

Today

- 1. In the News
- 2. HW2 revised due date November 5
- 3. Explanation FLM-2 §5.4-5.7
- 4. Theory of logistic regression
- 5. Examples of logistic regression
- 6. Introduction to tidyverse
 - October 26 3.00 4.00 Kristian Lum
 - https://canssiontario.utoronto.ca/?mec-events=ares lum kristian

 "Fairness, Accountability, and Transparency: (Counter)-Examples from Predictive Models in Criminal Justice" Assistant Professor, CIS, U Penn Previously, Lead Statistician at the Human Rights
 AppliData Analysis Group (HRDAG)

Syllabus update 3

- Preliminary Analysis: data auditing, data screening, data cleaning, preliminary summaries (tables, plots) CD Ch.5
- Explanation after linear regression
- Analysis of binomial data Challenger shuttle
- Logistic regression model $p_i = \exp(x_i^T \beta) / \{1 + \exp(x_i^T \beta)\}$
- Fitting the model with glm
- Maximum likelihood estimation
- Covid misinformation paper

under the hood

FLM-2 Ch.5

?Logistic regression: what if it is unbalanced?

- model for logistic regression $y_i \sim Bin(n_i, p_i), \quad i = 1, \dots, n$
- $\mathbb{E}(y_i) = n_i p_i$, $\operatorname{Var}(y_i) = n_i p_i (1 p_i)$
- lack of balance: e.g. $n_1 = 10, n_2 = 1000$
- estimates $\hat{p}_1 = y_1/n_1$, $\hat{p}_2 = y_2/n_2$; also $\operatorname{var}(\hat{p}_i) = p_i(1-p_i)/n_i$
- if for example $p_1 = p_2 = 0.5$,

 $var(\hat{p}_1) = 0.025$, $var(\hat{p}_2) = 0.00025$

s.e. $(\hat{p}_1) = 0.158$, s.e. $(\hat{p}_2) = 0.0158$

- precise information about some groups of individuals, and less precise information about others
- suggests that estimates for those covariates may have large standard errors, simply due to sample size issues

Explanation

- Note: Chapter uploaded to Quercus page, under "Modules"
- §5.1-3: interpretation of coefficients, causal effects, designed experiments
- §5.4 observational data
 - · difficult to infer causality from observational data
 - treatment not assigned at random
 - · treated group could differ from untreated group in many different ways
 - in the voting example "voting system" is the "treatment"

NH primary 2008

FLM-2 Ch. 5

- it appears to influence the outcome (proportion voting for Obama)
- but Faraway uncovered a potential confounder: outcome of 2004 primary (Dean)
- §5.5. matching
 - create blocks (pairs) and "assign treatment/control" to each unit in the pair

thought experiment

- Faraway uses an algorithm to create pairs of wards that are similar except that 1 ward was 'treated', the other was 'control'
- this is called propensity score matching in causal inference

FLM-2 Ch. 5

On p. 70, just before exercises, Faraway mentions a "natural experiment"

STUDIES SHOW

How an Ill-Fated Fishing Voyage Helped Us Understand Covid-19

NY Times October 20

Explanation

- with observational data, we usually adjust for confounders in a regression model
- but we can never be completely sure there isn't an unmeasured confounder
- so it is nearly impossible to conclude causality from an observational study
- so how do we know that smoking causes lung cancer?
- §5.7 "Bradford-Hill criteria"
 - strength of the observed association
 - consistency of the observed association
 - specificity of the potential cause
 - the potential cause occurs earlier in time than the outcome
 - there is a dose-response relationship
 - there is subject-matter theory that makes a causal effect plausible
 - there is corroborating evidence from other types of studies (e.g. animal studies)

FLM-2 Ch. 5

In the News Twitter

Four cardinal rules of statistics

• ONE: Correlation does not imply causation.

Unless you can design your study to uncover causation, the best you can do is discover correlations

- TWO: A p-value is just a test of sample size. I don't agree! In other words, we can have STATISTICAL significance w/o PRAC-TICAL significance.... In many contemporary settings, sample sizes are so huge that we can get TINY p-values even when the deviation from the null hypothesis is negligible. I do agree
- THREE: Seek and ye shall find.

If you look at your data for long enough, you will find something interesting, even if only by chance!

