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Today Start Recording

1. In the News
2. HW2 revised due date November 5 Syllabus update 3
3. Explanation FLM-2 §5.4-5.7
4. Theory of logistic regression
5. Examples of logistic regression
6. Introduction to tidyverse

• October 26 3.00 – 4.00 Kristian Lum
• https://canssiontario.utoronto.ca/?mec-events=ares_lum_kristian

“Fairness, Accountability, and Transparency:
(Counter)-Examples from Predictive Models
in Criminal Justice”
Assistant Professor, CIS, U Penn
Previously, Lead Statistician at the Human Rights
Data Analysis Group (HRDAG)Applied Statistics I October 22 2020 1
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Recap

• Preliminary Analysis: data auditing, data screening, data cleaning, preliminary
summaries (tables, plots) CD Ch.5

• Explanation after linear regression FLM-2 Ch.5

• Analysis of binomial data – Challenger shuttle
• Logistic regression model pi = exp(xTi β)/{1+ exp(xTi β)}
• Fitting the model with glm

• Maximum likelihood estimation under the hood

• Covid misinformation paper
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?Logistic regression: what if it is unbalanced?

• model for logistic regression yi ∼ Bin(ni,pi), i = 1, . . . ,n
• E(yi) = nipi, Var(yi) = nipi(1− pi)
• lack of balance: e.g. n1 = 10,n2 = 1000

• estimates p̂1 = y1/n1, p̂2 = y2/n2; also var(p̂i) = pi(1− pi)/ni
• if for example p1 = p2 = 0.5,

var(p̂1) = 0.025, var(p̂2) = 0.00025

s.e.(p̂1) = 0.158, s.e.(p̂2) = 0.0158
• precise information about some groups of individuals, and less precise
information about others

• suggests that estimates for those covariates may have large standard errors,
simply due to sample size issues
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Explanation FLM-2 Ch. 5

• Note: Chapter uploaded to Quercus page, under ”Modules”
• §5.1-3: interpretation of coefficients, causal effects, designed experiments
• §5.4 observational data

• difficult to infer causality from observational data
• treatment not assigned at random
• treated group could differ from untreated group in many different ways
• in the voting example “voting system” is the “treatment” NH primary 2008
• it appears to influence the outcome (proportion voting for Obama)
• but Faraway uncovered a potential confounder: outcome of 2004 primary (Dean)

• §5.5. matching
• create blocks (pairs) and “assign treatment/control” to each unit in the pair

thought experiment
• Faraway uses an algorithm to create pairs of wards that are similar – except that 1 ward
was ‘treated’, the other was ‘control’

• this is called propensity score matching in causal inference
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... Explanation FLM-2 Ch. 5

On p. 70, just before exercises, Faraway mentions a “natural experiment”

NY Times October 20
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Explanation FLM-2 Ch. 5

• with observational data, we usually adjust for confounders in a regression model
• but we can never be completely sure there isn’t an unmeasured confounder
• so it is nearly impossible to conclude causality from an observational study
• so how do we know that smoking causes lung cancer?
• §5.7 “Bradford-Hill criteria”

• strength of the observed association
• consistency of the observed association
• specificity of the potential cause
• the potential cause occurs earlier in time than the outcome
• there is a dose-response relationship
• there is subject-matter theory that makes a causal effect plausible
• there is corroborating evidence from other types of studies (e.g. animal studies)
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In the News Twitter thanks to Elisa Du

Four cardinal rules of statistics

• ONE: Correlation does not imply causation.
Unless you can design your study to uncover causation, the
best you can do is discover correlations

• TWO: A p-value is just a test of sample size. I don’t agree!

