Methods of Applied Statistics I

STA2101H F LEC9101

Week 4

October 1 2020

On a quick look, which province

is in worse shape now?

(1) Ontario — top graph

(2) Quebec — bottom graph

THE GLOBE AND MAIL, SOURCE: GOVERNMENT OF ONTARIO

Daily new COVID-19 cases in Quebec

On 3 May 2020, the large increase in cases includes the increase from the previous day (892 new cases) and 1,317 cases from April that hadn't yet been tabulated due to a technical problem. Source: CBC News via Wikipedia

Institut nationale de santé publique

Public Health Ontario

- 1. Syllabus updates; Two editions of Faraway; Next week; student life
- 2. In the News: the story that won't die
- 3. Linear Regression Part 4: Factors, random and mixed effects
- 4. Principles of Measurement CD Ch. 4
- 5. (2-3pm) Discussion, questions, etc.

- September 28 3.30 4.30
- October 5 3.30 4.30

• https://canssiontario.utoronto.ca/?mec-events=data-science-ares-robyn_rowe

http://www.utstat.utoronto.ca/reid/sta2101f/syllabus20Update-1.pdf

Applied Statistics I

	Syllabus updated	Sep 28	STA 2101F: Methods of Applied Statistics I			
	Week	Date	Methods	References	Computing	
	1	Sept 10	Review of Linear Re- gression	SM Ch.8.2.1, 8.3; FLM-2 Ch.2-4; FLM-1 Ch.2-3; CD Ch.1 Ch.1	RStudio and RMark- down	
	2	Sept 17	ModelSelectionComparingmodels;factors;model check-ing;diagnostics;collinearity	SM Ch.8.5,6; FLM Ch.3; FLM-2 14,2.11,6; FLM-1 4,13; CD Ch.6	tidyverse	
	3→HW1	Sept 24	Random and Mixed Effects ModelsModel selection; Types of studies	SM 8.7; FLM-2 Ch. 10; FLM-1 Ch.8; CD Ch.1,2	ggplot HW 1 Qs	
	4←HW1	Oct 1	Designed Experiments Factor variables; Random and Mixed Effects; Principles of Mea- surement	SM Ch. 9.1,9.2; FLM-2 Ch.14- 17;FLM-1 Ch.13-16; CD Ch.4		
	5	Oct 8	Binary ResponsesDesigned Experiments; Pre- liminary Analysis	SM Ch.9.1,2; FLM- 2 Ch.14-17 FLM-1 Ch.13-16; Ch.2; CD Ch.5		
Ostabas	6	Oct 15	Logistic Regression	SM 10.6.1; FELM Ch.3		
October	1 2020 7→HW2	Oct 22	Generalized Linear Models	FELM Ch.6,7; SM 10.3		

2

False Positives, Again!

K

More or Less: Behind the Stats

Covid curve queried, false positives, and head

(20)

>

08:53

October 1 2020

Applied Statistics I

prevvals <dbl></dbl>	ppv <dbl></dbl>	ppv2 <dbl></dbl>
0.0001	0.0079373	0.0259766
0.0010	0.0741427	0.2106927
0.0050	0.2867384	0.5726557
0.0100	0.4469274	0.7292616
0.0500	0.8080808	0.9334889
0.1000	0.8988764	0.9673519
Chance of a false positive case:	1 %	0.03%

This just in

Home About Categories Tags Archives

RStudio v1.4 Preview: Visual Markdown Editing

J.J. Allaire

2020-09-30

Categories: RStudio IDE R Markdown Tags: preview rstudio rmarkdown

Today we're excited to announce availability of our first <u>Preview Release</u> for RStudio 1.4, a major new release which includes the following new features:

 A <u>visual markdown editor</u> that provides improved productivity for composing longer-form articles and analy-Applied Statistics with R-Markdown²⁰

New Python canabilities including display of Python objects in the Environment page viewing of Python

Recap of Linear Regression Part 3

- Estimation of β , $\sigma^{\rm 2}$
- Estimation of $\mathbb{E}(y \mid x_+)$
- Prediction of response at covariate values x_+

t-statistic for testing $\beta_j = 0$ estimated error of $x_+\hat{\beta}$ prediction error

