
STA 2101F Notes on 2× 2 tables, and case-control studies. November, 2021

Following Cox & Donnelly (Table 3.6), we outline three 2 × 2 tables, indicating the sampling
distribution of the pair (t, y), both binary; y is the response of interest and t is the explanatory
variable. The first represents the joint distribution in the population. In the second, we follow
individuals forward in time, recording the value of t at the outset, and observe the value of y. These
are called prospective, or cohort, studies. In the third, we we start with the response y, usually
finding a group with y = 1, (a case) and then for each item with y = 1 we find one or more with
y = 0 (a control) and observe the value of t. These are retrospective, also called case-control,
studies. Sometimes the control is matched to each case, and we refer to a matched-pairs study.
Note that the row margins in (b) are 1, whereas the column margins in (c) are 1.

Table 1: (a) is the population, (b) is prospective, and (c) is retrospective. The response is y, and
the covariate is t (treatment), although CD use z.

(a) Population

y = 0 y = 1
t = 0 π00 π01

t = 1 π10 π11

(b) Prospective study

y = 0 y = 1
t = 0 π00/(π00 + π01) π01/(π00 + π01)
t = 1 π10/(π10 + π11) π11/(π10 + π11)

(c) Retrospective study

y = 0 y = 1
t = 0 π00/(π00 + π10) π01/(π01 + π11)
t = 1 π10/(π00 + π10) π11/(π01 + π11)

In (b) we collect samples from t = 0 (“untreated”) and t = 1 (“treated”) and y is measured.
In (c) we collect samples from y = 0 (“control”) and y = 1 (“case”); t is measured.

Generic notation often used for the data that has been collected is

y = 0 y = 1
t = 0 n00 n01 n0+

t = 1 n10 n11 n1+

n+0 n+1

although this notation doesn’t tell us though what the sampling scheme was, because it doesn’t
clearly indicate which margin is fixed.
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Davison (SM, Table 10.10) uses slightly different notation and different words:

y = 0 (“failure”) y = 1 (“success”)
t = 0 (“control”) m0 −R0 R0 m0

t = 1 (“case”) m1 −R1 R1 m1

m1 +m0 − (R0 +R1) R0 +R1

His use of capital letters for random variables indicates that the row margins are fixed, so the
sampling is prospective. At the bottom of p.493 he notes that if the column (“horizontal”) margins
are fixed then the study is retrospective. Both Examples 10.19 and 10.20 are prospective studies.
The probability model he uses is R1 ∼ Binom(m1, π1), and R0 ∼ Binom(m0, π0).

1

The following famous case-control study, first published by Doll & Hill (1950), compares lung cancer
patients (y = 1) with matched controls (y = 0) on their smoking status. This data is reported in
Agresti (2002, p.42).

Lung cancer
1 0

cases controls
smoke = 1 (yes) 688 650
smoke = 0 (no) 21 59

709 709

The cases were all lung cancer patients in a set of twenty hospitals in London, in the year preceding
the study. For each case, a non-cancer patient in the same hospital, of the same gender and in the
same 5-year age group was chosen as a control. This type of case-control study is called a matched
pairs study.

We would like to make inference on Pr(cancer | smoking). But the design provides only information
on Pr(smoking | cancer). We could compute the probability of interest if we knew the population
prevalence from lung cancer, but we don’t have any information on that for this rather special
population. (The rates in the general population would not suffice; this haphazard selection of
cases and controls is not a random sample from the general population.)

However, the odds ratio, that is the ratio of the odds of cancer among smokers to the odds of cancer
among non-smokers can be computed from retrospective data. An application of Bayes’ theorem
confirms that

OR =
Pr(c = 1 | s = 1)/Pr(c = 0 | s = 1)

Pr(c = 1 | s = 0)/Pr(c = 0 | s = 0)
=

Pr(s = 1 | c = 1)/Pr(s = 0 | c = 1)

Pr(s = 1 | c = 0)/Pr(s = 0 | c = 0)

1Note that Davison (SM, Table 10.10) calls groups with t = 0 controls, and t = 1 cases, which is a bit confusing
when dealing with retrospective studies, which are often case-control studies. It would be clearer if he called them
“untreated” and “treated”.
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and we have the data to estimate the second expression. For the table above it is estimated by

(688/709)
!
(21/709)

(650/709)
!
(59/709)

=
688× 59

650× 21
= 3.0.