Regression modelling with binomial

• model:

 $y_i \sim Bin(n_i, p_i)$

 $n_i = 6, i = 1, \ldots, n$

- regression: link the *p_i*'s through *x_i*
- for example,

$$p_i = \frac{\exp(\beta_0 + x_{i1}\beta_1 + \dots + x_{iq}\beta_q)}{1 + \exp(\beta_0 + x_{i1}\beta_1 + \dots + x_{iq}\beta_q))}$$

more concisely

$$p_i = \frac{\exp(\mathbf{x}_i^{\mathrm{T}}\beta)}{1 + \exp(\mathbf{x}_i^{\mathrm{T}}\beta)}$$

•
$$X_i^{\mathrm{T}} = (1, X_{i1}, \dots, X_{iq}); \quad \beta = (\beta_0, \beta_1, \dots, \beta_q)^{\mathrm{T}}$$

all vectors are column vectors

Binary or binomial responses

- many examples where we would like to analyse a binary response $y_i = O/1$
- example from last week: covid misinformation

To investigate the effects of susceptibility to misinformation about COVID-19 on people's willingness to (i) get vaccinated against COVID-19 (yes/no), and (ii) recommend getting vaccinated to vulnerable friends or family members (yes/no), we conducted two logistic regressions

• example 2: O<u>-ri</u>ng damaged/not damaged

SM Example 10.18

10.4 · Proportion Data

T 11 100 D .							
nodal involvement (Brown, 1980).	m	r	age	stage	grade	xray	acid
	6	5	0	1	1	1	1
	6	1	0	0	0	0	1
	4	0	1	1	1	0	0
	4	2	1	1	0	0	1
	4	0	0	0	0	0	0
	3	2	0	1	1	0	1
	3	1	1	1	0	0	0
	3	0	1	0	0	0	1
	3	0	1	0	0	0	0
Can we predict nodal	2	0	1	0	0	1	0
involvment from other	2	1	0	1	0	0	1
	2	1	0	0	1	0	0
measurements?	1	1	1	1	1	1	1
	1	1	1	1	0	1	1
	1	1	1	0	1	1	1
	1	1	1	0	0	1	1
	1	0	1	0	1	0	0
	1	1	0	1	1	1	0
	1	0	0	1	1	0	0
Applied Statistics I October 22 2020	1	1	0	1	0	1	0
	1	1	0	0	1	0	1

491

... Binary responses

.

- suppose y_i is binary
- and there are several covariates x_i associated with *i*th observation
- ?what's wrong with

what's the probability distribution of
$$y_i$$
?

- the only parameter in the distirbution is $p_i = Pr(y_i = 1)$
- suppose y_1, \ldots, y_n are independent Bernoulli
- joint distribution

$$f(\underline{y}) = \prod_{i=1}^{n} p_i^{y_i} (1-p_i)^{(1-y_i)}$$

 $\mathbf{y}_i = \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\beta} + \boldsymbol{\epsilon}_i$

takes values 0, 1 only

Bernoulli

 $1 - p_i = ?$

 $(y_1,\ldots,y_n)=\underline{y}$

joint distribution

$$f(\underline{y}) = \prod_{i=1}^{n} p_i^{y_i} (1-p_i)^{(1-y_i)}$$

log-likelihood function

$$\ell(p; y) = \sum_{i=1}^{n} \{y_i \log(p_i) + (1 - y_i) \log(1 - p_i)\} = \sum_{i=1}^{n} \{y_i \log\{p_i/(1 - p_i)\} + \log(1 - p_i)\}$$

- logistic regression $\log\{p_i/(1-p_i)\} = x_i^{T}\beta$
- log-likelihood function

$$\ell(\beta; \mathbf{y}) = \sum_{i=1}^{n} [y_i \mathbf{x}_i^{\mathrm{T}} \beta - \log\{1 + \exp(\mathbf{x}_i^{\mathrm{T}} \beta)\}]$$

... Binary responses

- where's the epsilon? There isn't one
- what's the model? It has two parts
- Regression.

$$\mathbb{E}(\mathbf{y}_i) = \mathbf{p}_i = \frac{\exp(\mathbf{x}_i^{\mathrm{T}}\beta)}{1 + \exp(\mathbf{x}_i^{\mathrm{T}}\beta)}$$

• Probability distribution.

