian, Nov 14 Spiegelhalter & Masters
" ) ,, on Covid, we need to be careful when we
On Covid we need to be careful when we talk about numbers” takabout nurbers
piegelhalter and Anthony Masters

Arecent wave of mistakes shows how misinterpreting data
risks misrepresenting the impact of the virus

« Simply Statistics, Nov 10 Peng
Thinking about failure in data analysis
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https://www.theguardian.com/theobserver/commentisfree/2021/nov/14/on-covid-we-need-to-be-careful-when-we-talk-about-numbers
https://simplystatistics.org/posts/2021-11-10-thinking-about-failure-in-data-analysis/

Nature Behaviour, Nov Wagenmakers et al.
Seven steps towards more transparency in statistical practice

Applied Statistics |

natre . PERSPECTIVE
human behaVlOur https://doi.org/10.1038/541562-021-01211-8

M) Check for updates.

Seven steps toward more transparency in
statistical practice

Eric-Jan Wagenmakers ©'%2, Alexandra Sarafoglou®?, Sil Aarts ©2, Casper Albers®3,
Johannes Algermissen®*, $t&pan Bahnik ©%, Noah van Dongen', Rink Hoekstra®¢, David Moreau ©7,
Don van Ravenzwaaij ®8, Aljaz Sluga®, Franziska Stanke ©, Jorge Tendeiro ©®" and Balazs Aczel ©?

We argue that statistical practice in the social and behavioural sciences benefits from a fair ack

of uncertainty and to Here, to pi such a practlce, we recommend seven concrete
ical p di (V) data, (¢3] quant"ylng y; (3) data ing choices;

(4) reporting multiple models; (5) i multiple 6) results modestly; and (7) sharing data and code.

We discuss their benefits and =m| provlde for Fach oﬂhe seven procedures ﬁnds Insplratlon in

Merton's ethos of scit fl dil li di and

We believe that these ethical well as their ground among data

despite about the of

November 24 2021


https://www.nature.com/articles/s41562-021-01211-8.pdf

Science Advances May 2021 Serra-Garcia & Gneezy
Nonreplicable publications are cited more than replicable ones

“the distribution of citation counts is highly
right-skewed. We hence use Poisson

FIGURE S1. Distribution of yearly citation counts by replication project

(a) Nature/Science (b) Economics (c) Psychology (d) Al
in Rep. Markets Psychology
g g1 Ca 1 1 H
regression models for the main
. . . ”
. . . . specification in the paper.
8 H H §
2 o] SR o/
o @ [ @
21 24 24 2
0 50 100 150 200 0 20 40 60 80100 0 2040 60 80100 0 2040 60 80100
Yearly Citation Count Yearly Citation Count Yearly Citation Count Yearly Citation Count

Notes: This figure shows distribution of yearly citation counts of each replicated study, across the three
replication projects. Panel (a) for (7), Panel (b) for (6), and Panel (c) for (5), including those studies in
replication markets. Panel (d) includes all papers in the psychology RP (5), that featured a significant result
in the replicated paper.
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https://www.science.org/doi/10.1126/sciadv.abd1705

J Am. Medical Assoc. Nov 4, 2021 Tenforde et al.
Association Between mRNA Vaccination and COVID-19 Hospitalization and Disease
Severity

