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Today Start Zoom

1. Upcoming events

2. Recap HW 9,10

3. nonparametric regression

4. regularized regression

5. course summary
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Upcoming

• Friday Dec 10 Toronto Data Workshop Zoom link

Nathan Taback U of T

• Thursday Dec 9 Statistics Seminar 10.00 am Zoom link
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Project

• Part I 3–5 pages, non-technical 12 point type, 1.5 vertical spacing, thank you

1. a description of the scienti%c problem of interest
2. how (and why) the data being analyzed was collected
3. preliminary description of the data (plots and tables)
4. non-technical summary for a non-statistician of the analysis and conclusions

• Part II 3–5 pages, technical LaTeX or R markdown; submit .Rmd and .pdf &les

1. models and analysis
2. summary for a statistician of the analysis and conclusions

• Part III Appendix submit .Rmd and .pdf or .html &les
R script or .Rmd (le; additional plots; additional analysis; References
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Project Marking

• 40 points total

• Part I:
description of data and scienti(c problem 5
suitability of plots and tables 5 clear, non-technical, concise but thorough
quality of the presentation 5

• Part II:
summary of the modelling and methods 5 justi&cation for choices
suitability and thoroughness of the analysis 10 model checks, data checks

• Part III:
relevance of additional material 5
complete and reproducible submission 5
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Recap: Nonparametric regression ELM, Ch. 11; SM, §10.7

• model yi = f (xi) + !i, i = 1, . . . ,n xi scalar

• mean function f (·) assumed to be “smooth”

• local polynomial (t, using either k = 0 Nadaraya-Watson or
• k = 1 local linear regression function estimate is the intercept β̂0
• k = 3 local cubic regression odd k works better at the edges
• robusti(ed version of local linear regression loess

• local polynomial (ts easier to analyse f̂λ(xi) =
!n

j=1 S(xi, xj;λ)yj weighted average

• E{f̂λ(x0)} =
!n

i=1 S(x0; xi,λ)f (xi), var{f̂λ(x0)} = σ2
!n

i=1 S2(x0; xi,λ)

• σ̃2 = 1
n−2ν1+ν2

!
{yi − f̂λ(xi)}2; ν1 = tr(Sλ), or ν2 = tr(STλSλ)
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Recap: Pointwise con!dence intervals

ggplot(faithful) +

geom point(aes(eruptions,waiting)) +

ggtitle("Old Faithful") +

geom smooth(aes(eruptions,waiting),

se=T)

help(geom smooth) buyer beware
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Recap: Kernel smoothers ELM §11.1

• choose a bandwidth, λ to control smoothness of function
• larger bandwidth = more smoothing = increased bias, decreased variance

• choose a kernel function, K(·), controls smoothness and “local-ness”
• Faraway recommends Epanechnikov kernel K(x) = 3

4 (1− x2), |x| ≤ 1

• ksmooth(base) o)ers only uniform (box) or normal
• bkde(KernSmooth) o)ers normal, box, epanech, biweight, triweight

• biweight: K(x) ∝ (1− |x|2)2, |x| ≤ 1 triweight: K(x) ∝ (1− |x|2)3, |x| ≤ 1
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Regression splines ELM 11.2 p.218

• model yi = f (xi) + !i f (·) “*exible”
• above f (·) is estimated at several points using local constants or local linear
regression KernSmooth::locpoly

• another popular approach is to use some very *exible, but parametric form, for f
• for example, f (x) =

!M
m=1 βmφm(x) IJALM
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Regression splines ELM 11.2 p.218

• model yi = f (xi) + !i f (·) “*exible”
• above f (·) is estimated at several points using local constants or local linear
regression KernSmooth::locpoly

• another popular approach is to use some very *exible, but parametric form, for f
• for example, f (x) =

!M
m=1 βmφm(x) IJALM

• examples of φm: 1, x, x2, x3; 1, sin(x), cos(x), sin(2x), cos(2x);
• piecewise polynomials: e.g. knots at ξ1, ξ2 ∈ [0, 1]

basis functions φ(x) : 1, x, x2,= x3, (x − ξ1)
3
+, (x − ξ2)

3
+
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Regression splines ELM 11.2 p.218

• model yi = f (xi) + !i f (·) “*exible”
• above f (·) is estimated at several points using local constants or local linear
regression KernSmooth::locpoly

• another popular approach is to use some very *exible, but parametric form, for f
• for example, f (x) =

