Methods of Applied Statistics I

STA2101H F LEC9101

Week 5

October 8 2020

- 1. Second syllabus update; Two editions of Faraway
- 2. In the News: A-levels; Excel; 538
- 3. Designed Experiments SM 9.1, 9.2; FLM-2 Ch 16, 17; FLM-1 Ch 15, 16
- 4. Preliminary Analysis CD Ch. 5
- 5. (2–3pm) HW1; Reading Statistical Models

Happy Thanksgiving!!!

Monday, Oct 12 No office hours

http://www.utstat.utoronto.ca/reid/sta2101f/syllabus20Update-2.pdf

CTA 0101E: Matheda of Applied Statistics I

Callabara and dated Oat F

Applied Statistics I

	Week		Methods	References	Computing	
	1	Sept 10	Review of Linear Re- gression	SM Ch.8.2.1, 8.3; FLM-2 Ch.2-4; FLM-1 Ch.2-3; CD Ch.1	RStudio and RMark- down	
	2	Sept 17	Model Selection Comparing models; factors; model check- ing; diagnostics; collinearity	SM Ch.8.5,6; FLM Ch.3; FLM-2 14.1, 14.2, 2.11, 2.6; FLM- 1 4,13; CD Ch.6	tidyverse	
	$3 \rightarrow HW1$	Sept 24	Random and Mixed Effects Models Models Selection; Types of studies	SM 8.7.1; FLM-2 Ch. 10; FLM-1 Ch.8; CD Ch.1,2	ggplot HW 1 Qs	
	4←HW1	Oct 1	Designed Experiments Factor variables; Random and Mixed Effects; Principles of Mea- surement	SM Ch. 9.4,9.2.1; FLM-2 Ch.14- 17;FLM-1 Ch.14-16; CD Ch.4	as.factor, is.factor, ggplot, anova, fruitfly data	
	5	Oct 8	Binary ResponsesDesigned Experiments; Pre- liminary Analysis	SM Ch.9.1,2; FLM- 2 Ch.14, 15 FLM-1 Ch.13, 14; Ch.2 ; CD Ch.5, FLM-2 Ch.5		
	6	Oct 15	Logistic Regression	SM 10.6.1; FELM Ch.3		
ctober 8 2	2 020 7→HW2	Oct 22	Generalized Linear Models	FELM Ch.6,7; SM		

2

In the News: A-level grades (England)

A-level and GCSE results: Pressure mounts on ministers to solve exam crisis

() 17 August 2020

🖻 🔰 🗹 < Share

In the News: A-level grades (England)

- assignment of final grades in high school, used for university admissions Introduction
- in the absence of written exams
- "exam boards would be asking teachers in schools and colleges to submit expected grades and rankings of their students in lieu of exams"
- "These assessments would then go through 'a process of standardisation using a model', or algorithm, that Ofqual had developed"
- "Ultimately, when grades were issued on 13 August, some students found the results to be anything but fair, with many receiving lower marks than expected"
- "on 17 August, after student protests, Ofqual abandoned the calculated grades in favour of teacher-assessed grades."

Full article

... A-level grades

"the algorithm developed by England's exam regulator, Ofqual, contained no elements of machine learning, or indeed any artificial intelligence – it was simply a sequence of hand-coded procedural steps designed by an indisputably human team."

Applied Statistics I

Also in the news: Covid testing

- The health secretary said that a technical glitch that saw nearly 16,000 Covid-19 cases go unreported in England "should never have happened"
- Excess rows in the database ignored by Excel software

BBC News

Under-reported figures From 25 Sept to 2 Oct 50.786 Cases initially reported by PHE Unreported cases, missed due to IT error 8 days of incomplete data 1.980 cases per day, on average, were missed in that time 48 hours Ideal time limit for tracing contacts after positive test Source: PHE and gov.uk

Also in the news: Covid testing

- The health secretary said that a technical glitch that saw nearly 16,000 Covid-19 cases go unreported in England "should never have happened"
- Excess rows in the databased ignored by Excel software

Missing cases added

BBC News

Thousands of missing coronavirus cases added after reporting problem

Number of new coronavirus cases by date reported

Previously announced cases

Applied Statistics I October 8 2020

7

also UK

Visualization

fivethirtyeight.com

The winding path to 270 electoral votes

A candidate needs at least 270 electoral votes to clinch the White House. Here's where the race stands, with the states ordered by the projected margin between the candidates — Clinton's strongest states are farthest left, Trump's farthest right — and sized by the number of electoral votes they will ward.