Applied Statistics |

November 24 2021

Figure2.
ted case Vaccinated control Unvaccinated | Vaccinated
patientstotal patientstotal. Absolute difference ass with | associated with
Subgroup ©5%0).% ratio (9% €Iy hospitdigation | hospitalization
Overall 314/1983 (15.8) 1386/2530 (54.8) ETEIETETE UM VT -
Byage group,y
54/758 (1.1) 216/690 (31.3) 262(:28110-203)  05(010t00.21) ——
5064 82/656.(12.5) 384/756 (50.8) 383(-42710-339)  014(01000.13) .
265 178/569 31.3) 786/1084 (72.5) -412(45910-366)  016(0.1310021) -
By immunocompromising condition®
Yes (immunocompromised) 128/319 (40.1) 344/585 (58.9) 187 (:25.410-120) 049 (035100,3) .-
No (immunacompetent) 186/1662 (11.2) 1039/1942 (53.5) -23(45010-396)  010(009t00.13) -
By time between vaccine dose 2 and lness onset
14-120 Dayssince vaccination 179/1848 9.7) 113472278 (49.8) -401(-42610-376)  013(0.1010.15) -
>120 Days since vaccination 135/1804 7.5) 252/1396 (18.1) -106(129t0-82)  027(02110035) -
March-June 2021 averal (Alpha period) 12311260109 903/1748(51.7) -407(43710-37.8)  014(011t00.18) -
14-120 Dayssince vaccination 115/1118(103)  849/1694(50.1) -398(-42810-369)  014(01100.18) -
>120 Days since vaccination 8/101108) 54/899 (6.0) 5.2(69t0-36) 017(0.0810037) e
July-August 2021 overal (Deltaperiod) 191/857223) 483/782(618) -395(43910-35.1)  016(0.1310021) -
14-120 Dayssince vace 64/730(83) 285/584 (48.8) -400(-446%0-355)  010(0.07100.16) -
>120 Days ince vacci . 127793 (16.0) 198/497 (39.8) 238(-288%-188)  027(02000.37) -
By SARS-CoV-2 lineage, f sequenced
Apha (8.1.17) 20267 903/1748 (51.7) -430(-47210-387)  010(006t00.15) ——
Delta (8.1617.20r AY) 63/28821.9) 483/782(61.8) 399(-45810-340)  014(0.10t00.21) .
BNT16202 overall 26/1895(119)  810/1954 (41.5) 295(32210-269)  019(016100.23) -
14-120 Dayssince vaccination 123/1792(6.9) 661/1805 (36.6) 298(3231027.2)  015012100.18) -
>120 Days since vaccination 103/1772(5.8) 149/1293 (11.5) -57(78t0-37) 036(0.27100.49) -
mRNA-1273 overall 88/1757 (5.0) 576/1720 (33.5) -285(-30910-260)  011(0.08t00.14) -
14120 Days since vaccination 56/1725(.2) 473/1617 29.3) -260(28410-236)  0.09(0.07120.13) -
>120 Days since vaccination 32/170119) 103/1247 (83) “64(-801t0-4.7) 015(0.0910023) .
e,

“We used a test-negative case-control
design to assess the association between
hospitalization for COVID-19 and prior
vaccination with an mRNA COVID-19 vaccine.
In this analysis, case patients were those
hospitalized with COVID-19 and control
patients were those hospitalized for other
reasons.”

1


https://jamanetwork.com/journals/jama/fullarticle/2786039?utm_campaign=articlePDF&utm_medium=articlePDFlink&utm_source=articlePDF&utm_content=jama.2021.19499

medRXiv preprint; Roessler et al.
Post COVID-19 in children, adolescents and

'-

oz
patients/total nts/total Absolute difference Adjusted odds associated with | associated with
Subgroup. case patients (%) (nmmlplﬂ:m ) (95%C. % ratio (95% CI)* hospit ‘hospitalization
54/758 (7.1) 216/690 (31.3) -242(-28.110-20.3) 0.15(0.10t00.21) —-—
50-64 82/656 (12.5) 384/756 (50.8) -383(-42.710-33.9) 0.14(0.1000.19) —-—
265 178/569 (31.3) 786/1084 (72.5) -41.2 (-45.910-36.6) 0.16(0.13t00.21) -
By immunocompromising condition®

14-120 Days since vaccination 179/1848(9.7) 1134/2278 (49.8) -40.1(-42.6 10 -37.6) 0.13(0.10t00.15) -
>120 Days since vaccination 135/1804 (7.5) 252/1396 (18.1) -106(-12.9t0-8.2) 027(0.21t00.35) -

>120 Days since vaccination 8/1011(0.8) 54/899 (6.0) -5.2(-69t0-3.6) 0.17(0.0800.37) —-
July-August 2021 overall (Delta period) 191/857 (22.3) 483/782 (61.8) -39.5(-43.910-35.1) 0.16(0.13t00.21) -—