- Model selection: hierarchical models
- · Model selection: testing procedures forward, backward, stepwise
- Model selection: information criteria AIC, BIC, adjusted R², C_p
- Model selection via Lasso
- Question: if you remove a factor variable with k levels, does the AIC penalty decrease by k 1 or by 1?
- Answer: it decreases by k 1, as it should

see prostate.R on web page

Factor variables

- in prostate data, variable gleason takes on just 4 values
- if introduced as it is in the data frame, it will be treated as a continuous variable
- we can make it into a factor variable using gleason-f <- factor(gleason)
- what's the difference?

ients:				
e Std. Erro	or t value	$\Pr(> t $)	
0.913282	0.840838	1.086	0.28044	
0.569988	0.090100	6.326	1.09e-08	***
0.468791	0.169610	2.764	0.00699	**
0.021749	0.011361	-1.914	0.05890	
0.099685	0.058984	1.690	0.09464	
0.745879	0.247398	3.015	0.00338	**
0.125112	0.095591	-1.309	0.19408	
0.004990	0.004672	1.068	0.28848	
0.267607	0.219419	1.220	0.22595	
0.496820	0.769267	0.646	0.52011	
0.056215	0.500196	-0.112	0.91078	
	e Std. Erro 0.913282 0.569988 0.468791 0.021749 0.099685 0.745879 0.125112 0.004990 0.267607 0.496820	e Std. Error t value 0.913282 0.840838 0.569988 0.090100 0.468791 0.169610 0.021749 0.011361 0.099685 0.058984 0.745879 0.247398 0.125112 0.095591 0.004990 0.004672 0.267607 0.219419 0.496820 0.769267	e Std. Error t value Pr(> t 0.913282 0.840838 1.086 0.569988 0.090100 6.326 0.468791 0.169610 2.764 0.021749 0.011361 -1.914 0.099685 0.058984 1.690 0.745879 0.247398 3.015 0.125112 0.095591 -1.309 0.004990 0.004672 1.068 0.267607 0.219419 1.220 0.496820 0.769267 0.646	e Std. Error t value Pr(> t) 0.913282 0.840838 1.086 0.28044 0.569988 0.090100 6.326 1.09e-08 0.468791 0.169610 2.764 0.00699 0.021749 0.011361 -1.914 0.05890 0.099685 0.058984 1.690 0.09464 0.745879 0.247398 3.015 0.00338 0.125112 0.095591 -1.309 0.19408 0.004990 0.004672 1.068 0.28848 0.267607 0.219419 1.220 0.22595 0.496820 0.769267 0.646 0.52011

Applied Statistics I October 1 2020

Factor variables: coefficient estimates

svi	0.745879	0.247398	3.015	0.00338	**
lcp	-0.125112	0.095591	-1.309	0.19408	
pgg45	0.004990	0.004672	1.068	0.28848	
gleason_factor7	0.267607	0.219419	1.220	0.22595	
gleason_factor8	0.496820	0.769267	0.646	0.52011	
gleason_factor9	-0.056215	0.500196	-0.112	0.91078	

svi	0.766157	0.244309	3.136	0.00233	**
lcp	-0.105474	0.091013	-1.159	0.24964	
gleason	0.045142	0.157465	0.287	0.77503	
pgg45	0.004525	0.004421	1.024	0.30886	

top estimates are difficult to interpret, as they are all referenced to level 6 bottom estimates assume the score is quantitative Applied Statistics 1 October 1 2020 expected response at level 7, relative to level 6 is .267 units higher;

level 8 relative to level 6 level 9 relative to level 6

for every unit increase in gleason, expected response increases by 0.045

all other variables held fixed

Analysis of Variance Table

Response: lpsa

	\mathtt{Df}	Sum Sq	Mean Sq
lcavol	1	69.003	69.003
lweight	1	5.949	5.949
age	1	0.420	0.420
lbph	1	1.069	1.069
svi	1	5.952	5.952
lcp	1	0.129	0.129
pgg45	1	1.192	1.192
gleason_factor	3	1.480	0.493
Residuals	86	42.724	0.497

Analysis of Variance Table

Response:	lpsa					
	$\mathtt{D}\mathtt{f}$	Sum Sq	Mean Sq			
lcavol	1	69.003	69.003			
lweight	1	5.949	5.949			
age	1	0.420	0.420			
lbph	1	1.069	1.069			
svi	1	5.952	5.952			
lcp	1	0.129	0.129			
gleason	1	0.708	0.708			
pgg45	1	0.526	0.526			
Residuals	88	44.163	0.502			