 $y_i \sim Bernoulli(p_i)$

- What are these parts in linear regression?
- Regression

$$\mathbb{E}(\mathbf{y}_i) = \mu_i = \mathbf{x}_i^{\mathrm{T}} \beta$$

• Probability distribution

$$\mathbf{y}_{\mathbf{i}} \sim \mathsf{Normal}(\mu_{\mathbf{i}}, \sigma^{\mathbf{2}})$$

Binomial responses

- if you add a lot of Bernoulli's together, all with the same p_i , you get
- how could they have the same p_i in our model?
- $p_i = function(x_i^{T}\beta)$
- different observations with the same *p_i* are called covariate classes
- Example 10.18 in SM Table 10.8 has 23 rows of binomials sample sizes vary from 1 to 6
- data(nodal) in library(SMPracticals) has 53 rows of binary observations
- R expects cbind(r, m-r) in glm with binomial data, but if all observations are binary you can get away with r only
- see ?family (check Details)
- you can also specify proportions y_i/n_i , but then you need to use weights

Review: Likelihood inference

- model: $y_i \sim f(y_i; \theta), i = 1, \ldots, n$
- joint density: $f(\underline{y}; \theta) = \prod_{i=1}^{n} f(y_i; \theta)$
- likelihood function $L(\theta; \underline{y}) = f(\underline{y}; \theta)$
- log-likelihood function $\ell(\theta; \underline{y}) = \log L(\theta; \underline{y}) = \sum_{i=1}^{n} \log f(y_i; \theta)$
- maximum likelihood estimate $\hat{\theta} = \arg \sup \ell(\theta; y)$
- Fisher information $j(\theta) = -\ell''(\theta)$
- properties:

$$(\hat{\theta} - \theta) j^{1/2}(\hat{\theta}) \stackrel{d}{\rightarrow} N(\mathsf{O}, I)$$

asymptotically normal

likelihood ratio statistic

$$\mathsf{W}(\theta) = \mathbf{2}\{\ell(\hat{\theta}) - \ell(\theta)\} \stackrel{d}{\to} \chi_p^2$$

p is dimension of θ

Applied Statistics I October 22 2020

independent

 $\ell'(\hat{\theta}) = 0$

• properties:

.

$$(\hat{\theta} - \theta) j^{1/2}(\hat{\theta}) \stackrel{d}{\rightarrow} N(\mathsf{O}, I)$$

asymptotically normal

 $\hat{\theta}_k \sim N(\{\theta_k, j^{-1}(\hat{\theta})_{kk}\})$

vcov(logitmodel)

likelihood ratio statistic

$$\mathsf{W}(\theta) = \mathbf{2}\{\ell(\hat{\theta}) - \ell(\theta)\} \stackrel{d}{\to} \chi_p^2$$

p is dimension of θ

• compare two models using change in likelihood ratio statistic

... Likelihood inference

should be w/2

Comparing two models

- fit model A get estimate $\hat{\theta}_{A}$
- fit model B get estimate $\hat{\theta}_B$
- likelihood ratio test

$$LRT = 2\{\ell_A(\hat{ heta}_A) - \ell_B(\hat{ heta}_B)\}$$

- compares the maximized log-likelihood function under model A and model B
- example

model A: $logit(p_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}, \quad \theta_A = (\beta_0, \beta_1, \beta_2)$ model B: $logit(p_i) = \beta_0 + \beta_1 x_{1i}, \quad \theta_B = (\beta_0, \beta_1)$

• when model B is nested in model A, LRT is approximately χ^2_{ν} distributed $\nu = dim(A) - dim(B)$

Model B smaller than A

> head(shut	tle2)							
m r temper	ature pres	sure						
1 6 0	66	50						
261	70	50						
360	69	50						
4 6 0	68	50						
560	67	50						
660	72	50						
> logitmodco	orrect2 <-	glm(cbind(r	,m-r) ~	temperatu	re + pressure,	family =	binomial,	data = shuttle2)
> summary(10	ogitmodcorr	rect2)						
Coefficients	3:							
	Estimate	Std. Error	z value	Pr(z)				
(Intercept)	2.520195	3.486784	0.723	0.4698			$\hat{eta}_1 \stackrel{.}{\sim} I$	V(0,0.044 ²)
temperature	-0.098297	0.044890	-2.190	0.0285	*		$\hat{eta}_2 \stackrel{.}{\sim} N$	$I(0, 0.008^2)$
pressure	0.008484	0.007677	1.105	0.2691				