In other words, we can have STATISTICAL significance w/o PRAC-
TICAL significance.... In many contemporary settings, sample
sizes are so huge that we can get TINY p-values even when the
deviation from the null hypothesis is negligible. I do agree

• THREE: Seek and ye shall find.
If you look at your data for long enough, you will find some-
thing interesting, even if only by chance!
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Regression modelling with binomial

• model:
yi ∼ Bin(ni,pi)

ni = 6, i = 1, . . . , n

• regression: link the pi’s through xi
• for example,

pi =
exp(β0 + xi1β1 + · · ·+ xiqβq)

1+ exp(β0 + xi1β1 + · · ·+ xiqβq))

• more concisely

pi =
exp(xT

i β)

1+ exp(xT

i β)

• xT

i = (1, xi1, . . . , xiq); β = (β0,β1, . . . ,βq)
T

all vectors are column vectors
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Binary or binomial responses

• many examples where we would like to analyse a binary response yi = 0/1
• example from last week: covid misinformation

To investigate the effects of susceptibility to misinformation about COVID-19 on
people’s willingness to (i) get vaccinated against COVID-19 (yes/no), and (ii) rec-
ommend getting vaccinated to vulnerable friends or family members (yes/no),
we conducted two logistic regressions

• example 2: O-ring damaged/not damaged
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... SM Example 10.18

Can we predict nodal
involvment from other
measurements?
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... Binary responses

• suppose yi is binary takes values 0, 1 only

• and there are several covariates xi associated with ith observation
• ?what’s wrong with

yi = xT

i β + εi

• what’s the probability distribution of yi? Bernoulli

• the only parameter in the distirbution is pi = Pr(yi = 1) 1− pi =?

• suppose y1, . . . , yn are independent Bernoulli (y1, . . . , yn) = y

• joint distribution

f (y) =
n!

i=1

pyii (1− pi)(1−yi)
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... Binary responses

• joint distribution

f (y) =
n!

i=1

pyii (1− pi)(1−yi)

• log-likelihood function

ℓ(p; y) =
n"

i=1

{yi log(pi) + (1− yi) log(1− pi)} =
n"

i=1

{yi log{pi/(1− pi)}+ log(1− pi)}

• logistic regression log{pi/(1− pi)} = xT

i β

• log-likelihood function

ℓ(β; y) =
n"

i=1

[yixT

i β − log{1+ exp(xT

i β)}]
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... Binary responses

• where’s the epsilon? There isn’t one
• what’s the model? It has two parts
• Regression.

E(yi) = pi =
exp(xT

i β)

1+ exp(xT

i β)

• Probability distribution.
yi ∼ Bernoulli(pi)

• What are these parts in linear regression?
• Regression

E(yi) = µi = xT

i β

• Probability distribution
yi ∼ Normal(µi,σ2)
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Binomial responses

• if you add a lot of Bernoulli’s together, all with the same pi, you get
• how could they have the same pi in our model?
• pi = function(xT

i β)

• different observations with the same pi are called covariate classes
• Example 10.18 in SM – Table 10.8 has 23 rows of binomials

sample sizes vary from 1 to 6
• data(nodal) in library(SMPracticals) has 53 rows of binary observations
• R expects cbind(r, m-r) in glm with binomial data, but if all observations are
binary you can get away with r only

• see ?family (check Details)
• you can also specify proportions yi/ni, but then you need to use weights
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Review: Likelihood inference

• model: yi ∼ f (yi; θ), i = 1, . . . ,n independent
• joint density: f (y; θ) =

#n
i=1 f (yi; θ)

• likelihood function L(θ; y) = f (y; θ)

• log-likelihood function ℓ(θ; y) = log L(θ; y) =
$n

i=1 log f (yi; θ)
• maximum likelihood estimate θ̂ = arg sup ℓ(θ; y) ℓ′(θ̂) = 0
• Fisher information j(θ) = −ℓ′′(θ)

• properties:
(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

asymptotically normal
• likelihood ratio statistic

w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

p is dimension of θ
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... Likelihood inference

• properties:
(θ̂ − θ)j1/2(θ̂) d→ N(0, I)

asymptotically normal

•
θ̂k

.∼ N({θk, j−1(θ̂)kk}

vcov(logitmodel)

• likelihood ratio statistic
w(θ) = 2{ℓ(θ̂)− ℓ(θ)} d→ χ2p

p is dimension of θ

• compare two models using change in likelihood ratio statistic
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... Likelihood inference
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Comparing two models FLM §2.3

