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In the News

HW2 revised due date November 5 Syllabus update 3
Explanation FLM-2 §5.4-5.7

Theory of logistic regression

Examples of logistic regression

Introduction to tidyverse

O e

+ October 26 3.00 - 4.00 Kristian Lum
* https://canssiontario.utoronto.ca/?mec-events=ares lum kristian

“Fairness, Accountability, and Transparency:

(Counter)-Examples from Predictive Models

in Criminal Justice”

Assistant Professor, CIS, U Penn

Previously, Lead Statistician at the Human Rights
AppliDatatsnalysis Group {HRDAG)


https://canssiontario.utoronto.ca/?mec-events=ares_lum_kristian

Preliminary Analysis: data auditing, data screening, data cleaning, preliminary
summaries (tables, plots) CD Ch.s
- Explanation after linear regression FLM-2 Ch.5

Analysis of binomial data - Challenger shuttle

Logistic regression model p; = exp(x!3)/{1+ exp(x 3)}

Fitting the model with glm

Maximum likelihood estimation under the hood

Covid misinformation paper “
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?Logistic regression: what if it is unbalanced?

« model for logistic regression y; ~ Bin(n;,p;), i=1,...,n

« E(y;) = nip;, Var(y;) = nipi(1 — p;)
« lack of balance: e.g. n, =10, n, = 1000

- estimates p, = y,/n,, P, = y»/ny; also var(p;) = p;(1 — p;)/n;
- if for example p, = p, = 0.5,
var(p,) = 0.025, var(p,) = 0.00025

s.e.(p;) = 0.158, s.e.(p,) = 0.0158

precise information about some groups of individuals, and less precise
information about others

suggests that estimates for those covariates may have large standard errors,
simply due to sample size issues
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Explanation FLM-2 Ch. 5

 Note: Chapter uploaded to Quercus page, under "Modules”
- §5.1-3: interpretation of coefficients, causal effects, designed experiments
* §5.4 observational data
- difficult to infer causality from observational data
* treatment not assigned at random
- treated group could differ from untreated group in many different ways
+ in the voting example “voting system” is the “treatment” NH primary 2008
« it appears to influence the outcome (proportion voting for Obama)
+ but Faraway uncovered a potential confounder: outcome of 2004 primary (Dean)
§5.5. matching
« create blocks (pairs) and “assign treatment/control” to each unit in the pair
thought experiment
« Faraway uses an algorithm to create pairs of wards that are similar - except that 1 ward
was ‘treated’, the other was ‘control’
« this is called propensity score matching in causal inference
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... Explanation FLM-2 Ch. 5

On p. 70, just before exercises, Faraway mentions a “natural experiment”

STUDIES SHOW

How an Ill-Fated Fishing Voyage Helped
Us Understand Covid-19

NY Times October 20



https://www.nytimes.com/2020/10/20/magazine/covid-natural-experiments.html?referringSource=articleShare

Explanation FLM-2 Ch. 5

- with observational data, we usually adjust for confounders in a regression model
+ but we can never be completely sure there isn't an unmeasured confounder
+ so itis nearly impossible to conclude causality from an observational study
+ so how do we know that smoking causes lung cancer?
+ §5.7 “Bradford-Hill criteria”
- strength of the observed association
« consistency of the observed association
- specificity of the potential cause
« the potential cause occurs earlier in time than the outcome
there is a dose-response relationship

there is subject-matter theory that makes a causal effect plausible
« there is corroborating evidence from other types of studies (e.g. animal studies)
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In thre-News Twitter thanks to Elisa Du

Four cardinal rules of statistics

+ ONE: Correlation does not imply causation.
Unless you can design your study to uncover causation, the
best you can do is discover correlations

« TWO: A p-value is just a test of sample size. I don't agree!
In other words, we can have STATISTICAL significance w/o PRAC-
TICAL significance.... In many contemporary settings, sample
sizes are so huge that we can get TINY p-values even when the
deviation from the null hypothesis is negligible. I do agree

« THREE: Seek and ye shall find.

