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Today Start Recording

1. Office hours, Covid competition, Recap last week, Zoom
OH: Wednesday 9am-10.30am Monday 4pm-5.30pm, 7pm-8pm in Course Room

2. Linear Regression Part 2: testing groups of variables, checking model assumptions,
collinearity, p > n

3. Types of studies
4. In the News: moon-shot covid testing; a little more on event attribution
5. RStudio and Rmd clinic

• SM – Statistical Models by Davison
• FLM – Linear Models with R by Faraway
• FELM – Extending the Linear Model with R by Faraway
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Recap

• generic form of linear regression, in matrix notation y = Xβ + ε

• least squares estimate of β is β̂ = (XTX)−1XTy
• β̂ has expected value β and variance-covariance matrix σ2(XTX)−1

• this is the maximum likelihood estimate if ε ∼ N(0,σ2I)
• β̂ ∼ N(β,σ2(XTX)−1)
• σ̃2 = (y − Xβ̂)T(y − Xβ̂)/(n− p) called s2 in SM
• leads to t-tests for individual components βj and confidence intervals - ntbc

• X is an n× p matrix of explanatory variables, which may be
• measured in the sample (SM Ex 8.3),
• fixed by design (SM Ex 8.4),
• introduced to make the model more flexible (SM Ex 8.2) SM – Davison
• X often called the design matrix in R, model.matrix
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Aside: Lazy Notation

• yi = xT

i β + εi, , i = 1, . . . ,n

• y = Xβ + ε, y, ε vectors of length n

• y = Xβ + ε, also vectors of length n the lazy way

• a generic observation y ∈ R for a generic vector of covariates x ∈ R! often written

y = xTβ + ε

or even xβ + ε

• “where we hope there is no confusion”
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Comparing Models SM 8.5, FLM 3.1,2

• residual sum of squares

SS(β̂) = RSSΩ = (y − Xβ̂)T(y − Xβ̂)

SS(β̂) SM p.366; RSSΩ FLM-2 p.16; FLM-1, p.15
• Decomposition of variance: yTy = (y − ŷ)T(y − ŷ) + ŷTŷ FLM Fig 2.1

= (y − Xβ̂)T(y − Xβ̂) + β̂TXTXβ̂
= Residual SS + Regression SS

• Typically first column of X is (1, . . . , 1)T, so y = β0 + X2β2 + ε, say; then
decomposition becomes

n!

i=1

(yi − ȳ)2 = (y − X2β̂2)T(y − X2β̂2) + β̂T

2 (XT

2 X2)β̂

(y − ȳ1)T(y − ȳ1) =
n!

i=1

(yi − xT

i2β̂2)
2 + β̂T

2 (XT

2 X2)β̂
Applied Statistics I September 17 2020 4



... comparing models

n!

i=1

(yi − ȳ)2 = (y − Xβ̂)T(y − Xβ̂) + β̂T(XTX)β̂

Total SS = Residual SS+ Regression SS

• LHS is residual SS fitting only the 1-vector
• comparison of LHS to SS(β̂) reflects importance of other βs, i.e. importance of
explanatory variables

•
F =

(TSS− RSS)/(p− 1)
RSS/(n− p) ∼ Fp−1,n−p

• here β = (β1,β2, . . . ,βp), but we don’t care about β1 (β0,β1, . . . ,βp)
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... comparing models

• same argument can be derived for comparing submodels
• for example, testing (β2,β3,β4) = (0,0,0)

• fit full model −→ RSSfull; fit reduced model −→ RSSred
•

F =
(RSSred − RSSfull)/(p− q)

RSSfull/(n− p)

• see SM §8.2 (p.367) for connection to likelihood ratio test

• when would we want to do this?
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... comparing models

head(prostate)

# lcavol lweight age lbph svi lcp gleason pgg45 lpsa

1 -0.5798185 2.7695 50 -1.386294 0 -1.38629 6 0 -0.43078

2 -0.9942523 3.3196 58 -1.386294 0 -1.38629 6 0 -0.16252

3 -0.5108256 2.6912 74 -1.386294 0 -1.38629 7 20 -0.16252

4 -1.2039728 3.2828 58 -1.386294 0 -1.38629 6 0 -0.16252

5 0.7514161 3.4324 62 -1.386294 0 -1.38629 6 0 0.37156

6 -1.0498221 3.2288 50 -1.386294 0 -1.38629 6 0 0.76547

model1 <- lm(lpsa ~ ., data = prostate)
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... comparing models

> summary(model1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.669337 1.296387 0.516 0.60693

lcavol 0.587022 0.087920 6.677 2.11e-09 ***

lweight 0.454467 0.170012 2.673 0.00896 **

age -0.019637 0.011173 -1.758 0.08229 .

lbph 0.107054 0.058449 1.832 0.07040 .

svi 0.766157 0.244309 3.136 0.00233 **

lcp -0.105474 0.091013 -1.159 0.24964

gleason 0.045142 0.157465 0.287 0.77503

pgg45 0.004525 0.004421 1.024 0.30886

---

Residual standard error: 0.7084 on 88 degrees of freedom

F-statistic: 20.86 on 8 and 88 DF, p-value: < 2.2e-16 ←−
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... comparing models

model2 <- lm(lpsa ~ lcavol + lweight + svi + age + lbph, data = prostate)

anova(model2,model1)

Analysis of Variance Table

Model 1: lpsa ~ lcavol + lweight + svi + age + lbph

Model 2: lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45

Res.Df RSS Df Sum of Sq F Pr(>F)

1 91 45.526

2 88 44.163 3 1.3625 0.905 0.4421

does this make sense?
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Factor variables

• F-tests are used when the columns to be removed form a group

• if a covariate is a factor, i.e. categorical, then lm will construct a set of dummy
variables as part of the model matrix