14-120 Days since vaccination 64/730 (8.8) 285/584 (48.8) -40.0 (-44.6 10 -35.5) 0.10(0.07 t0 0.14) —-—
Alpha (8.1.1.7) 21242 (8.7) 903/1748 (51.7) -43.0(-47.2t0-38.7) 0.10(0.06 t0 0.16) —-
Delta (8.1.617.2 or AY) 63/288 (21.9) 483/782 (61.8) -39.9(-45.810-34.0) 0.14(0.10t00.21) -
BNT162b2 overall 226/1895 (11.9) 810/1954 (41.5) -29.5(-32.210-26.9) 0.19(0.16100.23) -
MRNA-1273 overall 88/1757 (5.0) 576/1720 (33.5) -28.5(-30.910-26.0) 0.11(0.08100.14) -

14-120 Days since vaccination 56/1725 (3.2) 473/1617 (29.3) -260(-28.410-23.6) 0.09(0.07 t00.13) -—

>120 Days since vaccination 32/1701 (1.9) 103/1247 (8.3) -6.4(-8.0t0-4.7) 0.15(0.09100.23) —-—

v
Q(,col X; oS o'“ Ed s
< A=
S Cd
«n

ApphedStaUst S | November 24 2021

adults: results of a matched cohort study

“We used a test-negative case-control
design to assess the association between
hospitalization for COVID-19 and prior
vaccination with an mRNA COVID-19 vaccine.
In this analysis, case patients were those
hospitalized with COVID-19 and control
patients were those hospitalized for other

”

reasons.
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(null)://(null)medrxiv.org/content/10.1101/2021.10.21.21265133v1

.. Recap: glm theory Part | SM 10.3; ELM 6.1,2

v
yifi = b(0;)

f(yl /~Lla¢l) — eXp{@ (y, ¢,)} é"‘ a/\—d_i‘/a [0&5( =€wx-)

c
« E(y; | X;) = b’(6;) = pj defines ; as a function of 6; f‘jﬁ'(?ja[*i)&’aw‘ = Y (&)
st | o " gy
i) = X; 8 = n; links the n observations together via covariates

« g(-) is the link function; »; is the linear predictor ﬁlw .

) YM) - qb,b”(@) = ¢IV(MI ] & E [}‘) = /u’[

2
- V(") isthevariancefunctior V%} - //L_‘ l\L[C(—//L()
vl ) =6 Vips)
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GLM Models: Examples
1 L

ble) =

¢ <ot C,(g;)clg:) -

Applied Statistics | November 24 2021



GLM Models: Examples

1 0-—b(0:
—Vi— )} exp{ 120+ c(y;; )}

—

1
* Normal: f(y; i, o) = — o exp{-o-

« Binomial: f(r;; pj) = (”:) pi(1—=p)™ " yi = ri/m; ﬂm g
(r_\—) b (1=9) + e blg=bn
1’% )‘qu m p:) + (7 )E g fom “/@fb‘k ~ ,,.)
‘1@ l ¢

_ 0 4= L
‘é““x (‘?’ ~°m C(M(f‘ - o“?/v x .
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GLM Models: Examples

! _L s o <p{ Yifi=b(6;) o
\/(27_‘_)0_ exp{ (yl M )} expq{ i + c(vis &) }

* Normal: f(y;; pi, 0?) = 202

. m;\ .,
- Binomial: f(r;; p;) = (/)P,('(‘l —p)™T" yi=ri/m;
I

- ELM (p.115) uses a;(¢) in place of ¢;, later (pa17) a;(¢) = ¢/w;;
SM uses ¢;, later (p. 483) ¢; = ¢q;

Applied Statistics | November 24 2021 14



GLM Models: Examples

. : 2y 1 1 2 - "d‘:)
- Normal: f(y;; i, o )2— e exp{—o 5 (Vi — 1i)} @
— oMW () iog ot 220t - (2) 0V}
# | des.
¢j =0, Op=pi, b(ui)=pi/2,b" (i) = pi, b" (i) =1 QL})
i
= l/wc F'.)

