HW Question Week 8

STA2101F 2021

Due November 18 2021 11.59 pm

Homework to be submitted through Quercus

Part 1. Project

- (a) Create a new R project for your final project. Create a new R markdown file to start recording the steps in your analysis. Write some code that reads your data into R from the original website where you obtained it, or from your own website that you create. (This is so I will be able to run your .Rmd file without actually storing your data on my computer.)
- (b) Load your data and do some quick quality checks are there any missing values? If so, how many? How will you handle them in the analysis?
- (c) Construct some preliminary plots of the data, for example histograms, boxplots, and/or scatterplots, and comment on any anomalies.

Part 2. Question for this week

The cloth data in the library SMPracticals gives the number of faults, y, in each of n = 32 rolls of textile fabric of different lengths, x. Assume that the number of faults in roll i, say y_i , follows a Poisson distribution with rate λx_i , where x_i is known, and is the length of roll i.

- (a) Show that the maximum likelihood estimate of λ is given by $\hat{\lambda} = \bar{y}/\bar{x}$ and find an expression for the variance of $\hat{\lambda}$.
- (b) Use glm to fit this Poisson model to the data, and give an approximate 95% confidence interval for λ .
- (c) Carry out a goodness-of-fit test of the Poisson model using either the residual deviance, or Pearson's χ^2 , or both, and state your conclusions.
- (d) Show that if it is assumed that λ follows a Gamma distribution with shape and *rate* parameters α and β respectively (i.e. with density $\{1/\Gamma(\alpha)\}\lambda^{\alpha-1}\beta^{\alpha}e^{-\lambda\beta}$), that the distribution of y_i given x_i is negative binomial, with

$$E(y_i \mid x_i) = \alpha \frac{1 - \pi_i}{\pi_i} = \frac{\alpha}{\beta} x_i, \quad \operatorname{Var}(y_i) = \frac{\alpha}{\beta} \frac{x_i(\beta + x_i)}{\beta}.$$

(e) Fit this model using glm.nb and compare the confidence interval for λ obtained from

this model to that in (b). Assess the fit of the model using residual plots and summarize your conclusions.

(f) PhD/Bonus (SM Exercise 10.5.1)

Consider a set of 2n Poisson random variables $y_{11} \ldots y_{1n}$ and y_{21}, \ldots, y_{2n} , in a $2 \times n$ contingency table:

where $\eta_{1i} = \log\{E(y_{1i})\} = x_{1i}^T \beta$ and $\eta_{2i} = \log\{E(y_{2i})\} = x_{2i}^T \beta$, and x_{ij} are fixed. Show that the conditional density of y_{1i} , given $y_{1i} + y_{2i} = m_i$ is distributed as a $Binom(m_i, p_i)$, where

$$\log\{\frac{p_i}{1-p_i}\} = (x_{1i} - x_{2i})^T \beta$$

As noted in SM (not needed to prove), this implies that a contingency table in which a single, binary classification is regarded as the response can be analyzed using logistic regression. In this table, y_{1i} represents the count associated with x_{1i} for class "1", say, and y_{2i} represents the count associated with x_{2i} for class "2".