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Week 11

November 26 2020

 



“statisticians have a feel for the data
that is crucial”



Today Start Recording

1. HW3 due December 3
2. Nonparametric regression continued
3. Prediction and Explanation
4. Strategies for Modelling
5. In the News

• November 30 15.00 – 16.00 Tyler McCormick
• https://canssiontario.utoronto.ca/?mec-events=ares_tyler_mccormick

• “Identifying the latent space geometry
of network models through analysis of curvature”

• Dec. 4 noon – Kathryn Roeder
• Dec. 7 – Margaret Roberts
• Dec. 14 – Kosuke Imai
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Recap

• Generalized linear models theory
• 'exible modelling via expected value and variance function
• inference using theory of likelihood functions

• nonparametric regression
• local averaging
• local polynomial regression local least squares

• kernel function (for averaging)
• bandwidth (for local)

E(yi) = µi; g(µi) = xTi β; Var(yi) = φiV(µi) φi = aiφ
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Recap 2: clari"cation re GLM "tting Nov 19, 5

β̂ = (XTW−1X)XTWz
iteration

β̂(t+1) = (XTW(t)X)−1XTW(t)z(t) z(t) = Xβ̂(t) +W−1(t)u(t);
W(t) = W(β̂(t)), u(t) = u(β̂(t))

At convergence,

β̂ = (XTŴX)−1XT ẑ
!Var(β̂) .

= (XTŴX)−1 W is diagonal

Wii =
1

φai{g′(µi)}2V(µi)
, ui =

yi − µi
φaig′(µi)V(µi)
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Local Polynomials ISLR 7.9
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Local polynomials SM §10.7

• β̂ = (XTWX)−1XTWy W = diag(w1, . . . ,wn)
weights from kernel function Nov 19 Slide 9

• f̂λ(x0) = β̂0 =
"n

i=1 S(x0; xi,λ)yi #t a poly, use only the intercept

• S(x0; x1,λ), . . . , S(x0; xn,λ) (rst row of “hat” matrix (XTWX)−1XTW

• this makes it relatively easy to analyse the behaviour of local polynomial smoothers
SM §10.7

• and to simplify the expression for the cross-validation criterion CV(λ)

• (tting at each sample value gives

f̂λ(xi) =
n#

j=1
S(xi; xj,λ)yj

smoothing matrix
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Inference a#er "tting local polynomials SM §10.7

• model: yi = f (xi) + $i, i = 1, . . . ,n; E($i) = 0; var($i) = σ2

• f̂λ(x0) = β̂0 =
"n

i=1 S(x0; xi,λ)yi

• E{f̂λ(x0)} =

• var{f̂λ(x0)} =

• how many parameters did we (t?

• by analogy with least squares, estimates of ‘degrees of freedom’ are
ν1 = tr(Sλ), or ν2 = tr(STλSλ)

σ̃2 =
1

n− 2ν1 + ν2

#
{yi − f̂λ(xi)}2

SM (10.39)
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... inference a#er "tting local polynomials SM §10.7

• E{f̂λ(x0)} =
"n

i=1 S(x0; xi,λ)f (xi), var{f̂λ(x0)} = σ2
"n

i=1 S2(x0; xi,λ)

f̂λ(x0)− E{f̂λ(x0)}
$var{f̂λ(x0)}1/2

.∼ N(0, 1)
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... inference a#er "tting local polynomials SM §10.7
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Example: The NMMAPS studies Peng, et al.(2006) JRSSA
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Example: The NMMAPS studies Peng, et al.(2006) JRSSA

• 90 largest cities in US by population (US Census)
• daily mortality counts from National Center for Health Statistics 1987–1994
• hourly temperature and dewpoint data from National Climatic data Center
• data on pollutants PM10, O3, CO, SO2, NO2 from EPA

• response: Yt number of deaths on day t
• explanatory variables: Xt pollution on day t− 1, plus various confounders: age and
size of population, weather, day of the week, time

• mortality rates change with season, weather, changes in health status, ...