• fit model A get estimate θ̂A

• fit model B get estimate θ̂B Model B smaller than A

• likelihood ratio test
LRT = 2{ℓA(θ̂A)− ℓB(θ̂B)}

• compares the maximized log-likelihood function under model A and model B
• example
model A: logit(pi) = β0 + β1x1i + β2x2i, θA = (β0,β1,β2)

model B: logit(pi) = β0 + β1x1i, θB = (β0,β1)

• when model B is nested in model A, LRT is approximately χ2ν distributed
ν = dim(A)− dim(B)
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... Challenger data

> head(shuttle2)

m r temperature pressure

1 6 0 66 50

2 6 1 70 50

3 6 0 69 50

4 6 0 68 50

5 6 0 67 50

6 6 0 72 50

> logitmodcorrect2 <- glm(cbind(r,m-r) ~ temperature + pressure, family = binomial, data = shuttle2)

> summary(logitmodcorrect2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.520195 3.486784 0.723 0.4698

temperature -0.098297 0.044890 -2.190 0.0285 *

pressure 0.008484 0.007677 1.105 0.2691

---

β̂1
.∼ N(0,0.0442)

β̂2
.∼ N(0,0.0082)
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... Challenger data

• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0

• the change in deviance is a likelihood ratio test

> anova(logitmodcorrect,logitmodcorrect2)

Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature

Model 2: cbind(r, m - r) ~ temperature + pressure

Resid. Df Resid. Dev Df Deviance

1 21 18.086

2 20 16.546 1 1.5407

> 1 - pchisq(1.5407, df = 1). 0.214Applied Statistics I October 22 2020 20



... inference

• Model A: logit(pi) = β0 + β1tempi + β2pressurei

• Model B: logit(pi) = β0 + β1tempi

• nested: Model B is obtained by setting β2 = 0

• Under Model B, the change in deviance is (approximately) an observation from a χ21
• Pr(χ21 ≥ 1.5407) = 0.22
this is a p-value for testing H0 : β2 = 0

• so is 1− Φ{ β̂2

%s.e.(β̂2)
} = 1− Φ(1.105) = 0.27

ELM p.30
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... Challenger data

> summary(logitmodcorrect)

Call:

glm(formula = cbind(r, m - r) ~ temperature, family = binomial,

data = shuttle2)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.95227 -0.78299 -0.54117 -0.04379 2.65152

Coefficients:

...

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24.230 on 22 degrees of freedom

Residual deviance: 18.086 on 21 degrees of freedom

AIC: 35.647

Number of Fisher Scoring iterations: 5

←−
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Special to the binomial: residual deviance and Poisson

• the logistic regression model pi = pi(β) = exp(xT

i β)/{1+ exp(xT

i β)}, p̂i = pi(β̂)
• is nested in the saturated model p̃i = yi/ni

• the saturated model has one estimate of pi for each row of the data
• residual deviance compares the regression model to the saturated model

• under the fitted model, approximately distributed as χ2n−q
if each ni “large” ELM p.29

• this is LRT of the regression model compared to the saturated model

> summary(logitmodcorrect)

...

Null deviance: 24.230 on 22 degrees of freedom

Residual deviance: 18.086 on 21 degrees of freedom

AIC: 35.647

Number of Fisher Scoring iterations: 5
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Residual deviance FELM p.29

• Residual Deviance is log-likelihood ratio statistic for the fitted model
compared to the saturated model

• saturated model is maximized at p̃i = yi/ni

ℓ(p̃) =
n"

i=1

{yi log(yi/ni) + (ni − yi) log(1− yi/ni)}

• fitted model maximized at β̂

ℓ(β̂) =
n"

i=1

{yi log pi(β̂) + (ni − yi) log(1− pi(β̂))}

• twice the difference:

2
n"

i=1

[yi log{yi/nipi(β̂)}+ (ni − yi) log{(ni − yi)/(ni − nipi(β̂))}]