If you look at your data for long enough, you will find some-
thing interesting, even if only by chance!
Applied Statistics |~ October 22 2020 7


https://threadreaderapp.com/thread/1312180955801505794.html

Regression modelling with binomial

* model:
yi ~ Bin(n;, p;)

- regression: link the p;'s through x;

- for example,
_&xp(fo +Xifr + - + Xigfg)
1+ eXp(,Bo + Xi1 B+ - +Xiq/6q))

i

« more concisely
__exp(x;'B)
1+ exp(X' )

. X;F:('],X,'-I,...,X,‘q); 6:(50)517"')BQ)T

1

all vectors are column vectors
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Binary or binomial responses

- many examples where we would like to analyse a binary response y; = 0/1

- example from last week: covid misinformation
To investigate the effects of susceptibility to misinformation about COVID-19 on
people’s willingness to (i) get vaccinated against COVID-19 (yes/no), and (ii) rec-
ommend getting vaccinated to vulnerable friends or family members (yes/no),
we conducted two logistic regressions

+ example 2: O-rjng damaged/not damaged

-
2 s

wwwwwwwwwwww

: . - - NB zeroes E SRR
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10.4 - Proportion Data

Table 10.8 Data on

nodal involvement

(rows, 1950, m r age stage grade xray acid

6 5 0 1 1 1 1

6 1 0 0 0 0 1

4 0 1 1 1 0 0

4 2 1 1 0 0 1

4 0 0 0 0 0 0

32 0 1 1 0 1

3001 1 1 0 0 0

30 1 0 0 0 1

. 30 1 0 0 0 0

Can we predict nodal 2 O @40 L Lo

involvment from other 2 1 0 1 0 0 1

2 1 0 0 1 0 0

measurements? Lo 1 1 1 1

[ O 1 0 1 1

[ 0 1 1 1

1 3 1 0 0 1 1

1o 1 0 1 0 0

11 0 1 1 1 0

1 0o o0 1 1 0 0
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... Binary responses

* suppose y; is binary takes values o, 1 only
- and there are several covariates x; associated with ith observation
+ ?what’s wrong with

Vi=XB+e€
« what's the probability distribution of y;? Bernoulli
« the only parameter in the distirbution is p; = Pr(y; = 1) 1—p;=?
* suppose y,...,Y, are independent Bernoulli V1, Yn) =y

« joint distribution

pr, _ (1 Vi)
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... Binary responses

« joint distribution
pr’ — (1 yl

« log-likelihood function

n

(p;y) = {yilog(pi) + (1 - yi)log(1— pi)} = > _{yilog{pi/(1— p;)} + log(1 — p;)}

i=1 i=1
* logistic regression log{p;/(1— p;)} = X'
+ log-likelihood function

UBiy) =D _lyixi B — log{1 + exp(x]'3)}]

i=1
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... Binary responses

- where’s the epsilon?  There isn't one
« what's the model? It has two parts
* Regression. (x25)
exp(x’
E(y;) = pi = W
+ Probability distribution.
y; ~ Bernoulli(p;)
« What are these parts in linear regression?
* Regression
E(yi) = ni=x'B
« Probability distribution
yi ~ Normal(p;, 0?)
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Binomial responses

- if you add a lot of Bernoulli’'s together, all with the same p;, you get
+ how could they have the same p; in our model?

* p; = function(x;"3)

- different observations with the same p; are called covariate classes

+ Example 1018 in SM - Table 10.8 has 23 rows of binomials
sample sizes vary from 1to 6

+ data(nodal) in library(SMPracticals) has 53 rows of binary observations

* R expects cbind(r, m-r) in glm with binomial data, but if all observations are
binary you can get away with r only

+ see ?family (check Details)
- you can also specify proportions y;/n;, but then you need to use weights
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Review: Likelihood inference

- model: y; ~ f(y;; 0),i=1,...,n independent

joint density: f(y; 0) = [T f(vi; 6)
+ likelihood function L(6;y) = f(y; 6)

+ log-likelihood function £(6;y) = log L(6;y) = >_i_, log f(Vi; 0)
- maximum likelihood estimate § = argsup £(6; y) @) =o
« Fisher information j(0) = —¢"(0)

. properties:
(0—0)"2() = N(o, 1)
asymptotically normal
« likelihood ratio statistic
w(6) = 2{(0) — €0)} > X

. - p is dimension of 6
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... Likelihood inference

* properties:
(0 - 0)i"*(9) % N(o,1)

asymptotically normal

B ~ N({6k»j " (B) e}
vcov (logitmodel)