L mi\ .,
« Binomial: f(r;; p;) = (H)pf’(‘l —p)™T v =ri/m;
I
m.
= exp[m;y; log{pi/(1 — pi)} + m;log(1 — p;) +@
e 171
¢i =1/mj, 6 =log{pi/(1—pi)}, b(pi) =—log(1—pi), pi=E(Yi)

« ELM (p.115) use€ ai(¢)Yn place of ¢;, later (p.117) a;(¢) = ¢Ewi;> b Wizm;
e Us@ater (p. 488) & = ¢q; Tt in
Applied Statistics | November 24 2021 ﬁa (: a’_) ¢/W ¢ lg‘-s 15



... Examples SM 10.3.1; ELM 6.1

Family Canonical link Variance function ¢
Normal n=pu 1 o?
Binomial n=log{u/(1—p)} p(1—p) 1/mi
Poisson n = log(u) L 1
Gamma n=1/u 2 1/v
Inverse Gaussian 1 =1/u? 3 £
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... Examples SM 10.3.1; ELM 6.1

Family Canonical link Variance function ¢
Normal n=pu 1 o?
Binomial n=log{u/(1—p)} p(1—p) 1/mi
Poisson n = log(u) L 1
Gamma n=1/u 2 1/v
Inverse Gaussian 1 =1/u? 3 £
1 v\” v
Gamma: f(y;; pi, v) = — [ — v—1 — v
Vi pisv) r(v) (Ni) Vi exp( Ni)y’
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... Examples SM 10.3.1; ELM 6.1

Family Canonical link Variance function ¢

Normal n=pu 1 o? 55(— = ;)L
Binomial n=log{p/(1—p)}t p(1-p

Poisson n = log(u) L 9
Gamma n =1 uz

Inverse Gaussian 7 =1/u?

\ 7 () 4
Gamma: f(yj; pi, v) = m Yi eXP"y' d Q EC‘Q /(L;

- eXP[—iyi —v |0g(;) + (v — 1) log(y;) + v log(v) — log{'(v)}] o 3;) ~ P
— exp{V/ @ — log( M:) + (v — 1) log(y;) — log I'(v) + v log(v)} 37{,;'

94 — = — - % = 2
A‘pplied ng(istics I November 242021 é ;" 91 b( il ) < C(d" J &: ) }: 2% 16
M



Inference

 (gy) = () b(9)+c(y,,¢,)} b0 = i b(0) = V()
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Inference

i) = S oy B = 0) = v LT
/ T & >
-+ g(u) = g{b'(6 ,->}=n,-=x?ﬁ v O= B () = J% ©: "(“%@}

— ) —— >

— —

o1l il

= 7 ©; - b (@ .
‘b@j Z %, % P - ) (yﬁ;)i =t 7

-y %50 ;

ZQ} ’j’ ) g 9%55 = 7(&;&)(%?)
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Inference

i) = S oy By = 0) = v

* g(wi) = g{b'(0;)} = ni =X

L ouBy)
0B
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Inference

< e(pry) = S (Y0 b6 b(9)+c(y, o)) b6) =i B"(6;) = V()

* g(pi) = g{b'(0;)} = ni = X' </

\ e
0U(B;y) < 0 06, yi— _ I T s
TN Zaeaﬁ, 23 86, - Z/ " ) QAE;

Applied Statistics | November 24 2021 17



Inference

i) = S oy By = 0) = v

* g(pi) = g{b'(0;)} = mi = X8

_oU(By) ol; 9; yi — b'(6;) 96;
5, 28966, 2. 5,

- g'(b(b; b”a—

g'(b(6;))b"( )8/3]
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Inference

i) = S oy By = 0) = v

* g(wi) = g{b'(0;)} = ni =X
L U(Bry) S 04 99; T yi — b'(6;) 96;

o8 aei 0B ¢ Of;
" _ 90;
- g'(b(6))b (9)3_/3, =g'(i)V (“')aﬁ, = Xj
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Inference

< e(pry) = S (Y0 b6 bW)+dm¢w} b0 = i b(8) = V()

» g(ui) = g{b'(6)} = mi = X7 8 Wﬁ ~pNlge)
8€(5 V) ae 00; yi — b’(6) ae

ae dB; =2
gww»wwkﬁ-gmooh U x;

p—

. ouBy) Yi— u, . =
aﬂ] ¢Ig glul :LLI G ¢g :U’l ( ) ! )
when ¢; = a;¢

)= ""'f ELM has ¢; = ¢/w;

(X0g= Xy
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Inference

i) = S oy By = 0) = v

* g(wi) = g{b'(0;)} = ni =X

L OUBry) < Ol 06, y; — b'(6;) 96,
o5 =2_ %%, a5 S 2 9B;
" _ 3_9
- 9'(b(6:)b (9)8—@ =g'(1i)V (“")85, = Xjj