... Challenger data

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$
- nested: Model B is obtained by setting $\beta_2 = 0$
- the change in deviance is a likelihood ratio test

```
> anova(logitmodcorrect,logitmodcorrect2)
Analysis of Deviance Table
Model 1: cbind(r, m - r) ~ temperature
Model 2: cbind(r, m - r) ~ temperature + pressure
Resid. Df Resid. Dev Df Deviance
1 21 18.086
2 20 16.546 1 1.5407
Applied Statistics October 22 2020 > 1 - pchisg(1.5407, df = 1). 0.214
```

... inference

- Model A: $logit(p_i) = \beta_0 + \beta_1 temp_i + \beta_2 pressure_i$
- Model B: $logit(p_i) = \beta_0 + \beta_1 temp_i$
- nested: Model B is obtained by setting $\beta_2 = 0$
- Under Model B, the change in deviance is (approximately) an observation from a χ_1^2
- $Pr(\chi_1^2 \ge 1.5407) = 0.22$ this is a *p*-value for testing $H_0: \beta_2 = 0$

• so is
$$1 - \Phi\{\frac{\hat{\beta}_2}{\widehat{s.e.}(\hat{\beta}_2)}\} = 1 - \Phi(1.105) = 0.27$$

ELM p.30

> summary(logitmodcorrect)

```
Deviance Residuals:

Min 1Q Median 3Q Max

-0.95227 -0.78299 -0.54117 -0.04379 2.65152
```

```
Coefficients:
```

... (Dispersion parameter for binomial family taken to be 1)

Null deviance: 24.230 on 22 degrees of freedom Residual deviance: 18.086 on 21 degrees of freedom AIC: 35.647

```
Applied Statistics I October 22 2020
```

```
Number of Fisher Scoring iterations: 5
```

Special to the binomial: residual deviance

- the logistic regression model $p_i = p_i(\beta) = \exp(x_i^T \beta) / \{1 + \exp(x_i^T \beta)\}, \quad \hat{p}_i = p_i(\hat{\beta})$
- is nested in the saturated model $\tilde{p}_i = y_i/n_i$
- the saturated model has one estimate of p_i for each row of the data
- · residual deviance compares the regression model to the saturated model
- under the fitted model, approximately distributed as χ^2_{n-q} if each n_i "large"

ELM p.29

• this is LRT of the regression model compared to the saturated model

```
> summary(logitmodcorrect)
```

```
...
Null deviance: 24.230 on 22 degrees of freedom
Residual deviance: 18.086 on 21 degrees of freedom
AIC: 35.647
Number of Fisher Scoring iterations: 5
October 22.2020
```

Residual deviance

- Residual Deviance is log-likelihood ratio statistic for the fitted model compared to the saturated model
- saturated model is maximized at $\tilde{p}_i = y_i/n_i$

$$\ell(\tilde{p}) = \sum_{i=1}^{n} \{y_i \log(y_i/n_i) + (n_i - y_i) \log(1 - y_i/n_i)\}$$

- fitted model maximized at $\hat{\beta}$

$$\ell(\hat{\beta}) = \sum_{i=1}^{n} \{y_i \log p_i(\hat{\beta}) + (n_i - y_i) \log(1 - p_i(\hat{\beta}))\}$$

twice the difference:

$$2\sum_{i=1}^{n} [y_i \log\{y_i/n_i p_i(\hat{\beta})\} + (n_i - y_i) \log\{(n_i - y_i)/(n_i - n_i p_i(\hat{\beta}))\}]$$

FELM Eq.(2.1):
$$\hat{y}_i = n_i p_i(\hat{eta})$$

Logistic regression

FELM Ch.2

> 5

- If data is distributed as **Binomial**
- and each n_i is "large"
- Residual deviance is a test of goodness of fit of the model
- A happy quirk of logistic regression
- interpretation of parameters in terms of log odds

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 5.08498 3.05247 1.666 0.0957 . temperature -0.11560 0.04702 -2.458 0.0140 *

"a unit increase in temperature is associated with a decrease in log-odds of O-ring failure of 0.116"

Coefficients:

Estimate Std. Error z value Pr(>|z|) (Intercept) 5.08498 3.05247 1.666 0.0957 . temperature -0.11560 0.04702 -2.458 0.0140 *

"a unit increase in temperature is associated with an increase in log-odds of O-ring damage of -0.116"

"an increase in the odds of exp(-0.116) = 0.89"

so actually a decrease

" an increase in the probability of ??