NMMAPS: National Morbidity, Mortality and Air Pollution Study
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... the NMMAPS studies Peng, et al.(2006) JRSSA

• Yt ∼ Poisson(µt)

• log(µt) = age speci(c intercepts + βPMt + γDOW + g(t,df ) + s(tempt, 6) +
s(tempt−1, 6) + s(dewpointt, 3) + s(dewpointt−1, 3) + s4(dew0, 3) + s5(dew1−3, 3)

• three ages categories; separate intercept for each
(< 65, 65− 74, ≥ 75)

• dummy variables to record day of week

• s(x, 7) a smoothing spline of variable x with 7 degrees of freedom
• estimate of β for each city; estimates pooled using Bayesian arguments for an
overall estimate

• very di-cult to separate out weather and pollution e.ects
see also: Crainiceanu, C., Dominici, F. and Parmigiani, G. (2008). Biometrika 95 635–51
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Nonparametric regression Intro to Stat Learning; James et al.

• yi = f (xi) + $i
• there are many di.erent methods for estimating f (·)
• local polynomial regression – stats::loess, KernSmooth::locpoly FELM 11.3; SM 10.7.1
• regression splines – splines::bs , splines::ns FELM 11.2b p 218+
• smoothing splines – stats:smooth.spline FELM 11.2a; SM 10.7.2
• penalized splines – pspline::smooth.Pspline Peng et al. 2006
• wavelets – wavethresh::wd FELM 11.4
• and more... FELM 11.5; ISLR Ch.7

smoothing splines:

min
f

n#

i=1
{yi − f (xi)}2 + λ

%
{f ′′(t)}2dt

Elem Stat Learning, Hastie et al.
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Example

with(exa, plot(x,y, cex = 2, main = "Example A", pch = "."))

lines(m ~ x, exa)

lines(exa.sm1$x, exa.sm1$y, col="blue")

lines(loess.smooth(exa$x, exa$y), col="red")

lines(loess.smooth(exa$x, exa$y, span = 1/3), col="red", lty = 2)
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Extensions FELM Ch.12

• more than 1 x
• local polynomials in two (or three) dimensions
• thin-plate splines
• additive models: yi = β0 + f1(x1i) + f2(x2i) + · · ·+ fp(xpi) + $i

• beyond least squares
• GAM: e.g. log{pi/(1− pi)} = β0 + f1(x1i) + f2(x2i) + · · ·+ fp(xpi) ISLR 7.7

• penalized regression with GLMs
• e.g. linear predictor ηi = xTi β + f (ti) SM 10.7.3
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Wage data ISLR, Ch.7

smooth.html
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Wage data ISLR, Ch.7

smooth.html
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Aside: Explanation vs Prediction

• regression (and other) models may be (t in order to uncover some structural
relationship between the response and one or more predictors

• How do wages depend on education?
• How does numeracy score a.ect probability of saying yes to vaccine?
• statistical analysis will focus on estimation and/or testing
• it is a remarkable fact that the data provides both an estimate of a model
parameter and an estimate of uncertainty

• the focus might instead be on predicting responses for new values of x
• or classifying new observations on the basis of their x values
• the statistical analysis will focus on the prediction/classi(cation
• the data used to (t the model does not provide a good assessment of the
prediction or classi(cation error

• motivates the division of data into training and test sets
Applied Statistics I November 26 2020 17
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How do we choose a model? CD Ch. 6.5

• in many (elds of study the models used as a basis for interpretation do not have a
special subject-matter base

• rather represent broad patterns of haphazard variation quite widely seen

• this is typically combined with a speci(cation of the systematic part of the variation
• which is o/en the primary focus
• modelling then o/en reduces to a choice of distributional form
• and of the independence structure of the random components
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... empirical models CD Ch. 6.5

• functional form of the probability distribution sometimes critical, for example where
an implicit assumption is involved of a relationship between variance and mean:
geometric, Poisson, binomial

• the simple situations that give rise to binomial, Poisson, geometric, exponential,
normal and log normal are some guide to empirical model choice in more complex
situations

• In some speci(c contexts there is a tradition establishing the form of model
• illustration: (nancial time series – Y(t) = log{P(t)/P(t− 1)} has a long-tailed
distribution, small serial correlation, large serial correlation in Y2(t) stock price

