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On a quick look, which province

is in worse shape now?

(1) Ontario — top graph

(2) Quebec — bottom graph



On 3 May 2020, the large increase in cases includes the increase from the previous day
(892 new cases) and 1,317 cases from April that hadn’t yet been tabulated due to a
technical problem. Source: CBC News via Wikipedia

Institut nationale de santé publique Public Health Ontario

https://www.publichealthontario.ca/en/data-and-analysis/infectious-disease/covid-19-data-surveillance/covid-19-data-tool
https://www.inspq.qc.ca/covid-19/donnees
https://www.publichealthontario.ca/en/data-and-analysis/infectious-disease/covid-19-data-surveillance/covid-19-data-tool


Today Start Recording

1. Syllabus updates; Two editions of Faraway; Next week; student life
2. In the News: the story that won’t die
3. Linear Regression Part 4: Factors, random and mixed effects
4. Principles of Measurement – CD Ch. 4
5. (2–3pm) Discussion, questions, etc.

• September 28 3.30 – 4.30

• October 5 3.30 – 4.30

• https://canssiontario.utoronto.ca/?mec-events=data-science-ares-robyn_rowe
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https://studentlife.utoronto.ca/department/health-wellness/
https://canssiontario.utoronto.ca/?mec-events=data-science-ares-robyn_rowe


http://www.utstat.utoronto.ca/reid/sta2101f/syllabus20Update-1.pdf

Syllabus updated Sep 28 STA 2101F: Methods of Applied Statistics I

Week Date Methods References Computing
1 Sept 10 Review of Linear Re-

gression
SM Ch.8.2.1, 8.3;
FLM-2 Ch.2-4;
FLM-1 Ch.2-3; CD
Ch.1

RStudio and RMark-
down

2 Sept 17 Model Selection
Comparing models;
factors; model check-
ing; diagnostics;
collinearity

SM Ch.8.5,6; FLM
Ch.3; FLM-2
14,2.11,6; FLM-1
4,13; CD Ch.6

tidyverse

3→HW1 Sept 24 Random and Mixed
Effects ModelsModel
selection; Types of
studies

SM 8.7; FLM-2 Ch.
10; FLM-1 Ch.8; CD
Ch.1,2

ggplot HW 1 Qs

4←HW1 Oct 1 Designed
Experiments Factor
variables; Random
and Mixed Effects;
Principles of Mea-
surement

SM Ch. 9.1,9.2;
FLM-2 Ch.14-
17;FLM-1 Ch.13-16;
CD Ch.4

5 Oct 8 Binary
ResponsesDesigned
Experiments; Pre-
liminary Analysis

SM Ch.9.1,2; FLM-
2 Ch.14-17 FLM-1
Ch.13-16; Ch.2; CD
Ch.5

6 Oct 15 Logistic Regression SM 10.6.1; FELM
Ch.3

7→HW2 Oct 22 Generalized Linear
Models

FELM Ch.6,7; SM
10.3

8←HW2 Oct 29 Generalized Linear
Models

FELM Ch.6,7; SM
10.3

9 Nov 5 Catch Up

10 Nov 12 Break

11→HW3 Nov 19 Nonparametric
Regression

SM 10.7.1, 10.7.2;
FELM 11; CD Ch.8

12←HW3 Nov 26 Nonparametric
Regression

SM 10.7.1, 10.7.2;
FELM 11; CD Ch.8

1
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http://www.utstat.utoronto.ca/reid/sta2101f/syllabus20Update-1.pdf


False Positives, Again! More or Less, Sep 23 8:53–15:30
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https://bbc.co.uk/sounds/play/p08s7b5d


False Positives, Again! More or Less, Sep 23 8:53–15:30

Chance of a false positive case: 1 % 0.03%
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This just in
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https://blog.rstudio.com/2020/09/30/rstudio-v1-4-preview-visual-markdown-editing/


Recap of Linear Regression Part 3

• Estimation of β, σ2 t-statistic for testing βj = 0

• Estimation of E(y | x+) estimated error of x+β̂

• Prediction of response at covariate values x+ prediction error

• Model selection: hierarchical models
• Model selection: testing procedures – forward, backward, stepwise
• Model selection: information criteria AIC,BIC, adjusted R2, Cp

• Model selection via Lasso

• Question: if you remove a factor variable with k levels, does the AIC penalty
decrease by k− 1 or by 1?

