
230 ONE FACTOR MODELS

D-A 0 -4.05604 4.0560 1.00000

C-B 2 -1.82407 5.8241 0.47660

D-B -5 -8.57709 -1.4229 0.00441

D-C -7 -10.57709 -3.4229 0.00013

We find that only the A−D and B−C differences are not significant as the corre-
sponding intervals contain zero. The duality between confidence intervals and hy-
pothesis testing can also be used to produce an adjusted p-value as seen in the final
column of the output. This merely confirms our impression of which differences are
significant. The intervals can be plotted as seen in Figure 15.3.
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Figure 15.3 Tukey HSD 95% confidence intervals for the pairwise differences.

> plot(tci)

The Tukey method assumes the worst by focusing on the largest difference. There are
other competitors like the Newman–Keuls, Duncan’s multiple range and the Waller–
Duncan procedure, which are less pessimistic or do not consider all possible pairwise
comparisons. For a detailed description of the many available alternatives see Bretz,
Hothorn, and Westfall (2010) and the R package multcomp.

15.5 False Discovery Rate

Consider some data taken from the Junior School Project collected from primary
(US term is elementary) schools in inner London. The data is described in detail in
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Mortimore et al. (1988). We focus on just two of the variables in the data — the
school, of which there are 49, and the mathematics test scores for students from
these schools. Suppose we are interested in deviations from the average and so we
center the scores:

> data(jsp, package="faraway")

> jsp$mathcent <- jsp$math - mean(jsp$math)

A more pleasing plot of the data can be obtained using the ggplot2 package as seen
in Figure 15.4. We have to rotate the school labels so they can be distinguished.

> require(ggplot2)

> ggplot(aes(x=school,y=mathcent),data=jsp)+geom_boxplot() + theme(

axis.text.x = element_text(angle = 90))+ylab("Centered Math

Scores")
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Figure 15.4 Variation-centered math scores by school.

Let’s choose the parameterization that omits the intercept term:

> lmod <- lm(mathcent ~ school-1, jsp)

> sumary(lmod)

Estimate Std. Error t value Pr(>|t|)

school1 -3.3685 0.7686 -4.38 1.2e-05

school2 0.6714 1.2287 0.55 0.58481

...

school50 -2.6520 0.7336 -3.62 0.00030

n = 3236, p = 49, Residual SE = 7.372, R-Squared = 0.08

Since we have centered the response, the t-tests, which check for differences from
zero, are meaningful. We can see there is good evidence that schools 1 and 50 are
significantly below average while the evidence that school 2 is above average is not
statistically significant. We can test for a difference between the schools:
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> anova(lm(mathcent ~ school, jsp))

Analysis of Variance Table

Response: mathcent

Df Sum Sq Mean Sq F value Pr(>F)

school 48 15484 323 5.94 <2e-16

Residuals 3187 173212 54

We find a strongly significant difference. This comes as little surprise as the sample
size is large, giving us the power to detect quite small differences. Furthermore,
we may have strong prior reasons to expect differences between the schools. A
more interesting question is which schools show clear evidence of under- or over-
performance?

There are too many pairwise comparisons on which to focus our interest. Instead
let us ask which schools have means significantly different from the average. The
parameterization we have chosen makes these comparisons easy but we would expect
about 5% of these differences to be significant even if the null hypothesis held.

Some adjustment is necessary. One approach is to control the familywise error

rate (FWER) which is the overall probability of falsely declaring a difference (where
none exists). The Bonferroni correction is a simple way to do this. We just multiply
the unadjusted p-values by the number of comparisons. Any probability computed
above one is truncated to one. Let’s see which schools have adjusted p-values less
than 5%:

> pvals <- summary(lmod)$coef[,4]

> padj <- p.adjust(pvals, method="bonferroni")

> coef(lmod)[padj < 0.05]

school1 school16 school21 school28 school31 school40 school45

-3.3685 -3.7374 -3.6185 -5.8286 3.8241 -4.9855 -4.6392

school50

-2.6520

We see that eight schools are identified with all except school 31 marked as signifi-
cantly below average.

The Bonferroni correction is known to be conservative but even were we to use
one of the more generous alternatives, the familywise error rate restriction imposes
a high bar on the identification of significant effects. As the number of levels being
compared increases, this requirement becomes ever more stringent.

An alternative approach is to control the false discovery rate (FDR) which is the
proportion of effects identified as significant which are not real. The best known
method of doing this is due to Benjamini and Hochberg (1995).

Given sorted p-values p(i) for i = 1, . . . ,m the procedure finds the largest i for
which p(i) ≤ αi/m. All tests corresponding to p(i) up to and including this i are
declared significant. We compute this for our example:

> names(which(sort(pvals) < (1:49)*0.05/49))

[1] "school28" "school31" "school21" "school1" "school45" "school40"

[7] "school16" "school50" "school47" "school49" "school4" "school36"

[13] "school46" "school14" "school24" "school27" "school34" "school9"
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We see that 18 schools are identified compared to the 8 by the previous procedure.
FDR is less stringent than FWER in identifying significant effects. A more conve-
nient method of computing the adjusted p-values is:

> padj <- p.adjust(pvals, method="fdr")

> coef(lmod)[padj < 0.05]

school1 school4 school9 school14 school16 school21 school24

-3.3685 -2.6619 2.2458 -3.2898 -3.7374 -3.6185 2.6238

school27 school28 school31 school34 school36 school40 school45

-2.3058 -5.8286 3.8241 1.9359 2.3605 -4.9855 -4.6392

school46 school47 school49 school50

3.0636 2.3969 2.7964 -2.6520

FDR methods are more commonly used where large numbers of comparisons are
necessary as often found in imaging or bioinformatics applications. In examples
such as these, we expect to find some significant effects and FDR is a useful tool in
reliably identifying them.

Exercises

1. Using the pulp data, determine whether there are any differences between the
operators. What is the nature of these differences?

2. Determine whether there are differences in the weights of chickens according to
their feed in the chickwts data. Perform all necessary model diagnostics.

3. Using the PlantGrowth data, determine whether there are any differences be-
tween the groups. What is the nature of these differences? Test for a difference
between the average of the two treatments and the control.

4. Using the infmort data, perform a one-way ANOVA with income as the response
and region as the predictor. Which pairs of regions are different? Now check for
a good transformation on the response and repeat the comparison.

5. The anaesthetic data provides the time to restart breathing unassisted in recov-
ering from general anaesthetic for four treatment groups.

(a) Produce a boxplot depicting the data. Comment on any features of interest.

(b) Make an appropriate stripchart of the data.

(c) Produce versions of the previous two plots using the ggplot2 package. Show
how you can overlay these two plots.

(d) Fit a one-factor model for the recovery times and test for a difference between
the two groups.

(e) Try the Box-Cox transformation method. Explain what went wrong.

(f) Try a square root transformation on the response. Are the diagnostics satisfac-
tory? Is there a significant difference among the treatment groups?

6. Data on the butterfat content of milk from Canadian cows of five different breeds
can be found in the butterfat dataset. Consider only mature cows.

(a) Plot the data and interpret what you see.

(b) Test for a difference between the breeds.