Factor variables: modelling

- a factor variable is treated as categorical
- a non-factor variable is treated as continuous
- it depends on the application which is preferred
- a linear model with one factor and one continuous variable might be written as, for example:

$$\mathbf{y}_{ij} = \mu + \alpha_j + \beta \mathbf{x}_{ij} + \epsilon_{ij}, \quad j = 1, \dots, J; \quad i = 1, \dots, m$$

- linear in x, but arbitrary changes in $\mathbb{E}(y)$ by category (here indexed by j)
- R doesn't distinguish this at the modelling phase: lm(response ~ variable1 + variable2, data = ...)
- · but uses metadata in the data frame to accommodate factors
- is.factor(variable) and newvar <- as.factor(oldvar) are helpful

Factor variables: modelling

 \longrightarrow fruitfly.Rmd

Applied Statistics I

11

Factor variables: examples

- Cycling: SM Example 8.4, 8.8, 8.12, 8.22 designed experiment with 3 factors, each at 2 levels and each of these 8 combinations used twice, for a sample size of 16
- Poison: SM Example 8.25 2 factors, one has 4 levels, one has 3 levels, repeated four times, for a sample size of $12 \times 4 = 48$
- Some classical designs: SM §9.2 Example 9.2, 9.3, 9.49.5, 9.6(8.25), 9.13
- FLM-2 Chapters 14 through 17; FLM-1 Chapters 13 through 16
- Why bother with special techniques for factor variables since we can fit them all using lm?

... factor variables: examples

- Why bother with special techniques for factor variables since we can fit them all using lm?
- If the experiment is designed meaning treatment assignment under the control of the investigator, then we have stronger conclusions
- If the experiment is balanced, then the estimates of the effects of different factors are independent

 X^TX is orthogonal
- If the experiment is replicated, we can obtain reliable estimates of σ^2
- · If the experiment is blocked, we can remove sources of error

Analysis of variance: one-factor design

- SM 9.2.1; FLM-2 Ch.15; FLM-1 Ch.14
- design: one factor with I levels; J responses at each level
- model

$$\mathbf{y}_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad j = 1, \dots J; i = 1, \dots I; \quad \epsilon_{ij} \sim (\mathbf{0}, \sigma^2)$$

- parameters:
 - $\mu = \mathbb{E}(\mathbf{y}_{ij})$ if all $\alpha_i \equiv \mathbf{0}$;
 - α_2 is change from μ in $\mathbb{E}(y_{2j})$ in group 2, etc.

- using the R convention that $\alpha_1 = 0$
- ϵ_{ij} is noise variation in response not attributed to factor variable

Analysis of variance table

Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(<i>l</i> − 1)	$\sum_{ij} (\bar{y}_{i.} - \bar{y}_{})^2$	$\sum_{ij} (\bar{y}_{i.} - \bar{y}_{})^2 / (l-1)$	$MS_{treatment}/MS_{error}$
error	I(J - 1)	$\sum_{ij} (y_{ij} - \bar{y}_{i.})^2$	$\sum_{ij} (y_{ij} - \bar{y}_{i.})^2 / \{I(J-1)\}$	
total(corrected)	lJ — 1	$\sum_{ij}(y_{ij}-\bar{y}_{})^2$		

Analysis of variance: one-factor design

Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(<i>l</i> − 1)	$\sum_{ij} (\bar{y}_{i.} - \bar{y}_{})^2$	$\sum_{ij}(ar{y}_{i.}-ar{y}_{})^2/(l-1)$	$MS_{treatment}/MS_{error}$
error	I(J - 1)	$\sum_{ij}(y_{ij}-\bar{y}_{i.})^2$	$\sum_{ij} (y_{ij} - \bar{y}_{i.})^2 / \{I(J-1)\}$	
total(corrected)	lJ — 1	$\sum_{ij} (y_{ij} - \bar{y}_{})^2$		

Term	degrees of freedom	sum of squares	mean square	F-statistic
treatment	(<i>I</i> − 1)	SS _{between}	MS _{between}	MS _{between} /MS _{within}
error	I(J - 1)	SS _{within}	MS _{within}	
total(corrected)	lJ — 1	SS _{total}		

$$\begin{split} \sum_{ij} (y_{ij} - \bar{y}_{..})^2 &= \sum_{ij} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{..})^2 \\ &= \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (y_{ij} - \bar{y}_{i.})^2 \end{split}$$