• Answer: it decreases by k− 1, as it should see prostate.R on web page
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Factor variables

• in prostate data, variable gleason takes on just 4 values
• if introduced as it is in the data frame, it will be treated as a continuous variable
• we can make it into a factor variable using gleason-f <- factor(gleason)
• what’s the difference?

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.913282 0.840838 1.086 0.28044

lcavol 0.569988 0.090100 6.326 1.09e-08 ***

lweight 0.468791 0.169610 2.764 0.00699 **

age -0.021749 0.011361 -1.914 0.05890 .

lbph 0.099685 0.058984 1.690 0.09464 .

svi 0.745879 0.247398 3.015 0.00338 **

lcp -0.125112 0.095591 -1.309 0.19408

pgg45 0.004990 0.004672 1.068 0.28848

gleason_factor7 0.267607 0.219419 1.220 0.22595

gleason_factor8 0.496820 0.769267 0.646 0.52011

gleason_factor9 -0.056215 0.500196 -0.112 0.91078
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Factor variables: coefficient estimates

svi 0.745879 0.247398 3.015 0.00338 **

lcp -0.125112 0.095591 -1.309 0.19408

pgg45 0.004990 0.004672 1.068 0.28848

gleason_factor7 0.267607 0.219419 1.220 0.22595

gleason_factor8 0.496820 0.769267 0.646 0.52011

gleason_factor9 -0.056215 0.500196 -0.112 0.91078

svi 0.766157 0.244309 3.136 0.00233 **

lcp -0.105474 0.091013 -1.159 0.24964

gleason 0.045142 0.157465 0.287 0.77503

pgg45 0.004525 0.004421 1.024 0.30886

top estimates are difficult to interpret, as they are all
referenced to level 6
bottom estimates assume the score is quantitative

expected response at
level 7, relative to level 6
is .267 units higher;

level 8 relative to level 6
level 9 relative to level 6

for every unit increase in
gleason, expected
response increases by
0.045

all other variables held fixed
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Factor variables: analysis of variance

Analysis of Variance Table

Response: lpsa

Df Sum Sq Mean Sq

lcavol 1 69.003 69.003

lweight 1 5.949 5.949

age 1 0.420 0.420

lbph 1 1.069 1.069

svi 1 5.952 5.952

lcp 1 0.129 0.129

pgg45 1 1.192 1.192

gleason_factor 3 1.480 0.493

Residuals 86 42.724 0.497

Analysis of Variance Table

Response: lpsa

Df Sum Sq Mean Sq

lcavol 1 69.003 69.003

lweight 1 5.949 5.949

age 1 0.420 0.420

lbph 1 1.069 1.069

svi 1 5.952 5.952

lcp 1 0.129 0.129

gleason 1 0.708 0.708

pgg45 1 0.526 0.526

Residuals 88 44.163 0.502
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Factor variables: modelling FLM-2 §14.4; FLM-1 §13.3

• a factor variable is treated as categorical
• a non-factor variable is treated as continuous
• it depends on the application which is preferred

• a linear model with one factor and one continuous variable might be written as, for
example:

yij = µ+ αj + βxij + εij, j = 1, . . . , J; i = 1, . . .m

• linear in x, but arbitrary changes in E(y) by category (here indexed by j)
• R doesn’t distinguish this at the modelling phase:
lm(response ∼ variable1 + variable2, data = ...)