!M
m=1 βmφm(x) IJALM

• examples of φm: 1, x, x2, x3; 1, sin(x), cos(x), sin(2x), cos(2x);
• piecewise polynomials: e.g. knots at ξ1, ξ2 ∈ [0, 1]

basis functions φ(x) : 1, x, x2,= x3, (x − ξ1)
3
+, (x − ξ2)

3
+

• ELM p.219 builds these “by hand”
• splines::bs() builds cubic splines automatically
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Aside: wavelets ELM §11.4

• f (x) =
!M

m=1 βmφm(x) regression spline with basis functions φ

• wavelet basis functions are orthogonal makes &tting easier

• also multi-resolution – able to track local wiggles better

• very useful for image processing, signal processing can &nd edges and short bursts

• wavethresh package in R
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Example A ELM Ch. 11
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Old Faithful ELM-2 Ch. 14
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Smoothing splines ELM 11.2, SM 10.7.2

• yi = f (xi) + !i, i = 1, . . . ,n

• choose f (·) to solve

min
f

n"

i=1
{y − f (xi)}2 + λ

# b

a
{f ′′(t)}2dt, ,λ > 0
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Smoothing splines ELM 11.2, SM 10.7.2

• yi = f (xi) + !i, i = 1, . . . ,n

• choose f (·) to solve

min
f

n"

i=1
{y − f (xi)}2 + λ

# b

a
{f ′′(t)}2dt, ,λ > 0

• solution is a cubic spline, with knots at each observed xi value
see SM Figure 10.18 for a non-regularized solution

• has an explicit, (nite dimensional solution
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Smoothing splines ELM 11.2, SM 10.7.2

• yi = f (xi) + !i, i = 1, . . . ,n

• choose f (·) to solve

min
f

n"

i=1
{y − f (xi)}2 + λ

# b

a
{f ′′(t)}2dt, ,λ > 0

• solution is a cubic spline, with knots at each observed xi value
see SM Figure 10.18 for a non-regularized solution

• has an explicit, (nite dimensional solution
• f̂ = {f̂ (x1), . . . , f̂ (xn)} = (I+ λK)−1y
• K is a symmetric n× n matrix of rank n− 2
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Nonparametric regression Intro to Stat Learning; James et al.

• yi = f (xi) + !i

• local polynomial regression – stats::loess, KernSmooth::locpoly ELM 11.3; SM 10.7.1
• regression splines – splines::bs , splines::ns ELM 11.2b p 218*
• smoothing splines – stats:smooth.spline ELM 11.2a; SM 10.7.2

• penalized splines – pspline::smooth.Pspline Peng et al. 2006
• wavelets – wavethresh::wd ELM 11.4
• and more... ELM 11.5; ISLR Ch.7

• same ideas can be applied to generalized linear models
• replace linear predictor ηi = β0 + β1xi with f (xi)
• use local poly, reg splines, etc. SM Ex. 10.32 logistic regression
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Example: logistic regression SM Ex.10.29 and 10.32
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Example: logistic regression SM Ex.10.29 and 10.32

−→ toxoplasmosis.Rmd
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Example: logistic regression SM Ex.10.29 and 10.32
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Extensions ELM Ch.12

• more than 1 x
• local polynomials in two (or three) dimensions di-cult to view/&t

• thin-plate splines d = 2, 3
• additive models: yi = β0 + f1(x1i) + f2(x2i) + · · ·+ fp(xpi) + !i FELM Ch.12

gam::gam and mgcv::gam

• beyond least squares
• GAM: e.g. log{pi/(1− pi)} = β0 + f1(x1i) + f2(x2i) + · · ·+ fp(xpi) ISLR 7.7

• smooth generalized linear models
• e.g. linear predictor ηi = xTi β + f (ti) SM 10.7.3
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Example: The NMMAPS studies Peng, et al.(2006) JRSSA
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Example: The NMMAPS studies Peng, et al.(2006) JRSSA

• 90 largest cities in US by population (US Census)
• daily mortality counts from National Center for Health Statistics 1987–1994
• hourly temperature and dewpoint data from National Climatic data Center
• data on pollutants PM10, O3, CO, SO2, NO2 from EPA
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Example: The NMMAPS studies Peng, et al.(2006) JRSSA

• 90 largest cities in US by population (US Census)
• daily mortality counts from National Center for Health Statistics 1987–1994
• hourly temperature and dewpoint data from National Climatic data Center
• data on pollutants PM10, O3, CO, SO2, NO2 from EPA

• response: Yt number of deaths on day t
• explanatory variables: Xt pollution on day t− 1, plus various confounders: age and
size of population, weather, day of the week, time

• mortality rates change with season, weather, changes in health status, ...

