
Methods of Applied Statistics I
STA2101H F LEC9101

Week 8

October 29 2020



Today Start Recording

1. HW2 due November 5
2. Measures of risk
3. Modelling with binomial data (FELM §2.4–2.11)
4. Generalized linear models (FELM Ch. 6)
5. HW2 Questions

• November 2 3.00 – 4.00 Mine Çetinkaya-Rundel

• https://canssiontario.utoronto.ca/?mec-events=ares_cetinkaya-rundel_mine

• “The art and science of teaching data science”
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Friday Register

HALLOWEEN 
GGPLOT WORKSHOP! 

!
Want to learn how to make compelling 
data visualizations with the powerful 
and flexible ggplot2 package in R? 

Want an excuse to dress up for 
Halloween even if you're not leaving the 
house? 

If your answer to one or both of those 
questions is "YES!" come join us for a 
very spooooooky workshop.

Friday, Oct 30, 12:00–2:00 p.m. ET

Register here.
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Recap

• Regression for explanation FLM-2 Ch. 5
• observational data vs designed experiment; causality

• likelihood inference
• standardized maximum likelihood estimate (Wald test)
• likelihood ratio test

• modelling and inference for binary/binomial data
• saturated model and residual deviance
• interpretation of coefficients
• variable selection, residuals, diagnostics
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Measures of risk 1,2

• see posted handout on case-control studies
• consider for simplicity binomial responses with a single binary covariate:

logit(pi) ∼ β0 + β1zi, i = 1, . . . ,n

• no difference between groups ⇐⇒ odds-ratio ≡ 1
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... Measures of risk

• we might be interested in risk ratio p1
p0

instead of odds ratio p1(1− p0)
p0(1− p1)

• also called relative risk
• if p1 and p0 are both small, (y = 1 is rare), then

p1
p0

≈ p1(1− p0)
p0(1− p1)

• sometimes p1/p0 can be large but if p1 and p0 are both small the difference p1 − p0
might also be very small

• in order to estimate the risk difference we need to know the baseline risk p0
• bacon sandwiches www.youtube.com/watch?v=4szyEbU94ig
• risk calculator realrisk.wintoncentre.uk/p8
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Odds ratio 2.91; baseline risk 1/1000
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Biostats secret sauce

Whether we sample prospectively or retrospectively, the odds ratio is the same

Lung cancer
1 0

cases controls
smoke = 1 (yes) 688 650
smoke = 0 (no) 21 59

709 709

retro: OR =
(688/709)/(21/709)
(650/709)/(59/709) =

688× 59
650× 21 = 2.97

prosp: OR =
{688/(688+ 650)}/{650/(688+ 650)}

21/(21+ 59)/{59/(21+ 59)} =
688× 59
650× 21 = 2.97

see “case-control”, FELM §2.5,6, SM §10.4.2
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Link function FELM §2.7

glm(cbind(r, m-r) ~ age + weight, data = mydata,

family = binomial, link = logit )

?family

link

a specification for the model link function. This can be a name/expression,

a literal character string, a length-one character vector,

or an object of class ‘‘link-glm’’ ...

The gaussian family accepts the links (as names) identity, log and inverse;

the binomial family the links logit, probit, cauchit, (corresponding to logistic,

normal and Cauchy CDFs respectively) log and cloglog (complementary log-log)
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Tolerance distributions FELM §2.4; SM §10.4.1; 3

zi = xTi γ + εi, yi = I(zi > 0)

see also FELM Fig 2.3
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Linear separability FELM §2.8
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Prediction and prediction intervals FELM §2.10, 3, 4

p̂(x∗) = ilogit

ED50 and delta method
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Overdispersion ELM §2.11, SM 10.6

• Yi ∼ Bin(ni,pi) ⇒ E(Yi) = nipi, Var(Yi) = nipi(1− pi)
• variance is determined by the mean
• bmod <- glm(cbind(survive,total-survive) ~

location + period,

family = binomial,

data = troutegg)

summary(bmod)

Null deviance: 1021.469 on 19 degrees of freedom

## Residual deviance: 64.495 on 12 degrees of freedom

## AIC: 157.03

• quasi-binomial: E(Yi) = nipi, Var(Yi) = φnipi(1− pi)
• estimate φ? over-dispersion parameter

• usually use X2/(n− p), where

X2 =
! (yi − nip̂i)2

np̂i(1− p̂i)
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Quasibinomial

overdisp.Rmd; overdisp.html
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Generalized linear models: theory

•
f (yi;µi,φi) = exp{yiθi − b(θi)