Pause

Applied Statistics I October 8 2020

Recap of Linear Regression Part 4

- factor variables vs continuous variables
- analysis of variance, F-tests
- fruitfly example: $y_{ij} = \mu + \alpha_i + \beta x_{ij}$
- why use special techniques?
- one-way analysis of variance $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$
 - parameters
 - analysis of variance table
 - partitioning of sums of squares
 - random effects modelling for factor/grouping variable
- principles of measurement
- phases of analysis

$$y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \dots, R; i = 1, \dots, T$$

- R observations in each group
- groups are defined by a factor variable
 - groups could be treatments, conditions, ...
 - groups could be families, litters, classrooms, ...

assigned by the investigator

sampled by the investigator

- groups could be created by insisting that some measured covariate is treated as a factor
- the number of levels in the factor == number of groups
- in a completely randomized design, groups are created by random assignment of treatments to experimental units
- parameters α_i can be fixed or random depends on the application
- see FLM-1 13.1,2; FLM-2 14.1,2 for example with one continuous predictor and one two-level factor
- fruitflies (last week) on continuous predictor and one 5 level factor FLM-2 14.4; FLM-1 13.3

also HW1 03

Randomized block design

- two factor variables, treatment and block
- design: treatments assigned at random within blocks
- model:

$$\mathbf{y}_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \mathbf{i} = \mathbf{1}, \dots, \mathbf{T}; \mathbf{j} = \mathbf{1}, \dots \mathbf{R}$$

- parameters:
 - $\mu = \mathbb{E}(\mathbf{y}_{ij} \text{ if all } \alpha_i \equiv \mathbf{0}; \beta_j \equiv \mathbf{0};$
 - α_i is change in $\mathbb{E}(y)$ from μ due to treatment *i*
 - β_i is change in $\mathbb{E}(y)$ due to effect of block j
 - ϵ_{ij} unexplained variation
- analysis:

$$\begin{split} \sum_{ij} (y_{ij} - \bar{y}_{..})^2 &= \sum_{ij} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{.j} - \bar{y}_{..})^2 \\ &= \sum_{ij} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{.j} - \bar{y}_{..})^2 \end{split}$$

Applied Statistics I October 8 2020

• oatvar.Rmd

$$\begin{split} \sum_{ij} (y_{ij} - \bar{y}_{..})^2 &= \sum_{ij} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{.j} - \bar{y}_{..})^2 \\ &= \sum_{ij} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{.j} - \bar{y}_{..})^2 \end{split}$$

Table 9.5Analysis ofvariance table fortwo-way layout model.

Term	df	Sum of squares		
Treatments Blocks	T - 1 $B - 1$	$\frac{\sum_{t,b} (\overline{y}_{t.} - \overline{y}_{})^2}{\sum_{t,b} (\overline{y}_{.b} - \overline{y}_{})^2}$		
Residual	(T-1)(B-1)	$\sum_{t,b} (y_{tb} - \overline{y}_{t.} - \overline{y}_{.b} + \overline{y}_{})^2$		

Analysis of Variance Table

```
Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

variety 7 77524 11074.8 8.2839 1.804e-05 ***

block 4 33396 8348.9 6.2449 0.001008 **

Residuals 28 37433 1336.9
```

Residual standard error: 36.56 on 28 degrees of freedom

The interaction between blocks and treatments is used to estimate error. This is sometimes justified by assuming the block effects β_i are random.