It can be shown2 that an estimate of the standard error of log(OR) is

v =

"
1

n11

+
1

n10

+
1

n01

+
1

n00

#1/2

;

the estimated log-odds ratio is more likely to be distributed symmetrically about 0 than is the
odds ratio about 1. Thus an approximate 95% confidence interval for log(OR) for our data is
log(3.0)± 1.96v = 1.10± 1.96× 0.26 = (0.589, 1.61) leading to a confidence interval for the OR of
(1.8, 5.0).

Writing π1 for Pr(cancer | smoke = 1), and π0 for Pr(cancer | smoke = 0), we have

OR =
π1/(1− π1)

π0/(1− π0)
.

The relative risk is defined to be π1/π0, i.e. the risk of cancer among smokers relative to the risk of
cancer among non-smokers. The RR cannot be estimated from case-control data, but, since

π1

π0

= OR× 1− π1

1− π0

we see that the RR is approximated by the OR if both π1 and π0 are small, i.e. if lung cancer is
very rare in both groups. Relative risk is easier to interpret than the odds ratio, but the odds ratio
is the only quantity estimable from retrospective data.

This can all be framed in the notation of logistic regression, where we might have, in addition to
exposure, some additional covariates. We would like to know about Pr(Y = 1 | x), say, but our
case-control data does not provide direct information on this. Let Z = 1 if a subject is sampled.
Using Bayes’ theorem again, we have

Pr(Y = 1 | Z = 1, x) =
Pr(Z = 1 | Y = 1, x)Pr(Y = 1 | x)

Pr(Z = 1 | Y = 1, x)Pr(Y = 1 | x) + Pr(Z = 1 | Y = 0, x)Pr(Y = 0 | x) .

Further, assume Pr(Z = 1 | Y = 1, x) = Pr(Z = 1 | Y = 1) = p1, and similarly Pr(Z = 1 | Y =
0, x) = Pr(Z = 1 | Y = 0) = p0, i.e. that sampling is not related to the covariates. Then under a
logistic regression model for the Pr(Y = 1 | x) we have

Pr(Y = 1 | Z = 1, x) =
p1 exp(x

Tβ)/{1 + exp(xTβ)}
p1 exp(xTβ)/{1 + exp(xTβ)}+ p0/{1 + exp(xTβ)}

=
p1 exp(x

Tβ)

p1 exp(xTβ) + p0
=

p1
p0
exp(xTβ)

1 + p1
p0
exp(xTβ)

=
exp(xTβ + α∗)

1 + exp(xTβ + α∗)
.

2see end
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If the first entry of x is a 1, as would usually be the case, then we see that its coefficient cannot
be estimated from the data, it is confounded with α∗. However the remaining components of β
can be estimated from retrospective data. This is one of the reasons that the logit transform for
probabilities is often used with binary or binomial data.

In the smoking example above, there is a single x which is either 1 or 0, so we have

Pr(Y = 1 | Z = 1, x = 1) =
eα

∗+β

1 + eα∗+β
, Pr(Y = 1 | Z = 1, x = 0) =

eα
∗

1 + eα∗ ;

the odds ratio is simply eβ.

Logistic regression is applied in Example 10.19 (data in Table 6.8) where the association between
smoking and survival is stratified according to age groups. This data is based on a survey of 1314
women, entered into a prospective study in 1972-1974, and followed for twenty years. The age group
is the age at entry into the study; twenty years later all the women in the 75+ group had died,
as would be expected. In the overall table, 139/582 of the smokers had died, and 230/732 of the
non-smokers, suggesting a (misleading) protective effect of smoking. Fitting the model

Pr(Y = 1(survive) | Smoke = 1) =
eα+β

1 + eα+β
, Pr(Y = 1 | Smoke = 0) =

eα

1 + eα

gives estimates α̂ = 0.78, β̂ = 0.38, with estimated standard errors of 0.08 and 0.13, respectively;
note that exp(β̂) > 1. The model that uses age information as a factor variable to index groups is

Pr(Y = 1 | Smoke = 1, Age = a) =
eαa+β

1 + eαa+β
; Pr(Y = 1 | Smoke = 0, Age = a) =

eαa

1 + eαa
;

and under this model the estimate of β̂ is −0.43(0.18) indicating that after age is accounted for,
smoking is associated with increased risk of death.