• but uses metadata in the data frame to accommodate factors
• is.factor(variable) and newvar <- as.factor(oldvar) are helpful
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Factor variables: modelling fruitfly.Rmd
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−→ fruitfly.Rmd
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Factor variables: examples

• Cycling: SM Example 8.4, 8.8, 8.12, 8.22 – designed experiment with 3 factors, each at
2 levels and each of these 8 combinations used twice, for a sample size of 16

• Poison: SM Example 8.25 – 2 factors, one has 4 levels, one has 3 levels, repeated
four times, for a sample size of 12× 4 = 48

• Some classical designs: SM §9.2 – Example 9.2, 9.3, 9.49.5, 9.6(8.25), 9.13

• FLM-2 – Chapters 14 through 17; FLM-1 – Chapters 13 through 16

• Why bother with special techniques for factor variables since we can fit them all
using lm?
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... factor variables: examples

• Why bother with special techniques for factor variables since we can fit them all
using lm?

• If the experiment is designed – meaning treatment assignment under the control of
the investigator, then we have stronger conclusions

• If the experiment is balanced, then the estimates of the effects of different factors
are independent XTX is orthogonal

• If the experiment is replicated, we can obtain reliable estimates of σ2

• If the experiment is blocked, we can remove sources of error
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Analysis of variance: one-factor design SM 9.2.1; FLM-2 Ch.15; FLM-1 Ch.14

• design: one factor with I levels; J responses at each level
• model

yij = µ+ αi + εij, j = 1, . . . J; i = 1, . . . I; εij ∼ (0,σ2)

• parameters:
• µ = E(yij) if all αi ≡ 0;
• α2 is change from µ in E(y2j) in group 2, etc. using the R convention that α1 = 0
• εij is noise variation in response not attributed to factor variable

Analysis of variance table
Term degrees of freedom sum of squares mean square F-statistic

treatment (I− 1)
!

ij(ȳi. − ȳ..)2
!

ij(ȳi. − ȳ..)2/(I− 1) MStreatment/MSerror
error I(J− 1)

!
ij(yij − ȳi.)2

!
ij(yij − ȳi.)2/{I(J− 1)}

total(corrected) IJ− 1
!

ij(yij − ȳ..)2
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Analysis of variance: one-factor design SM 9.2.1; FLM-2 Ch.15; FLM-1 Ch.14

Term degrees of freedom sum of squares mean square F-statistic
treatment (I− 1)

!
ij(ȳi. − ȳ..)2

!
ij(ȳi. − ȳ..)2/(I− 1) MStreatment/MSerror

error I(J− 1)
!

ij(yij − ȳi.)2
!

ij(yij − ȳi.)2/{I(J− 1)}
total(corrected) IJ− 1

!
ij(yij − ȳ..)2

Term degrees of freedom sum of squares mean square F-statistic
treatment (I− 1) SSbetween MSbetween MSbetween/MSwithin
error I(J− 1) SSwithin MSwithin

total(corrected) IJ− 1 SStotal

!

ij

(yij − ȳ..)2 =
!

ij

(yij − ȳi. + ȳi. − ȳ..)2

=
!

ij

(ȳi. − ȳ..)2 +
!

ij

(yij − ȳi.)2

See SM Table 9.3 and 9.4; FLM-2 §15.2; FlM-1 §14.2
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Pause

(1) New to me

(2) Not sure

(3) Seen it before
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Components of variance SM 9.4

• in some settings, the one-way layout refers to sampled groups
• not an assigned treatment
• e.g. a sample of people, with several measurements taken on each person
• yij = µ+ αi + εij as before, but with different assumptions
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...components of variance SM 9.4

• yij = µ+ αi + εij, εij ∼ (0,σ2), αi ∼ (0,σ2a) i = 1, . . . , T; j = 1 . . .R
• variance of response within subjects
• variance of response between subjects

• as before, !

ij

(yij − ȳ..)2 =
!

ij

(ȳi. − ȳ..)2 +
!

ij

(yij − ȳi.)2

• induces dependence among measurements on the same subject: ntbc

cov(yij, yij′) = σ2A

• SSwithin ∼ σ2χ2T(R−1) SSbetween ∼ (Rσ2A + σ2)χ2T−1 leads to F-test for H0 : σ2A = 0
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Principles of measurement CD Ch. 1

• “construct validity – measurements do actually record the features of concern”
• “record a number of different features sufficient
to capture concisely the important aspects”

• reliable – i.e. reasonably reproducible
• “cost of the measurements is commensurate
with their importance”

• “measurement process does not appreciably distort the system under study”

• −→ CD Ch.4, p54,55

54 Principles of measurement

of sampling may give higher quality than the study of a complete popula-
tion of individuals.