φi
+ c(yi;φi)}

• E(yi | xi) = b′(θi) = µi defines µi as a function of θi

• g(µi) = xTi β = ηi links the n observations together via covariates

• g(·) is the link function; ηi is the linear predictor

• Var(yi | xi) = φib′′(θi) = φiV(µi)

• V(·) is the variance function
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Examples

• Normal
• Binomial
• Poisson
• Gamma/Exponential
• Inverse Gaussian
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Examples

• Normal: f (yi;µi,σ2) =
1√

(2π)σ exp{− 1
2σ2 (yi − µ2i )}

= exp{
yiµi − (1/2)µ2i

σ2
− (1/2) log σ2 − y2i /2σ

2 − (1/2) log
√
(2π)}

φi = σ2, θi = µi, b(µi) = µ2i /2σ
2 note b′′(µi) = 1

• Binomial: f (ri;pi) =
"
mi
ri

#
prii (1− pi)mi−ri ; yi = ri/mi

= exp[miyi log{pi/(1− pi)}+mi log(1− pi) + log

"
mi
miyi

#
]

φi = 1/mi, θi = log{pi/(1− pi)}, b(pi) = − log(1− pi)
Note pi = µi = E(yi)

• ELM (p.115) uses ai(φ) in place of φi, later (p.117) ai(φ) = φ/wi; later (p.118) wi used for weights in IRWLS
algorithm; SM uses φi, later (p. 483) φi = φai
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Inference

• ℓ(β; y) =
$

{ yiθi−b(θi)φi
+ c(yi,φi)}

• b′(θi) = µi; g(µi) = g(b′(θi)) = ηi = xT

i β

• ∂ℓ(β; y)
∂βj

=
! ∂ℓi

∂θi

∂θi
∂βj

=
! yi − b′(θi)

φi

∂θi
∂βj

• g′(b(θi))b′′(θi)
∂θi
∂βj

= xij = g′(µi)V(µi) See Slide 2

• ∂ℓ(β; y)
∂βj

=
! yi − µi

φig′(µi)V(µi)
xij =

! yi − µi
aig′(µi)V(µi)

xij
when φi = aiφ

• matrix notation:
∂ℓ(β)

∂β
= XTu(β), X =

∂η

∂βT
, u = (u1, . . . ,un)
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Scale parameter φi

• in most cases, either φi is known, or φi = φai,
where ai is known

• Normal distribution, φ = σ2

• Binomial distribution φi = m−1
i

• Gamma distribution, φ = 1/ν

• ∂ℓ(β; y)
∂βj

=
! yi − µi

φig′(µi)V(µi)
xij =

! yi − µi
aig′(µi)V(µi)

xij
when φi = aiφ

• if θi = g(µi) canonical link, then g′(µi) = 1/V(µi), and
! yixij

ai
=

! yiµ̂ixij
ai
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Solving maximum likelihood equation

• Newton-Raphson: ℓ′(β̂) = 0 ≈ ℓ′(β) + (β̂ − β)ℓ′′(β)

defines iterative scheme

• β̂(t+1) = β̂(t) − {ℓ′′(β̂(t))}−1ℓ′(β̂(t))

• Fisher scoring: −ℓ′′(β) ← E{−ℓ′′(β)} = i(β)
many books use I(β)

• β̂(t+1) = β̂(t) + {i(β̂(t))}−1ℓ′(β̂(t))

• applied to matrix version: XTu(β̂) = 0 .
= XTu(β) + (β̂ − β)XT

∂u(β)
∂βT

slide 5

• change to Fisher scoring: β̂ = β + i(β)−1XTu(β)
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... maximum likelihood equation

• β̂ = β + i(β)−1XTu(β)

∂2ℓ(β; y)
∂βj∂βk

=
! −b′′(θi)

φi

"
∂θi
∂βj

#"
∂θi
∂βk

#
+
! yi − b′(θi)

φi

∂2θi
∂βj∂βk

• E
!
−
∂2ℓ(β; y)
∂βj∂βk

"
=

# V(µi)
φi

xij
g′(µi)V(µi)

xik
g′(µi)V(µi)

=
# xijxik

φi{g′(µi)}2V(µi)
•

β̂ = β + (XTWX)−1XTu(β) = (XTWX)−1{XTWXβ + XTu(β)}
= (XTWX)−1{XTW(Xβ +W−1u(β)}
= (XTWX)−1XTWz

• does not involve φi

• iteratively re-weighted least squares W, z both depend on β

• derived response z = Xβ +W−1u linearized version of y
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