depends on the baseline probability

go to rsos.201199.pdf

aggregated data presented in textbook

10.4 · Proportion Data

Table 10.8 D nodal involven (Brown, 1980)	Pata on nent	m	r	age	stage	grade	xray	acid
		6	5	0	1	1	1	1
		6	1	0	0	0	0	1
		4	0	1	1	1	0	0
		4	2	1	1	0	0	1
		4	0	0	0	0	0	0
		3	2	0	1	1	0	1
		3	1	1	1	0	0	0
		3	0	1	0	0	0	1
		3	0	1	0	0	0	0
		2	0	1	0	0	1	0
		2	1	0	1	0	0	1
		2	1	0	0	1	0	0
		1	1	1	1	1	1	1
		1	1	1	1	0	1	1
		1	1	1	0	1	1	1
		1	1	1	0	0	1	1
		1	0	1	0	1	0	0
oplied Statistics I	October 22 2020	1	1	0	1	1	1	0
		1	0	0	1	1	0	0

491

... example 10.18

- library(SMPracticals); data(nodal); head(nodal) all covariates O/1
- several patients have the same value of the covariates

covariate classes: ELM

- these can be added up to make a binomial observation
- > nodal2[1:4.] m r age stage grade xrav acid 165 0 1 261 0 0 0 0 1 340 1 1 1 0 0 442 1 1 0 0 -1 • > ex1018binom = glm(cbind(r,m-r) ~ ., data = nodal2, family = binomial) > summary(ex1018binom) # stuff omitted Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.0794 0.9868 -3.121 0.00180 ** -0.2917age 0.7540 -0.387 0.69881 1.3729 stage 0.7838 1.752 0.07986 . grade 0.8720 0.8156 1.069 0.28500 1.8008 xrav 0 8104 2 222 0 02628 * 1.6839 0.7915 2.128 0.03337 * acid
 - (Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.710 on 22 degrees of freedom Residual deviance: 18.069 on 17 degrees of freedom AIC: 41.693 Applied Statistics | October 22 2020

Number of Fisher Scoring iterations: 5

> step(ex1018binom)

Coefficients:

(Intercept)	stage	xray	acid
-3.052	1.645	1.912	1.638

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual Null Deviance: 40.71 Residual Deviance: 19.64 AIC: 39.26

- we can drop age and grade without affecting quality of the fit

- in other words the model can be simplified by setting two regression coefficients to zero

- several mistakes in text on pp. 491,2;

- deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version
Applied Statistics 1 October 22 2020

... example 10.18: variable selection

- step implements stepwise regression
- evaluates each fit using AIC = $-2\ell(\hat{\beta}; y) + 2p$
- · penalizes models with larger number of parameters
- we can also compare fits by comparing deviances
- > update(ex1018binom, . ~ . aged stage)

Coefficients:

(Intercept)	grade	xray	acid
-2.734	1.420	1.750	1.797

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual Null Deviance: 40.71 Residual Deviance: 21.28 AIC: 40.9

```
> deviance(ex1018binom)
[1] 18.06869
> pchisq(21.28-18.07,df=2,lower=F)
[1] 0.2008896
```

.

- as terms are added to the model, deviance always decreases
- because log-likelihood function always increases
- similar to residual sum of squares
- Akaike Information Criterion penalizes models with more parameters

$$\mathsf{AIC} = \mathsf{2}\{-\ell(\hat{eta}; \mathsf{y}) + \mathsf{p}\}$$

SM (4.57)

• comparison of two model fits by difference in AIC

> summary(ex1018binom)

Call: glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max -1.4989 -0.7726 -0.1265 0.7997 1.4351

> summary(ex1018binom)

```
Call:
glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)
```

Deviance Residuals:

Min	1Q	Median	ЗQ	Max
-1.4989	-0.7726	-0.1265	0.7997	1.4351

Deviance: $2\sum_{i=1}^{n} [y_i \log\{y_i/n_i p_i(\hat{\beta})\} + (n_i - y_i) \log\{(n_i - y_i)/(n_i - n_i p_i(\hat{\beta}))\}]$

approximately χ^2_{n-q}

 $r_{Di} = \pm \sqrt{2[y_i \log\{y_i/n_i \hat{p}_i\} + (n_i - y_i) \log\{(n_i - y_i)/(n_i - n_i \hat{p}_i)\}]}$

> summary(ex1018binom)

Call: glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max -1.4989 -0.7726 -0.1265 0.7997 1.4351