« likelihood ratio statistic
w(9) = 2{0(0) — €(8)} % 2

p is dimension of 6

+ compare two models using change in likelihood ratio statistic
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... Likelihood inference

log-likelihood function

o -
T 1.92 (W
g should be w/2
g .
S :
T ) T
8 o] : 6+6
v : :
I : 1
. .
! fal
T T T
20 21 22
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Comparing two models FLM §2.3

- fit model A get estimate 6,
- fit model B get estimate 0 Model B smaller than A
- likelihood ratio test
LRT = 2{(a(64) — ¢5(Ps)}
« compares the maximized log-likelihood function under model A and model B

« example
model A: logit(p;) = Bo + BaXqi + BaXai,  0a = (Bo, b1, B2)
model B: logit(p;) = Bo + BiX:i, 08 = (Bo, 1)

< when model B is nested in model A, LRT is approximately x2 distributed
v = dim(A) — dim(B)

Applied Statistics |~ October 22 2020 18



... Challenger data

> head(shuttle2)
m r temperature pressure

160 66 50
261 70 50
360 69 50
460 68 50
56 0 67 50
6 60 72 50
> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)
> summary (logitmodcorrect2)

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 2.520195 3.486784 0.723  0.4698 By ~ N(0,0.0442)
temperature -0.098297 0.044890 -2.190 0.0285 * 32 ~ N(O,O.0082)
pressure 0.008484 0.007677 1.105 0.2691
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hallenger data

+ Model A: logit(p;) = Bo + Bitemp; + [rpressure;

Model B: logit(p;) = Bo + SBitemp;
- nested: Model B is obtained by setting 3, = 0

« the change in deviance is a likelihood ratio test

> anova(logitmodcorrect,logitmodcorrect2)
Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature
Model 2: cbind(r, m - r) ~ temperature + pressure
Resid. Df Resid. Dev Df Deviance
1 21 18.086
2 20 16.546 1 1.5407
Applied Statistics | October 22 2020 > 1 - pchisq(1.5407, df = 1). 0.214 20



... inference

+ Model A: logit(p;) = o + Bitemp; + frpressure;

Model B: logit(p;) = 8o + SBitemp;
 nested: Model B is obtained by setting 5, = 0

« Under Model B, the change in deviance is (approximately) an observation from a x2
« Pr(x? > 1.5407) = 0.22
this is a p-value for testing H, : 3, = 0

N

b
s.e.(5.)

*s0is1— } =1—®(1.105) = 0.27

ELM p.30
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... Challenger data

> summary (logitmodcorrect)

Call:
glm(formula = cbind(r, m - r)
data = shuttle2)

temperature, family = binomial,

Deviance Residuals:

Min 1Q Median 3Q Max
-0.95227 -0.78299 -0.54117 -0.04379 2.65152
Coefficients:

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24.230 on 22 degrees of freedom

Residual deviance: 18.086 on 21 degrees of freedom <
AIC: 35.647
Applied Statistics |~ October 22 2020 22
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Special to the binomial: residual deviance and Poisson

« the logistic regression model p; = pi(8) = exp(x"3) /{1 + exp(X{'3)}, pi= pi(B)
- is nested in the saturated model p; = y;/n;

- the saturated model has one estimate of p; for each row of the data
« residual deviance compares the regression model to the saturated model

+ under the fitted model, approximately distributed as x7_,
if each n; “large” ELM p.29
« this is LRT of the regression model compared to the saturated model

> summary(logitmodcorrect)

Null deviance: 24.230 on 22 degrees of freedom
Residual deviance: 18.086 on 21 degrees of freedom
AIC: 35.647

. o Number of Fisher Scoring iterations: 5
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Residual deviance FELM p.29

- Residual Deviance is log-likelihood ratio statistic for the fitted model

compared to the saturated model
« saturated model is maximized at p; = y;/n;

(p) = > {yilog(yi/ni) + (nj — i) log(1 — yi/ni)}

- fitted model maximized afﬁ;
B) = i{yi log pi(3) + (n — vi) log(1 — pi(53))}
- twice the difference: h
2 Zn:[yi log{yi/nipi(B)} + (n; — yi) log{(ni — y;)/(n; — nipi(5))}]

i=1

) o FELM Eq.(21): §; = n;p;(B)
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Logistic regression FELM Ch.2

- If data is distributed as Binomial

« and each n; is “large” >5
+ Residual deviance is a test of goodness of fit of the model

A happy quirk of logistic regression

« interpretation of parameters in terms of log odds §2.5

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) 5.08498 3.05247 1.666 0.0957 .
temperature -0.11560 0.04702 -2.458 0.0140 =*