L ouBy) i — Wi o Yi — Hi )
o5 2 oig () () " 2 aidg ()V () 7

when ¢; = a;¢
ELM has ¢; = ¢/w;

Applied Statistics | November 24 2021 17



Inference

< e(pry) = S (Y0 b6 b((’)+c(y,,¢,)} b0 = i b(0) = V()

* g(pi) = g{b'(0;)} = mi = X8 P
_0UBry) Zaeae Zy, ) 06; @
0B; 00; 0; 05; ,'7_)
" - 0_9 2
g'(b(6;))b (9)35, =g (u,) (“')aﬁ, = Xjj o
. oUBy) Cyl Vi— i\,
o5 Z ; i

ig'(i)V ) = 2 ai6g! (ui) V(i) 2
— . when ¢; = a;¢
)

: ) 5 ELM has ¢; = ¢/w;
« matrix notatjom: o ( bp
ol 6) 877 Yi—

l (/87 T u:(U1,...,un), u,:
Applied Statistigxl Novefgberzf%#nx 136 gg (NI)V(FLI (N 9{




... Inference

i) = S oy By = 0) = v

* g(wi) = g{b'(0;)} = ni =X

ouBy) al; 90; yi — b'(6;) 06;
B =2 5, 06; 0B; =2 B,
i B 3_9
- g'(b(6))b (9)8—51 g'(ui)V (“’)aﬁ, = Xjj

oU(By) Vi — Wi
[} . X..
0; 2 ¢ig’ (u,)V(u, %= aipg’ (pi)V (1) " h
when ¢; = a;¢

ELM has ¢; = ¢/w;
« matrix notation:

oUB) _ In Yi — Hi
=X"U X=——, U= (Uq,...,Up), U=
g XUl X=ggm U=l th) 'Zﬂﬁywuovou)
Applied Statistics | November 24 2021
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Scale parameter ¢,

in most cases, either ¢; is known, or ¢; = ¢a;, where a; is known

Normal distribution, ¢ = o2

Family Canonical link Variance function P;
Normal n=n 1 o2
5 g o q q 1 R _ _ _ ]
« Binomial distribution ¢; = m; ? Binomial o =temlf =l B0 =) 1/ mi
1 Poisson n = log(w) " 1
Gamma n=1/p w? 1/v
Inverse Gaussian n =1/ u? u3 13

Gamma distribution, ¢ = 1/v

Applied Statistics | November 24 2021 19



Scale parameter ¢,

« in most cases, either ¢; is known, or ¢; = ¢a;, where a; is known

Normal distribution, ¢ = o2

Family Canonical link Variance function P;
Normal n=n 1 o2
5 g o q q 1 R _ _ _ ]
« Binomial distribution ¢; = m; Binomial 0 =leslp/(— W} sl —p) 1/mi
1 Poisson n = log(w) " 1
Gamma n=1/p w? 1/v
Inverse Gaussian n =1/ u? u3 13

Gamma distribution, ¢ = 1/v

. oUBYy) o Vi — 1 )
9p; Z¢,g (u,)V(u,)X”_ZW Lﬁ””—@xu

if 0; = g(u;) canonical link, then g’(u;) = 1/V(y;), and
—

Z yIXIj Z ‘MXU
Applied Statistics | November 24 2021 a; 19




Solving maximum likelihood equation

XTu(%] =90 &

defines iterative scheme

« Newton-Raphson: ¢(3) = 0 ~ ¢'(8) + (8 — B)¢"(B3)

———
e

+ B = 3O — (e (BO)} 0 (B0)

[ )

S Xy

Applied Statistics | November 24 2021 20



Solving maximum likelihood equation

- Newton-Raphson: ¢/(3) = 0 ~ ¢'(B) + (3 — 8)¢" () S,'o( ‘ww“"

\D___ + 6 er('t\:?/ defines iterative scheme

v B — B _ gn(BOYI— (30)
B po = (BB

« Fisher scoring: —¢"(B) < E{—£"(B)} = i(B)

many books use I(3)

D = B0 4+ (i(BO)} e (30)

el

A

r
p‘_% = 4 9, ( E)
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Solving maximum likelihood equation

