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and dependent variables for X and Y as these are easily confused with the broader
meanings of terms. Regression analysis is another term used for linear modeling
although regressions can also be nonlinear.

When p = 1, it is called simple regression but when p > 1 it is called multiple

regression or sometimes multivariate regression. When there is more than one re-
sponse, then it is called multivariate multiple regression or sometimes (confusingly)
multivariate regression. We will not cover this in this book, although you can just do
separate regressions on each Y .

The response must be a continuous variable, but the explanatory variables can
be continuous, discrete or categorical, although we leave the handling of categorical
explanatory variables to later in the book. Taking the example presented above, a
regression with diastolic and bmi as Xs and diabetes as Y would be a multiple
regression involving only quantitative variables which we tackle first. A regression
with diastolic and test as Xs and bmi as Y would have one predictor that is
quantitative and one that is qualitative, which we will consider later in Chapter 14 on
analysis of covariance. A regression with test as X and diastolic as Y involves
just qualitative predictors — a topic called analysis of variance (ANOVA), although
this would just be a simple two sample situation. A regression of test as Y on
diastolic and bmi as predictors would involve a qualitative response. A logistic

regression could be used, but this will not be covered in this book.

Regression analyses have two main objectives:

1. Prediction of future or unseen responses given specified values of the predictors.

2. Assessment of the effect of, or relationship between, explanatory variables and
the response. We would like to infer causal relationships if possible.

You should be clear on the objective for the given data because some aspects of the
resulting analysis may differ. Regression modeling can also be used in a descriptive
manner to summarize the relationships between the variables. However, most end
users of data have more specific questions in mind and want to direct the analysis
toward a particular set of goals.

It is rare, except in a few cases in the precise physical sciences, to know (or even
suspect) the true model. In most applications, the model is an empirical construct
designed to answer questions about prediction or causation. It is usually not helpful
to think of regression analysis as the search for some true model. The model is a
means to an end, not an end in itself.

1.4 History

In the 18th century, accurate navigation was a difficult problem of commercial and
military interest. Although, it is relatively easy to determine latitude from Polaris,
also known as the North Star, finding longitude then was difficult. Various attempts
were made to devise a method using astronomy. Contrary to popular supposition,
the Moon does not always show the same face and moves such that about 60% of its
surface is visible at some time.

Tobias Mayer collected data on the locations of various landmarks on Moon,
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including the Manilius crater, as they moved relative to the earth. He derived an
equation describing the motion of the moon (called libration) taking the form:

arc= β+αsinang+ γcosang

He wished to obtain values for the three unknowns α,β and γ. The variables arc,
sinang and cosang can be observed using a telescope. A full explanation of the story
behind the data and the derivation of the equation can be found in Stigler (1986).

Since there are three unknowns, we need only three distinct observations of the
set of three variables to find a unique solution for α,β and γ. Embarassingly for
Mayer, there were 27 sets of observations available. Astronomical measurements
were naturally subject to some variation and so there was no solution that fit all 27
observations. Let’s take a look at the first few lines of the data:

> data(manilius, package="faraway")

> head(manilius)

arc sinang cosang group

1 13.167 0.8836 -0.4682 1

2 13.133 0.9996 -0.0282 1

3 13.200 0.9899 0.1421 1

4 14.250 0.2221 0.9750 3

5 14.700 0.0006 1.0000 3

6 13.017 0.9308 -0.3654 1

Mayer’s solution was to divide the data into three groups so that observations within
each group were similar in some respect. He then computed the sum of the variables
within each group. We can also do this:

> (moon3 <- aggregate(manilius[,1:3],list(manilius$group), sum))

Group.1 arc sinang cosang

1 1 118.13 8.4987 -0.7932

2 2 140.28 -6.1404 1.7443

3 3 127.53 2.9777 7.9649

Now there are just three equations in three unknowns to be solved. The solution is:

> solve(cbind(9,moon3$sinang,moon3$cosang), moon3$arc)

[1] 14.54459 -1.48982 0.13413

Hence the computed values of α,β and γ are -1.49, 14.5 and 0.134 respectively. One
might question how Mayer selected his three groups, but this solution does not seem
unreasonable.

Similar problems with more linear equations than unknowns continued to arise
until 1805, when Adrien Marie Legendre published the method of least squares. Sup-
pose we recognize that the equation is not exact and introduce an error term, ε:

arci = β+αsinangi + γcosangi + εi

where i = 1, . . . ,27. Now we find α,β and γ that minimize the sum of the squared
errors: ∑ε2. We will investigate this in much greater detail in the chapter to follow
but for now we simply present the solution using R:
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> lmod <- lm(arc ~ sinang + cosang, manilius)

> coef(lmod)

(Intercept) sinang cosang

14.561624 -1.504581 0.091365

We observe that this solution is quite similar to Mayer’s. The least squares solu-
tion is more satisfactory in that it requires no arbitrary division into groups. Carl
Friedrich Gauss claimed to have devised the method of least squares earlier but with-
out publishing it. At any rate, he did publish in 1809 showing that the method of
least squares was, in some sense, optimal.