Designed Experiments

- Completely randomized design:
 - · can be used with more than one factor variable of interest
 - · with two or more factors, often of interest to examine main effects and interactions
 - Example SM 9.6 and 8.10
- Randomized block design:
 - can also be used with two or more treatment factors
 - but sometimes it is hard to ensure the blocks are big enough to accommodate all combinations
 - leading to clever incomplete block designs FLM-2 17.2,3; FLM-1 16.2,3; SM 9.2.3 and p.432
 - A randomized block design with just two treatments in each block is a paired comparison paired t-test

Box and Cox, 1964). Survival times in 10-hour	Treatment	Poison 1		Poison 2		Poison 3	
inits of animals in a 3 × 4 actorial experiment with	А	0.31, 0.45,	0.46, 0.43	0.36, 0.29, 0	.40, 0.23	0.22, 0.21, 0	.18, 0.2
our replicates. The table	в	0.82, 1.10, 0.88, 0.72		0.92, 0.61, 0.49, 1.24		0.30, 0.37, 0.38, 0.2	
inderneath gives average	С	0.43, 0.45,	0.63, 0.76	0.44, 0.35, 0	.31, 0.40	0.23, 0.25, 0	24, 0.2
standard deviation) for he poison \times treatment combinations.	D	0.45, 0.71, 0.66, 0.62		0.56, 1.02, 0.71, 0.38		0.30, 0.36, 0.31, 0.3	
		Treatment	Poison 1	Poison 2	Poison 3	Average	
		А	0.41 (0.07)	0.32 (0.08)	0.21 (0.02)	0.31	
		в	0.88 (0.16)	0.82 (0.34)	0.34 (0.05)	0.68	
		С	0.57 (0.16)	0.38 (0.06)	0.24 (0.01)	0.39	
		D	0.61 (0.11)	0.67 (0.27)	0.33 (0.03)	0.53	
		Average	0.62	0.55	0.28	0.48	

Completely Randomized Design with 12 'treatments' poison (3 levels) x Treatment (4 levels), 4 observations for each combination

Randomization

- Why do we randomize assignment of treatments to units?
- · leads to approximate balance on potential confounding variables
- can't we adjust for confounding variables using regression?
- yes, if we know what they are
- can't adjust for unknown confounders
- depending on the sample size, there's a limit to how many variables can be included in the regression model
- randomization breaks the link from Unmeasured to T e.g. disease severity causal diagram

if we can

e.g. fruitflies (thorax length)

SM 9.1; FLM-2 17.0; FLM-1 16.0

"unknown unknowns"

Applied Statistics I October 8 2020

19

Blocking

- · comparison of treatments is more precise if the units are more homogeneous
- e.g. for agricultural trials, if properties of the soil are similar
- e.g. for clinical trials, if patients have similar levels of important measures, e.g. overall health
- putting experimental units into homogeneous (alike) subgroups before randomizing can give more precise estimates of treatment effects
- compare the two analysis of variance tables for one-way and two-way layouts
- 2-way has separate term for, e.g., blocks so residual SS is smaller
- "Block on what you can measure, randomize over what you can't measure"

SM 9.1

- randomization helps to eliminate systematic error
- "distortion in the conclusions arising from irrelevant sources that do not cancel out in the long run"
- treatment differences might be confounded by differences among patients, or by the time of day the treatment is applied, or by spatial differences among plots of land
- for example, units might be treated in space, or in time
- systematic error can arise by the entry of personal judgement into some aspect of the data collection process
- this can often be avoided by randomization and blinding

Randomization and blocking

Figure 9.1 Directed acyclic graphs showing consequences of randomization. An arrow from T to Y indicates dependence of Y on T, and so forth. In general both response Y and treatment T may depend on properties U of units (upper left). Randomization (lower left) makes treatments and units independent, so any observed dependence of Y on T cannot be ascribed to joint dependence on U. The upper right graph shows the general dependence of Y, T, and covariates X on U. Randomization makes T and U independent. conditional on X (lower right), so any influence of U on T is mediated through X, for which adjustment is possible in

Applied Statistics I

the control group. The response is to be the blood pressure of an individual measured a fixed time after the drug has first been administered. We calculate the average changes for the treated and control groups, \overline{y}_1 and \overline{y}_0 , observe that $\overline{y}_1 - \overline{y}_0$ is significantly less than zero, and declare that the drug plays an effect in reducing blood pressure. Is this beadline news? No!

22

Randomization and blocking

treatment allocation depends on measured covariate X, similar to blocking

effect of Unmeasured confounder mediated through X

Applied Statistics I October 8 2020