« Newton-Raphs

- B = 3O — (e (BO)} 0 (BO)

« Fisher scoring: —¢"(B) < E{—£"(B)} = i(B)

[ . B = 3O 4 {,’(B(t))}—w/(W

£
SO 5 e 2U00)

- applied to matrix version: X*u(j3) = o

I
|
=
=
_|_
=
|
3
>
)
)
=

~

B =pB+i(B)""X"u(B)
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... maximum likelihood equation

P*UBY)
0808k
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... maximum likelihood equation

L o(BY) —b"( 0; ( ) yi —b'(6;) 0%0;
36,35k 3 ¢, ( ‘iﬁi) 9Pk Z i 35,-0/3k

| \ —J

Applied Statistics | November 24 2021 21



... maximum likelihood equation

B =B+i(B)"'X"u(B)

. 9(BrY) —b"(6 < )( ) yi — b'(6;) 5°0;
9508k > ¢ \9B;) \9bk 2 | 9B0bk

UBY) | _ 5 Vi) i i iji
<_ 3,6’,'3;;: ) B> QZ 9’(#:’)1‘/(#,') 9’(#;’)"?/(#,') 2 ¢i{g/(ﬂji)f2v(ﬂi)
A
-~ X;
/31‘2' —fou e T (
- e - - ¢ V 7
D%)é&u C—\ ¢a“30 ﬂk )S f( )
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... maximum likelihood equation

B=B+i(8) "X u(s)

03j0Br
E<3W6W vm

8/B]aﬁk o 9" (pi /“LI (k)
[éﬂ ) { é \
ﬂ =

/3+(XTWX) XTu(B) L (XTWX) X
(XTWX) " {X"W(XB + W "u(B)}

= ( (X"WX)~'XT Wz)
N

XTWy X
£=pt. =(xWx) Wi | |
Applied Statistics | Novemtgﬂ; 20‘21 ) g “{;f Aﬁag ( %l(r;)z \Y) ﬂ‘) 21

CPUBry) _— —b(6 < ) Q{SZF,W@)awi
24 |\ }/86 " -
U Xik

¢i{9’ (ki) 2V (1)

XB+ X u(B)}




... maximum likelihood equation

A R O P

CUBy) _— —b"(0 < )( ) yi — b'(6) 86,
0308k Z oF 9B;) \ OBk Z oF 55105k

( o%¢(B > V(:Ul Xij Xik _ XijXik
8/8]‘9,3k o 9" (ui)V(mi) 9" i)V (i)~ &i{g’ (i) 2V ()

’_ B+ (XTWX) "X u(8) = (XWX) " {XTWXB + X"u(8)}
— (WX TXWXBEW IEB)  XB+w T w(p)

— XTWX —1xTWZ \/\/\/
( ) doired N—‘s’[ﬁ'*“
« does not involve ¢; iteratively re-weighted least squares w, z both depend on 3

« derived response z = X — linearized version of y
Applied Statistics|  November 24 2021 & (7\ W K) ')( w %_ =0 JOSWF 21
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Model: rZOo' L IS nanl . Lg
oae \ Qo9 *u‘; n
E(yi) = i g(ui) = x; B; Var(y;) = éiV(ni) ¢ = a;¢
'\_—_9
Estimation:
B o= (X"WX)"'X"Wz;, z=XB8+Wu; z(8) = XB + W (B8)u(B)

—NX
ot?ﬁvw@ e@E) >R ¢

/\ -
Tr A
a Var(3) == (X"wx)~" ot :{X W(p) 5 W is diagonal

<__d\_’-/ o o o o o o
On pp. 118-119 of ELM, this iteration is carried out in R on the bliss data
Applied Statistics | November 24 2021 —_— 22




B XTWX)"'X"Wz; z=X3+ W "u; 2(B) = X6+ W= (B)u(p)
Var(5) = (XTwx)™ W is diagonal
Wi =
. brzaf abe

. i D¢ —
Note §3 is free of ¢ because of W and W', but Var(5) depends c@

—~—————

Warning: in ELM W is defined slightly differently (no ¢), so he has Var(3) = (XTWX) "¢
=
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B o= (XTWX)"XWz z=XB+Wu; 2(8) = XB + W~"(B)u(p)
Var(B) = (XTwx)™ W is diagonal
T/ — L
Y 0ai{g (1) }2V ()
T — Yi — K
' ¢a; g’ (1i)V (i)