• o/en have a long tail of large values; exponential distribution is a natural staring point
• extensions may be needed, including Weibull, gamma or log-normal
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... empirical models CD Ch. 6.5

• o/en helpful to develop random and systematic parts of the model separately
• models should obey natural or known constraints, even if these lie outside the range
of the data

• example P(Y = 1) = α+ βx =⇒ log
P(Y = 1)
P(Y = 0) = α′ + β′x

• however, β measures the change in probability per unit change in x β′ does not

• when relationship between y and several variables x1, . . . xp is of interest
• unlikely that the system is wholly linear
• impractical to study nonlinear systems of unknown form
• therefore reasonable to begin with a linear model
• and seek isolated nonlinearities
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... empirical models CD Ch. 6.5

• o/en helpful to develop random and systematic parts of the model separately
• naive approach: one random variable per study individual
• values for di.erent individuals independent

• more realistic: possibility of structure in the random variation
• dependence in time or space, or a hierarchical structure corresponding to
levels of aggregation

• ignoring these complications may give misleading assessments of precision,
or bias the conclusions
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... empirical models CD Ch. 6.5

• example: standard error of mean σ/
√n

• but, under mutual correlation, becomes (σ/√n)(1+ Σρij)
1/2

• if each observation correlated with k others, at same level,
(σ/

√n)(1+ kρ)1/2

0.1 0.2 0.4 0.8

--------------------------

1.14 1.26 1.48 1.84

1.18 1.34 1.61 2.05

1.22 1.41 1.73 2.24

1.26 1.48 1.84 2.41

1.30 1.55 1.95 2.57

1.34 1.61 2.05 2.72

k = 3 : 8
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... empirical models CD Ch. 6.5

• important to be explicit about the unit of analysis
• has a bearing on independence assumptions involved in model formulation
• example: if all patients in the same clinic receive the same treatment
• then the clinic is the unit of analysis

• in some contexts there may be a clear hierarchy
• assessment of precision comes primarily from comparisons between units
• modelling of variation within units is necessary only if of intrinsic interest

• when relatively complex responses are collected on each individual, the simplest
way of condensing these is through a number of summary descriptive measures

• in other situations it may be necessary to represent explicitly the di.erent
hierarchies of variation
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In the News

• “Toronto researchers have found a new way to speed up the body’s ability to rid
itself of alcohol” Globe & Mail, Nov 12

• “Williams prof disavows own (nding of mishandled GOP ballots”

• “The association between early career informal mentorship in academic
collaborations and junior author performance” Gelman’s blog

• “What We Know About AstraZeneca’s Head-Scratching Vaccine Results” NY Times Nov 24

• “A very, very bad look for remdesivir” Science, Nov 6
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Alcohol Klostranec et al., Nature Comm.

Applied Statistics I November 26 2020 26



Alcohol Klostranec et al., Nature Comm.

Link
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Voting error Twitter, Bergstrom

Link
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Voting error Berkshire Eagle

• “In a signed a-davit, Miller claimed to show that more than 89,000 ballots requested by Pennsylvania
Republicans either were not counted by the state or requested by someone other than the registered
Republican Link

• “He used data provided by former Donald Trump campaign sta+er Matt Braynard.
• “Election o-cials have called the voting process secure
• “Miller told The Eagle that he made a mistake separating his analysis of the data from questions about
the reliability of the data itself.

• “Braynard collected the data by contracting call centers to get in touch with Republican voters across six
swing state

• “In his analysis, Miller wrote that the group called 20,000 Republican voters in Pennsylvania who,
according to state records, had requested but not returned ballots. In all, 2,684 agreed to answer
questions

• “Of the respondents, 463 reported that they actually had mailed in a ballot and 556 reported that they had
not requested a ballot ... Miller extrapolated from those numbers

• ‘To apply nave statistical formulas to biased data and publish this is both irresponsible and unethical,’ De
Veaux wrote in a statement

Applied Statistics I November 26 2020 29



Mentoring Nature Comm. Nov.17

Link
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Mentoring Nature Comm. Nov.17

Link to Gelman’s blog post
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Oxford vaccine NY Times, Nov.24

Link
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Remdesivir Science, Nov.6

Link to Science article Link to BMJ article
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