See SM Table 9.3 and 9.4; FLM-2 §15.2; FlM-1 §14.2

Table 9.3 Data on theteaching of arithmetic.							Test result y				Average	Variance
	A (Usual)	17	14	24	20	24	23	16	15	24	19.67	17.75
	B (Usual)	21	23	13	19	13	19	20	21	16	18.33	12.75
	C (Praised)	28	30	29	24	27	30	28	28	23	27.44	6.03
	D (Reproved)	19	28	26	26	19	24	24	23	22	23.44	9.53
	E (Ignored)	21	14	13	19	15	15	10	18	20	16.11	13.11

Term	df	Sum of squares	Mean square	F
Groups	4	722.67	180.67	15.3
Residual	40	473.33	11.83	

Table 9.4Analysis ofvariance for data on theteaching of arithmetic.

(1) New to me

(2) Not sure

(3) Seen it before

Components of variance

- in some settings, the one-way layout refers to sampled groups
- not an assigned treatment
- e.g. a sample of people, with several measurements taken on each person
- $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ as before, but with different assumptions

Subject					
1	2	3	4	5	6
68	49	41	33	40	30
42	52	40	27	45	42
69	41	26	48	50	35
64	56	33	54	41	44
39	40	42	42	37	49
66	43	27	56	34	25
29	20	35	19	42	45

Table 9.22Blood data:seven measurements fromeach of six subjects on aproperty related to thestickiness of their blood.

SM 9.4

...components of variance

- $y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim (\mathbf{0}, \sigma^2), \quad \alpha_i \sim (\mathbf{0}, \sigma_a^2) \qquad i = 1, \dots, T; j = 1 \dots R$
- variance of response within subjects
- · variance of response between subjects
- as before,

$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (y_{ij} - \bar{y}_{i.})^2$$

• induces dependence among measurements on the same subject:

$$\operatorname{cov}(y_{ij}, y_{ij'}) = \sigma_A^2$$

• $SS_{within} \sim \sigma^2 \chi^2_{T(R-1)}$ $SS_{between} \sim (R\sigma^2_A + \sigma^2) \chi^2_{T-1}$ leads to F-test for $H_0: \sigma^2_A = 0$

Principles of measurement

- "construct validity measurements do actually record the features of concern"
- "record a number of different features sufficient to capture concisely the important aspects"
- reliable i.e. reasonably reproducible
- "cost of the measurements is commensurate with their importance"
- "measurement process does not appreciably distort the system under study"
- \longrightarrow CD Ch.4, p54,55

54 Principles of measurement

Applied Statistics I Oction of individuals.

Types and phases of analysis

- "A general principle, sounding superficial but difficult to implement, is that analyses should be as simple as possible, but no simpler."
- the method of analysis should be transparent
- main phases of analysis
 - · data auditing and screening;
 - preliminary analysis;
 - formal analysis;
 - presentation of conclusions

CD Ch. 1

- "distortion in the conclusions arising from irrelevant sources that do not cancel out in the long run"
- can arise through systematic aspects of, for example, a measuring process, or the spatial or temporal arrangement of units
- this can often be avoided by design, or adjustment in analysis
- can arise by the entry of personal judgement into some aspect of the data collection process
- this can often be avoided by randomization and blinding

Randomized block design

- two factor variables, treatment and block
- design: treatments assigned at random within blocks
- model:

$$\mathbf{y}_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}, \quad \mathbf{i} = \mathbf{1}, \dots, \mathbf{T}; \mathbf{j} = \mathbf{1}, \dots \mathbf{R}$$

- parameters:
 - $\mu = \mathbb{E}(\mathbf{y}_{ij} \text{ if all } \alpha_i \equiv \mathbf{0}; \beta_j \equiv \mathbf{0};$
 - α_i is change in $\mathbb{E}(y)$ from μ due to treatment *i*
 - β_i is change in $\mathbb{E}(y)$ due to effect of block *j*
 - ϵ_{ij} unexplained variation
- analysis:

$$\begin{split} \sum_{ij} (y_{ij} - \bar{y}_{..})^2 &= \sum_{ij} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{.j} - \bar{y}_{..})^2 \\ &= \sum_{ij} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{ij} (\bar{y}_{.j} - \bar{y}_{..})^2 \end{split}$$

Applied Statistics I October 1 2020