Note / is free of ¢ because of W and W~", but Var(3) depends on ¢

Warning: in ELM W is defined slightly differently (no ¢), so he has Var(3) = (XTWX)~"¢
Further, the w; on p.17 is not the same as the w; on p. 118; SM uses a; instead which
would have been better for ELM
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Analysis of data using GLMs: overview

« choose a model, often based on type of response or on mean/variance relationship
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Analysis of data using GLMs: overview

« choose a model, often based on type of response or on mean/variance relationship
- fit a model, using maximum likelihood estimation convergence (almost) guaranteed
+ inference for individual coefficients Bj from summary

Wc_@ﬁf o~

T% N @Pa_rzﬂa(_e,
= P o ‘wf‘i PJ)JC“
[ e pr =>4 s fosgi/y&

B —= - 4 =
A _( 5{
e o P> 0
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Analysis of data using GLMs: overview

choose a model, often based on type of response 3 or on mean/variance relationship
fit a model, using maximum likelihood estimation

inference for individual coefficients B,-jrom summary N

inference for groups of coefficients by analysis of deviance j 4S e~ \‘m Ja—é ~

—

convergence (almost) guaranteed
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Analysis of data using GLMs: overview

choose a model, often based on type of response or on mean/variance relationship
fit a model, using maximum likelihood estimation convergence (almost) guaranteed
inference for individual coefficients Bj from summary

inference for groups of coefficients by analysis of deviance

estimation 6f ¢ hased on Pearson’s Chi-square

typo in ELM p.121: cross out = var(j)

oA

? =7

Iml
$ = “é?
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Analysis of data using GLMs: overview

choose a model, often based on type of response or on mean/variance relationship
fit a model, using maximum likelihood estimation convergence (almost) guaranteed
inference for individual coefficients Bj from summary

inference for groups of coefficients by analysis of deviance

estimation of ¢ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(j)

(vi — i)?
n_ Z V(i)

analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
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Analysis of data using GLMs: overview

« choose a model, often based on type of response or on mean/variance relationship
- fit a model, using maximum likelihood estimation convergence (almost) guaranteed
+ inference for individual coefficients Bj from summary

« inference for groups of coefficients by analysis of deviance

- estimation of ¢ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(j)

(vi — i)?
n_ Z V(i)

- analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
—_— - .
« diagnostics: same as for Im ELM p.124; SM p.477

Applied Statistics | November 24 2021 25



Analysis of data using GLMs: overview

« choose a model, often based on type of response or on mean/variance relationship
- fit a model, using maximum likelihood estimation convergence (almost) guaranteed
+ inference for individual coefficients Bj from summary

« inference for groups of coefficients by analysis of deviance

- estimation of ¢ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(j)

(vi — i)?
n_ Z V(i)

- analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
« diagnostics: same as for 1m ELM pa24; SM p.477
« residuals: deviance or Pearson; can be standardized ELM likes 1/2 normal plots
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Analysis of data using GLMs: overview

« choose a model, often based on type of response or on mean/variance relationship
- fit a model, using maximum likelihood estimation convergence (almost) guaranteed
+ inference for individual coefficients Bj from summary

« inference for groups of coefficients by analysis of deviance

- estimation of ¢ based on Pearson’s Chi-square
typo in ELM p.121: cross out = var(j)

(vi — i)?
n_ Z V(i)

- analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
« diagnostics: same as for 1m ELM pa24; SM p.477
- residuals: deviance or Pearson; can be standardized ELM likes 1/2 normal plots
« influential observations: uses hat matrix SMPracticals has very good GLM diagnostics

—

glm.diag, plot.glm.diag
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The last slide about GLM theory

* special to glm
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The last slide about GLM theory

special to glm

two models, Poisson and Binomial, have no ¢ parameter

this has two consequences
the residual deviance can be used as a test of fit of the model

two pseudo-models are available called quasibinomial, quasipoisson

quasi-binomial: var(y;) = ¢pi(1 — p;)
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The last slide about GLM theory