NMMAPS: National Morbidity, Mortality and Air Pollution Study

Applied Statistics I December 8 2021 19

O
o



... the NMMAPS studies Peng, et al.(2006) JRSSA

• Yt ∼ Poisson(µt) generalized additive model gam

• log(µt) = age speci(c intercepts + βPMt + γDOW + s(t, 7) + s(tempt, 6) +
s(tempt−1, 6) + s(dewpointt, 3) + s(dewpointt−1, 3) + s4(dew0, 3) + s5(dew1−3, 3)

• three ages categories; separate intercept for each
(< 65, 65− 74, ≥ 75)

• dummy variables to record day of week
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... the NMMAPS studies Peng, et al.(2006) JRSSA

• Yt ∼ Poisson(µt) generalized additive model gam

• log(µt) = age speci(c intercepts + βPMt + γDOW + s(t, 7) + s(tempt, 6) +
s(tempt−1, 6) + s(dewpointt, 3) + s(dewpointt−1, 3) + s4(dew0, 3) + s5(dew1−3, 3)

• three ages categories; separate intercept for each
(< 65, 65− 74, ≥ 75)

• dummy variables to record day of week
• s(t, 7) a smoothing spline of variable t with 7 degrees of freedom
• estimate of β for each city; estimates pooled using Bayesian arguments for an
overall estimate

• very di.cult to separate out weather and pollution e)ects
see also: Crainiceanu, C., Dominici, F. and Parmigiani, G. (2008). Biometrika 95 635–51
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Regularized regression LM 11.3, 11.4

• parametric (t, but using some regularization, as in smoothing splines
• useful with high-dimensional data, i.e. large p many explanatory variables

• two popular versions for least squares:
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Regularized regression LM 11.3, 11.4

• parametric (t, but using some regularization, as in smoothing splines
• useful with high-dimensional data, i.e. large p many explanatory variables

• two popular versions for least squares:

• ridge regression: minβ{
!n

i=1(yi − xTi β)2 + λ
!p

j=1 β
2
j } x’s scaled to have mean 0 and sd 1

• resulting estimates are biased, but might have smaller MSE
• explicit solution available: β̂ridge = (XTX + λI)−1XTy
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Regularized regression LM 11.3, 11.4

• parametric (t, but using some regularization, as in smoothing splines
• useful with high-dimensional data, i.e. large p many explanatory variables

• two popular versions for least squares:

• ridge regression: minβ{
!n

i=1(yi − xTi β)2 + λ
!p

j=1 β
2
j } x’s scaled to have mean 0 and sd 1

• resulting estimates are biased, but might have smaller MSE
• explicit solution available: β̂ridge = (XTX + λI)−1XTy

• lasso regression minβ{
!n

i=1(yi − xTi β)2 + λ
!p

j=1 |βj|} x’s scaled to have mean 0 and sd 1

• resulting estimates are biased, but are also sparse several β̂j’s set to 0

• thus serves as a model selection method as well as an estimation method
• no explicit solution available, and little theory about the distribution of β̂Lasso
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... Regularized regression LM 11.3, 11.4

• both regularization methods require a choice of λ
• works like the smoothing parameters in nonparametric regression – trades o)
variance and bias

• usually chosen by some version of cross-validation
• library(glmnet)
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... Regularized regression LM 11.3, 11.4

• both regularization methods require a choice of λ
• works like the smoothing parameters in nonparametric regression – trades o)
variance and bias

• usually chosen by some version of cross-validation
• library(glmnet)

• regularized regression can be generalized
• e.g. maxβ{ℓ(β)− λ

!n
j=1 |βj|}; equivalently minβ{−ℓ(β) + λ

!n
j=1 |βj|}

• theoretical properties of estimators poorly understood
• di.cult to get, e.g. estimated standard errors for β̂Lasso
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When to use “non-parametric” !ts? ELM, 11.6

• depends on the problem

• some (elds of science have their own conventions e.g. mortality and air pollution, NMMAPS

• may be useful for confounding variables

• may be useful for exploratory analyses

• Faraway suggests using smoothing methods when there is “not too much”
noise in the data

• suggests using parametric models when there are larger amounts of noise in the
data
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Explanation vs Prediction

• regression (and other) models may be (t in order to uncover some structural
relationship between the response and one or more predictors

• How do wages depend on education?
• How does socio-economic status a(ect probability of severe covid?