• these variables should either all be in, or all be out in most cases

• prostate$gleason_factor <- factor(prostate$gleason)

levels(prostate$gleason_factor)

[1] "6" "7" "8" "9"

model3 <- lm(lpsa ~ .-gleason, data=prostate)
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... factor variables

model3 <- lm(lpsa ~ .-gleason, data=prostate)

summary(model3)

> Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.913282 0.840838 1.086 0.28044

lcavol 0.569988 0.090100 6.326 1.09e-08 ***

lweight 0.468791 0.169610 2.764 0.00699 **

age -0.021749 0.011361 -1.914 0.05890 .

lbph 0.099685 0.058984 1.690 0.09464 .

svi 0.745879 0.247398 3.015 0.00338 **

lcp -0.125112 0.095591 -1.309 0.19408

pgg45 0.004990 0.004672 1.068 0.28848

gleason_factor7 0.267607 0.219419 1.220 0.22595

gleason_factor8 0.496820 0.769267 0.646 0.52011

gleason_factor9 -0.056215 0.500196 -0.112 0.91078

check model.matrix
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... factor variables

> anova(model1,model3)

Analysis of Variance Table

Model 1: lpsa ~ lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45

Model 2: lpsa ~ (lcavol + lweight + age + lbph + svi + lcp + gleason +

pgg45 + gleason_factor) - gleason

Res.Df RSS Df Sum of Sq F Pr(>F)

1 88 44.163

2 86 42.724 2 1.4392 1.4485 0.2406
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... factor variables

• with designed experiments, covariates are often factors set at
pre-determined levels

• see, e.g. Example 8.4 in SM also Ch 14 in FLM-2; Ch 13 in FLM-1

• if the design is perfectly balanced, then X has orthogonal columns,
and XTX is diagonal

• so β̂j’s are uncorrelated, and hence independent (under normality assumption)

• more generally we might have XTX block diagonal, e.g.

Y = X1β1 + X2β2 + ε,

SM §8.5.3, FLM-2 2.11

XTX =

"
XT
1 X1 0
0 XT

2 X2

#

importance?
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Model checking SM 8.6, FLM-2 Ch. 6, FLM-1 Ch. 4

• assumptions on errors: εi ∼i.i.d. N(0,σ2) on structure E(y | X) = Xβ
• normality; constant variance; independent

plot(model1)
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... Model checking

• residuals: ε̂i = yi − ŷi

• Var(ε̂) = σ2(I− H), i.e. don’t all have the same variance ntbc

• hat matrix H = X(XTX)−1XT Hy = X(XTX)−1XTy = Xβ̂ = ŷ

• standardized residuals: ri =
ε̂i

σ̃(1− hii)1/2
approx var 1

• Cook’s distance Ci =
(ŷ − ŷ−i)T(ŷ − ŷ−i)

pσ̃2 =
r2i hii

p(1− hii)
measure of influence

https://data.library.virginia.edu/diagnostic-plots/
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Collinearity

• simple model yi = β0 + β1x1i + β2x2i + εi, i = 1, . . .n
• if x1 ⊥ x2, then interpretation of β1 and β2 clear
• if x1 = x2 then β1 and β2 not separately identifiable
• usually we’re somewhere in between, at least in observational studies
• may be very difficult to dis-entangle effects of correlated covariates
• example: health effects of air pollution
• measurable increase in mortality on high-pollution days
• measurable increase in mortality on high-temperature days
• high temperatures and high levels of pollutants tend to co-occur
• mathematically, XTX is nearly singular, or at least ill-conditioned, so calculation of
its inverse is subject to numerical errors

• if p > n then XTX not invertible, no LS solution ridge, Lasso
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In the News
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... In the News

 

Sir, 

We are concerned WhaW Whe gRYeUQPeQW¶V leaked ³PRRQVhRW´ SlaQ (³Doubts cast on Boris 
JRhQVRQ¶V 'PRRQVhRW'",10 September), to test millions of people daily for Covid-19 does not 
appear to take account of fundamental statistical issues. This plan goes well beyond test-
and-trace, for which the statistical basis is well established, and ± judging on the basis of the 
leaked plan ± its success may require new tests to be more accurate than diagnostic tests 
for any other disease. 

This is not to say that the approach of mass testing is not right but to build a consensus 
among the scientific community for this, we must first understand precisely what the 
gRYeUQPeQW¶V RbjecWiYe iV aQd WheQ assess whether mass testing is the best way to achieve 
it. 

There are harms associated with testing ± as there are with not-testing ± and before the UK 
decides to move towards mass-testing, the balance of these harms needs to be assessed. 

Tests cause harm when they miss or wrongly diagnose cases. Our current tests have 1 and 
2% false positive rates ± which, when millions are being tested every day, risks causing 
personal and economic harm to tens of thousands of people. This problem is exacerbated if 
the new tests, as is likely, are less accurate than the ones used currently. 

If mass-testing can give people confidence that they are disease-free, tests need to detect 
nearly all cases.  Our current tests miss around a fifth of those with the disease ± if the new 
tests are even less sensitive, they may not be accurate enough for the safe running of 
events but could be useful for complementing social distancing measures. 

We urge the government to make information about the new tests and their planned use 
available to enable broad discussion with experts and reach consensus and understanding 
on the balance of risks.  The Royal Statistical Society is here to provide support with the 
essential statistical issues. 

Professor Sylvia Richardson and Professor Jon Deeks on behalf of the Royal Statistical 
Society Covid-19 Task Force 

A shorter version of this letter appeared in the Times on 11 September 2020: 
https://www.thetimes.co.uk/article/times-letters-loneliness-and-the-tender-care-of-the-elderly-
bzmzc22bg (paywalled) 
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Testing for disease

−→ R Markdown
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