Illustration: Questionnaire data When researchers studied the effect
of the expected length (10, 20 or 30 minutes) of a web-based question-
naire, they found that fewer potential respondents started and completed
questionnaires expected to take longer (Galesic and Bosnjak, 2009).
Furthermore, questions that appeared later in the questionnaire were
given shorter and more uniform answers than questions that appeared
near the start of the questionnaire.

However, human behaviour is complicated. Champion and Sear
(1969) found that their longer questionnaires were returned significantly
more often (nine-page questionnaire: 39%; six-page: 38%; three-page:
28%), even though the content was the same in all cases. Only the spac-
ing between questions varied. A possible explanation is that the three-
page questionnaire appeared unappealingly cluttered.

Finally, special precautions may be needed to minimize any direct or
indirect effect of the measurement process on the system under study.

Illustration: Measurement affects the system studied Studies of animal
behaviour may require considerable efforts to minimize the presence of
an observer on the effect under study. For example, a group of wild,
non-habituated, common marmosets (Callithrix jacchus) were observed
in 12 sessions (de Almeida et al., 2006). In half the sessions two ob-
servers, dressed in camouflage clothing, maintained visual contact with
the animals from 8 meters away, while in the other half the two ob-
servers were hidden inside a blind. The mean frequency of marmoset
alarm calls was more than 10 times greater in the sessions where the
observers were visible, with a mean of 8.65 calls per 10 minutes, than
when they were observing from within the blind, when the mean was
0.77 calls per 10 minutes.

Indeed, this effect is not limited to studies of wild animals. The
presence of observers has been found to affect a wide range of as-
pects of human behaviour including eating (Herman et al., 1979), re-
sponding to pain (Sullivan et al., 2004), teachers’ classroom behaviour
(Samph, 1976) and even which toys children choose to play with
(Wilansky-Traynor and Lobel, 2008).
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Types and phases of analysis CD Ch. 1

• “A general principle, sounding superficial but difficult to implement, is that
analyses should be as simple as possible, but no simpler.”

• the method of analysis should be transparent
• main phases of analysis

• data auditing and screening;
• preliminary analysis;
• formal analysis;
• presentation of conclusions
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Avoidance of systematic error CD §2.4

• “distortion in the conclusions arising from irrelevant sources that do not cancel out
in the long run”

• can arise through systematic aspects of, for example, a measuring process, or the
spatial or temporal arrangement of units

• this can often be avoided by design, or adjustment in analysis
• can arise by the entry of personal judgement into some aspect of the data
collection process

• this can often be avoided by randomization and blinding
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Randomized block design FLM-2 17.1; FLM-1 16.1; SM 9.2.2

• two factor variables, treatment and block
• design: treatments assigned at random within blocks
• model:

yij = µ+ αi + βj + εij, i = 1, . . . , T; j = 1, . . .R
• parameters:

• µ = E(yij if all αi ≡ 0;βj ≡ 0;
• αi is change in E(y) from µ due to treatment i
• βj is change in E(y) due to effect of block j
• εij unexplained variation

• analysis:
!

ij

(yij − ȳ..)2 =
!

ij

(yij − ȳi. + ȳi. − ȳ.j + ȳ.j − ȳ..)2

=
!

ij

(yij − ȳi. − ȳ.j + ȳ..)2 +
!

ij

(ȳi. − ȳ..)2 +
!

ij

(ȳ.j − ȳ..)2
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