• statistical analysis will focus on estimation and/or testing
• the data provides both an estimate of a model parameter and
an estimate of uncertainty
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Explanation vs Prediction

• regression (and other) models may be (t in order to uncover some structural
relationship between the response and one or more predictors

• How do wages depend on education?
• How does socio-economic status a(ect probability of severe covid?

• statistical analysis will focus on estimation and/or testing
• the data provides both an estimate of a model parameter and
an estimate of uncertainty

• the focus might instead be on predicting responses for new values of x
• or classifying new observations on the basis of their x values
• the statistical analysis will focus on the accuracy and precision of the
prediction/classi(cation

• the data used to (t the model does not provide a good assessment of the prediction
or classi(cation error — motivates the division of data into training and test sets
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Summary Fall 2021

web page: This course will focus on principles and methods of applied statistical
science. It is designed for MSc and PhD students in Statistics, and is required for the
Applied Paper of the PhD comprehensive exams. The topics covered include: planning
of studies, review of linear models, analysis of random and mixed e)ects models, model
building and model selection, theory and methods for generalized linear models, and
an introduction to nonparametric regression. Additional topics will be introduced as
needed in the context of case studies in data analysis.
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Topics

• linear regression: interpretation of coe.cients, estimation, Wald test/t-test,
comparing models, likelihood ratio test/F-test, model checking, residual and
diagnostic plots, collinearity, prediction, model selection, shrinkage
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Topics

• linear regression: interpretation of coe.cients, estimation, Wald test/t-test,
comparing models, likelihood ratio test/F-test, model checking, residual and
diagnostic plots, collinearity, prediction, model selection, shrinkage

• designed experiments: factors, anova, blocking, randomized blocks, components of
variance, randomization, causality
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Topics

• linear regression: interpretation of coe.cients, estimation, Wald test/t-test,
comparing models, likelihood ratio test/F-test, model checking, residual and
diagnostic plots, collinearity, prediction, model selection, shrinkage

• designed experiments: factors, anova, blocking, randomized blocks, components of
variance, randomization, causality

• observational studies: retrospective/prospective, case-control
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Topics

• linear regression: interpretation of coe.cients, estimation, Wald test/t-test,
comparing models, likelihood ratio test/F-test, model checking, residual and
diagnostic plots, collinearity, prediction, model selection, shrinkage

• designed experiments: factors, anova, blocking, randomized blocks, components of
variance, randomization, causality

• observational studies: retrospective/prospective, case-control

• logistic regression: binary and binomial response, logit transform, linear predictor,
likelihood inference, Wald test, likelihood ratio test, residual deviance as model
check, analysis of deviance, overdispersion, prediction, diagnostics and residuals
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Topics cont’d

• principles: statistical science/data science “work*ow”, types of studies, design of
studies, explanation and prediction, measures of risk, model choice, model
selection

Applied Statistics I December 8 2021 27



Topics cont’d

• principles: statistical science/data science “work*ow”, types of studies, design of
studies, explanation and prediction, measures of risk, model choice, model
selection

• generalized linear models: density, link function, dispersion parameter,
normal/gamma/inverse Gaussian, binomial/Poisson/negative binomial,
quasi-likelihood, over-dispersion, residuals, estimation, iteratively re-weighted LS
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Topics cont’d

• principles: statistical science/data science “work*ow”, types of studies, design of
studies, explanation and prediction, measures of risk, model choice, model
selection

• generalized linear models: density, link function, dispersion parameter,
normal/gamma/inverse Gaussian, binomial/Poisson/negative binomial,
quasi-likelihood, over-dispersion, residuals, estimation, iteratively re-weighted LS

• non-parametric regression: kernel smoothers, local polynomial regression,
regression splines, smoothing splines, cross-validation, inference

• regularization: lasso and ridge penalties on coe.cients
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In the News

• excess deaths, covid Sep 15
• hydroxychloroquine and ivermectin treatments Sep 22
• risk matrices HW2
• fragile states and paternalism Sep 29
• computational advertising Oct 6
• religiosity and economic and mental well-being Oct 13
• excess deaths again Oct 20
• math education and brain development HW6
• Ivermectin again; replicability; long-covid Oct 29
• statistics communication Nov 17
• replicability, vaccination/hospitalization Nov 24

Applied Statistics I December 8 2021 28

y

g

glmly alt

weights m

failyabinowd

ite



p ni lasso etc D Mand
ne NT

response score e lo i qualityofapt

tote p mi of items

Re Rey

04 Xu Kpcc
P

T T.tl 9