For many years, the method of least squares was confined to the physical sciences
where it was used to resolve problems of overdetermined linear equations. The equa-
tions were derived from theory and least squares was used as a method to fit data to
these equations to estimate coefficients like α,β and γ above. It was not until later in
the 19th century that linear equations (or models) were suggested empirically from
the data rather than from theories of physical science. This opened up the field to the
social and life sciences.

Francis Galton, a nephew of Charles Darwin, was important in this extension of
statistics into social science. He coined the term regression to mediocrity in 1875
from which the rather peculiar term regression derives. Let’s see how this terminol-
ogy arose by looking at one of the datasets he collected at the time on the heights of
parents and children in Galton (1886). We load the HistData package of historical
statistical datasets and plot some of the data as seen in Figure 1.5. You will need to
install this package using install.packages("HistData") if you have not already
done so.

> data(GaltonFamilies, package="HistData")

> plot(childHeight ~ midparentHeight, GaltonFamilies)

We see that midparentHeight, defined as the father’s height plus 1.08 times the
mother’s height divided by two, is correlated with the childHeight, both in inches.
Now we might propose a linear relationship between the two of the form:

childHeight= α+βmidparentHeight+ ε

We can estimate α and β using R and plot the resulting fit as follows:

> lmod <- lm(childHeight ~ midparentHeight, GaltonFamilies)

> coef(lmod)

(Intercept) midparentHeight

22.63624 0.63736

> abline(lmod)

For the simple case of a response y and a single predictor x, we can write the equation
in the form:

y− ȳ

SDy
= r

(x− x̄)

SDx

where r is the correlation between x and y. The equation can be expressed in words
as: the response in standard units is the correlation times the predictor in standard
units. We can verify that this produces the same results as above by rearranging the
equation in the form y = α+βx and computing the estimates:
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Figure 1.5 The height of child is plotted against a combined parental height defined
as (father’s height + 1.08 × mother’s height)/2.

> (beta <- with(GaltonFamilies, cor(midparentHeight, childHeight) * sd

(childHeight) / sd(midparentHeight)))

[1] 0.63736

> (alpha <- with(GaltonFamilies, mean(childHeight) - beta * mean(

midparentHeight)))

[1] 22.636

Now one might naively expect that a child with parents who are, for example, one
standard deviation above average in height, to also be one standard deviation above
average in height, give or take. The supposition would set r = 1 in the equation and
leads to a line which we compute and plot below:

> (beta1 <- with(GaltonFamilies, sd(childHeight) / sd(midparentHeight)

))

[1] 1.9859

> (alpha1 <- with(GaltonFamilies, mean(childHeight) - beta1 * mean(

midparentHeight)))

[1] -70.689

> abline(alpha1, beta1, lty=2)

The resulting dashed line is added to Figure 1.5. The lines cross at the point of the
averages. We can see that a child of tall parents is predicted by the least squares
line to have a height which is above average but not quite as tall as the parents as
the dashed line would have you believe. Similarly children of below average height



12 INTRODUCTION

parents are predicted to have a height which is still below average but not quite as
short as the parents. This is why Galton used the phrase “regression to mediocrity”
and the phenomenom is sometimes called the regression effect.

This applies to any (x,y) situation like this. For example, in sports, an athlete
may have a spectacular first season only to do not quite as well in the second season.
Sports writers come up with all kinds of explanations for this but the regression effect
is likely to be the unexciting cause. In the parents and children example, although it
does predict that successive descendants in the family will come closer to the mean,
it does not imply the same of the population in general since random fluctuations will
maintain the variation, so no need to get too pessimistic about mediocrity! In many
other applications of linear modeling, the regression effect is not of interest because
different types of variables are measured. Unfortunately, we are now stuck with the
rather gloomy word of regression thanks to Galton.

Regression methodology developed rapidly with the advent of high-speed com-
puting. Just fitting a regression model used to require extensive hand calculation. As
computing hardware has improved, the scope for analysis has widened. This has led
to an extensive development in the methodology and the scale of problems that can
be tackled.

Exercises

1. The dataset teengamb concerns a study of teenage gambling in Britain. Make a
numerical and graphical summary of the data, commenting on any features that
you find interesting. Limit the output you present to a quantity that a busy reader
would find sufficient to get a basic understanding of the data.

2. The dataset uswages is drawn as a sample from the Current Population Survey
in 1988. Make a numerical and graphical summary of the data as in the previous
question.

3. The dataset prostate is from a study on 97 men with prostate cancer who were
due to receive a radical prostatectomy. Make a numerical and graphical summary
of the data as in the first question.

4. The dataset sat comes from a study entitled “Getting What You Pay For: The De-
bate Over Equity in Public School Expenditures.” Make a numerical and graphical
summary of the data as in the first question.

5. The dataset divusa contains data on divorces in the United States from 1920 to
1996. Make a numerical and graphical summary of the data as in the first question.