FELM Eq.(2.1): ŷi = nipi(β̂)Applied Statistics I October 22 2020 24



Logistic regression FELM Ch.2

• If data is distributed as Binomial
• and each ni is “large” > 5

• Residual deviance is a test of goodness of fit of the model
• A happy quirk of logistic regression

• interpretation of parameters in terms of log odds §2.5

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

“a unit increase in temperature is associated with a decrease in log-odds of O-ring
failure of 0.116”
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Logistic regression FELM Ch.2

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

“a unit increase in temperature is associated with an increase in log-odds of O-ring
damage of −0.116”

“an increase in the odds of exp(−0.116) = 0.89” so actually a decrease

“ an increase in the probability of ?? depends on the baseline probability

go to rsos.201199.pdf
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Example: SM Example 10.18

aggregated data presented in textbook
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... example 10.18

• library(SMPracticals); data(nodal); head(nodal) all covariates 0/1
• several patients have the same value of the covariates covariate classes: ELM
• these can be added up to make a binomial observation• > nodal2[1:4,]

m r age stage grade xray acid

1 6 5 0 1 1 1 1

2 6 1 0 0 0 0 1

3 4 0 1 1 1 0 0

4 4 2 1 1 0 0 1

• > ex1018binom = glm(cbind(r,m-r) ~ ., data = nodal2, family = binomial)

> summary(ex1018binom) # stuff omitted

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0794 0.9868 -3.121 0.00180 **

age -0.2917 0.7540 -0.387 0.69881

stage 1.3729 0.7838 1.752 0.07986 .

grade 0.8720 0.8156 1.069 0.28500

xray 1.8008 0.8104 2.222 0.02628 *

acid 1.6839 0.7915 2.128 0.03337 *

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 40.710 on 22 degrees of freedom

Residual deviance: 18.069 on 17 degrees of freedom

AIC: 41.693

Number of Fisher Scoring iterations: 5
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... example 10.18 variable selection

> step(ex1018binom)

Coefficients:

(Intercept) stage xray acid

-3.052 1.645 1.912 1.638

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual

Null Deviance: 40.71

Residual Deviance: 19.64 AIC: 39.26

– we can drop age and grade without affecting quality of the fit

– in other words the model can be simplified by setting two regression coefficients to zero

– several mistakes in text on pp. 491,2;

– deviances in Table 10.9 are incorrect as well http://statwww.epfl.ch/davison/SM/ has corrected version
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... example 10.18: variable selection

• step implements stepwise regression
• evaluates each fit using AIC = −2ℓ(β̂; y) + 2p
• penalizes models with larger number of parameters

• we can also compare fits by comparing deviances• > update(ex1018binom, . ~ . - aged - stage)

Call: glm(formula = cbind(r, m - r) ~ grade + xray + acid, family = binomial,

data = nodal2)

Coefficients:

(Intercept) grade xray acid

-2.734 1.420 1.750 1.797

Degrees of Freedom: 22 Total (i.e. Null); 19 Residual

Null Deviance: 40.71

Residual Deviance: 21.28 AIC: 40.9

> deviance(ex1018binom)

[1] 18.06869

> pchisq(21.28-18.07,df=2,lower=F)

[1] 0.2008896
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AIC

• as terms are added to the model, deviance always decreases
• because log-likelihood function always increases
• similar to residual sum of squares

• Akaike Information Criterion penalizes models with more parameters
•

AIC = 2{−ℓ(β̂; y) + p}

SM (4.57)

• comparison of two model fits by difference in AIC

Applied Statistics I October 22 2020 31



... example 10.18

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351
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Deviance residuals glm.diag; library(SMPracticals)

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351

Deviance: 2
$n

i=1[yi log{yi/nipi(β̂)}+ (ni − yi) log{(ni − yi)/(ni − nipi(β̂))}]

approximately χ2n−q

rDi = ±
√
(2[yi log{yi/nip̂i}+ (ni − yi) log{(ni − yi)/(ni − nip̂i)}])
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... example 10.18: residuals

> summary(ex1018binom)

Call:

glm(formula = cbind(r, m - r) ~ ., family = binomial, data = nodal2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4989 -0.7726 -0.1265 0.7997 1.4351
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