“a unit increase in temperature is associated with a decrease in log-odds of O-ring
failure of 0.116”
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Logistic regression FELM Ch.2

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.08498 3.05247 1.666 0.0957 .
temperature -0.11560 0.04702 -2.458 0.0140 =

“a unit increase in temperature is associated with an increase in log-odds of O-ring
damage of —0.116"

“an increase in the odds of exp(—0.116) = 0.89” so actually a decrease
“an increase in the probability of ?? depends on the baseline probability

g0 t0 rs0s.201199.pdf
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Example:

aggregated data presented in textbook

10.4 - Proportion Data 491

Table 10.8 Data on

nodal involvement

(Brows, 1950, m r age stage grade xray acid
6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
31 1 1 0 0 0
3.0 1 0 0 0 1
3.0 1 0 0 0 0
2 0 1 0 0 1 0
2 1 0 1 0 0 1
2. 1 0 0 1 0 0
1 1 1 1 1 1 1
1 1 1 1 0 1 1
1 1 1 0 1 1 1
1 1 1 0 0 1 1

a - 10 1 0 1 0 0
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... example 1018

library(SMPracticals); data(nodal); head(nodal) all covariates 0/1
several patients have the same value of the covariates covariate classes: ELM
these can be added up to make a binomial observation

> nodal2([1:4,]
m r age stage grade xray acid

165 [ 1 1 1 1

261 [ o o 0 1

340 1 1 1 0 0

442 a 1 0 0 i

> ex1018binom = glm(cbind(r,m-r) ~ ., data = nodal2, family = binomial)
> summary(ex1018binom) # stuff omitted

Coefficients:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -3.0794 0.9868 -3.121 0.00180 **
age -0.2917 0.7540 -0.387 0.69881
stage 1.3729 0.7838 1.752 0.07986 .
grade 0.8720 0.8156 1.069 0.28500
xray 1.8008 0.8104 2.222 0.02628 *
acid 1.6839 0.7915  2.128 0.03337 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.710 on 22 degrees of freedom
Residual deviance: 18.069 on 17 degrees of freedom

. AIC: 41.693
Applied Statistics | October 22 2020 28
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... example 10.18 variable selection

> step(ex1018binom)

Coefficients:
(Intercept) stage xray acid
-3.052 1.645 1.912 1.638

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual
Null Deviance: 40.71

Residual Deviance: 19.64 AIC: 39.26

- we can drop age and grade without affecting quality of the fit

- in other words the model can be simplified by setting two regression coefficients to zero

- several mistakes in text on pp. 491,2;

- deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version
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... example 10.18: variable selection

- step implements stepwise regression
- evaluates each fit using AIC = —2£(j;y) + 2p
- penalizes models with larger number of parameters

- we can also compare fits by comparing deviances

> update(ex1018binom, . ~ . - aged - stage)

Call: glm(formula = cbind(r, m - r) ~ grade + xray + acid, family = binomial,
data = nodal2)

Coefficients:
(Intercept) grade xray acid
-2.734 1.420 1.750 1.797

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual
Null Deviance: 40.71
Residual Deviance: 21.28 AIC: 40.9

> deviance (ex1018binom)

[1] 18.06869

> pchisq(21.28-18.07,df=2, lower=F)
[1] 0.2008896
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« as terms are added to the model, deviance always decreases

- because log-likelihood function always increases
- similar to residual sum of squares

- Akaike Information Criterion penalizes models with more parameters

AIC = 2{—((B;y) + p}
SM (4.57)
- comparison of two model fits by difference in AIC
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... example 1018

> summary (ex1018binom)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351

Deviance residuals
0
L
°
o
Deviance residuals
0
L
°
o

linear predictor fitted values
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Deviance residuals glm.diag; library(SMPracticals)

> summary (ex1018binom)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351

Deviance: 237, [v; log{yi/nipi(B)} + (n; — vi) log{(n; — vi)/(n; — nip:(3))}]
approximately x7_

roi = +/(2[yilog{yi/nipi} + (n; — i) log{(n; — y;)/(n; — nipi)}1)
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... example 10.8: residuals

> summary (ex1018binom)

Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.4989 -0.7726 -0.1265 0.7997 1.4351

™ o o -
o o
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3 2 1 0 1 2 0.0 0.2 0.4 0.6 0.8
linear predictor fitted values
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