The same data is analysed in §4.4 of Faraway (ELM-1) (§6.5 of ELM-2), as a set of 2×2 tables. An
overall test for association is the Cochran-Mantel-Haenzsel test, and there is an exact calculation
of the p-value available using mantelhaen.test. This gives a 95% confidence interval for the odds
ratio of (1.0689, 2.2034) and point estimate 1.5303. In SM Example 10.19 the approximate 95% CI
is −0.43 ± 1.96 × 0.18; on the odds ratio scale this is (0.457, 0.926), but SM is analysing “alive”
rather than “dead”, so to compare to ELM we invert these values to get (1.08, 2.19); ELM has
(1.07, 2.20), essentially the same.

The CMH parameter of interest is the effect of smoking on survival, aggregated across the 2 × 2
tables for each age group. The logistic regression test is the same, the effect of smoking on survival,
adjusted for age. The only difference is that SM uses likelihood theory, which uses the normal
approximation, and the CMH test is based on Fisher’s exact test, which uses the hypergeometric
distribution.

Approximate variance of the log-odds ratio

There are two ways to calculate this, using the expression for log(OR) on p.1, or via the logistic
regression model version. First, write the generic 2× 2 table as
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1 0
cases controls

exposure = 1 (yes) n11 n10

exposure = 0 (no) n01 n00

n+1 n+0

with associated probabilities π1 = π11, π0 = π10, 1 − π1 = π01, 1 − π0 = π00. The odds ratio is
π1(1− π0)/π0(1− π1), and the estimate of the log-odds ratio is

ψ̂ = log n11 − log n01 − log n10 + log n00 = log π̂1 − log(1− π̂1)− log π̂0 + log(1− π̂0).

Using the delta method (SM, Example 2.5), we have that var(logX) ≃ (1/E(X))2var(X), so

var(ψ̂) = var(log π̂1) + var(log(1− π̂1))− 2cov(log π̂1, log(1− π̂1))

+ var(log π̂0) + var(log(1− π̂0))− 2cov(log π̂0, log(1− π̂0))

.∼ π1(1− π1)

n+1π2
1

+
(1− π1)π1

n+1(1− π1)2
+ 2

π1(1− π1)/n+1

π1(1− π1)

+
π0(1− π0)

n+0π2
0

+
(1− π0)π0

n+0(1− π0)2
+ 2

π0(1− π0)/n+0

π0(1− π0)

=
1

π1(1− π1)n+1

+
1

π0(1− π0)n+0

; (∗)

on estimating π1 and π0 by n11/n+1 and n00/n+0, respectively, we have

$var(logψ) .
=

n+1

n11(n+1 − n11)
+

n+0

n10(n+0 − n10)
=

1

n11

+
1

n01

+
1

n10

+
1

n00

,

as claimed. Note that we have assumed the column totals n+1 and n+0 are the sample sizes for the
two binomials, as this is how the lung cancer data was collected. However, the argument above is
the same if the row totals are fixed instead, or indeed if only n is fixed and the table is a 4-category
multinomial.

Using the logistic representation, we have

π1

1− π1

=
exp(α + β)

1 + exp(α + β)
,

π0

1− π0

=
exp(α)

1 + exp(α)
,

giving β as the log-odds ratio; eβ = ψ above. The log-likelihood function for (α, β) is a special case
of that for logistic regression:

ℓ(α, β) = n11(α + β)− n+1 log(1 + exp(α + β)) + n00α− n+0 log(1 + exp(α)).

The asymptotic variance of β̂ is given by the (2, 2) element of the inverse of the 2 × 2 observed
information matrix j(α̂, β̂). This entry is jαα/(jααjββ − j2αβ), where

jαα = −ℓαα = n+1
eα+β

(1 + eα+β)2
+ n+0

eα

(1 + eα)2
= n+1π1(1− π1) + n+0π0(1− π0),

jαβ = −ℓαβ = n+1
eα+β

(1 + eα+β)2
= n+1π1(1− π1),

jββ = −ℓββ = n+1
eα+β

(1 + eα+β)2
= n+1π1(1− π1),
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so

(j−1)2,2 =
n+1π1(1− π1) + n+0π0(1− π0)

{n+11π1(1− π1) + n+0π0(1− π0)}n+1π1(1− π1)− {n+1π1(1− π1)}2

=
n+1π1(1− π1) + n+0π0(1− π0)

n+1π1(1− π1)n+0π0(1− π0)

=
1

n+1π1(1− π1)
+

1

n+0π0(1− π0)
,

which gets us back to the same calculation as at (*).

Reference: Agresti, A. (2002). Categorical Data Analysis. John Wiley & Sons, New York.
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