* special to glm

+ two models, Poisson and Binomial, have no ¢ parameter

« this has two consequences

« the residual deviance can be used as a test of fit of the model

+ two pseudo-models are available called quasibinomial, quasipoisson
+ quasi-binomial: var(y;) = ¢pi(1 — p;)

+ quasi-Poisson: var(y;) = ou;
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The last slide about GLM theory

* special to glm

+ two models, Poisson and Binomial, have no ¢ parameter

« this has two consequences

« the residual deviance can be used as a test of fit of the model

+ two pseudo-models are available called quasibinomial, quasipoisson
+ quasi-binomial: var(y;) = ¢pi(1 — p;)

+ quasi-Poisson: var(y;) = ou;

* quasi- is a quick way to fit proportion or count responses, but allow the variance to
be bigger (or rarely, smaller) than it would be under the binomial or Poisson model
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The last slide about GLM theory

special to glm

two models, Poisson and Binomial, have np’/qbp)ramety
N—_—

this has two consequences

the residual deviance can be used as a test of fit of the model

—_— e 24

two pseudo-models are available called quasibinomial, quasipoisson

quasi-binomial: var(y;) = ¢p;(1 — p;)j

quasi-Poisson: var(y;) = opu;

quasi- is a quick way to fit proportion or count responses, but allow the variance to
be bigger (or rarely, smaller) than it be under the binomial or Poisson model

caveat — none of this works fop’binary data, only binomial n; > 5, approx
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Blog post Jeffrey Morris

Applied Statistics |

November 24 2021

-
Vaccinated English adults under 60 are dying at
twice the rate of unvaccinated people the same
age

And have been for six months. This chart may seem unbelievable or impossible, but
it's correct, based on weekly data from the British government.

Alex Berenson

Nov20 ©1187 0627 & (( /qq

The brown line represents weekly deaths from all causes of vaccinated people aged 10-

59, per 100,000 people. 4-
The blue line represents weekly deaths from all causes of unvaccinated people per /

100,000 in the same age range.

Death Rates 10-59 by Vaccine Status ONS Data
Published November 2021

.2&’-
e

w—Death rates per 100,000 in the age range 10-59 Unvaccinated
s Death rates per 100,000 in the age range 10-59 After 2nd vaccine

I have checked the underlying dataset myself and this graph is correct. Vaccinated
people under 60 are twice as likely to die as unvaccinated people. And overall deaths in
Britain are running well above normal.

I don’t know how to explain this other than vaccine-caused mortality.
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https://www.covid-datascience.com/post/is-watching-the-1984-ghostbusters-movie-killing-people-a-statistician-s-perspective

Blog post Jeffrey Morris

Is watching the 1984 Ghostbusters movie killing people? A
Statistician's Perspective
Is watching the 1984 Ghostbusters movie killing people?

English adults under 60 who have watched the 1984 Ghostbusters movie are dying at twice the
rate of people who have watched the 2021 Ghostbusters move the same age.

And have been for six months. The chart may seem unbelievable or impossible but it is correct,
based on weekly data from the British government.

The brown line represents weekly deaths from call causes of people aged 10-59 who have
watched the 1984 Ghostbusters movie but not the 2021 Ghostbusters movie, per 100,000

people.

The blue line represents weekly deaths from all causes of unvaccinated people per 100,000 in the
same age range.
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https://www.covid-datascience.com/post/is-watching-the-1984-ghostbusters-movie-killing-people-a-statistician-s-perspective

Blog post Jeffrey Morris

Is watching the 1984 Ghostbusters movie killing people?

Death rates 10-59 by Ghostbuster Movie Watched ONS Data
Published November 2021

"3 “a - S -
v v v v
&5 S S
of
~

a\
e
S

=== Death rates per 100,000 in the age range 10-59: Watched only 2021 Ghostbusters:Afterlife
. Death rates per 100,000 in the age range 10-59: Watched only 1984 Ghostbusters

I have checked the underlying dataset myself and the graph plotted above is correct. People
under 60 who watched the 1984 Ghostbusters movie are twice as likely to die as people who
watched the 2021 Ghostbusters movie. The overall deaths in Britain are running well above

normal.
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https://www.covid-datascience.com/post/is-watching-the-1984-ghostbusters-movie-killing-people-a-statistician-s-perspective

— casestudies.pdf
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