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averages aren’t always useful
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Today Start Recording

1. polls again; vaccine;
2. HW3 due December 3
3. Generalized linear models summary
4. Introduction to nonparametric regression
5. Visual Inference

• November 23 15.00 – 16.00 Christine Frankline
• https://canssiontario.utoronto.ca/?mec-events=ares_franklin_christine

• “School level Statistics and Data Science”
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Polling: November 5

“It’s no longer reasonable to assume that
we can get better”

“there was an overestimation of Mr.
Biden’s support across the board –
particularly with white voters and with
men”
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Update on polls Nov 19

Globe & Mail, November 14 “if Mr. Biden had instead
over-performed... they probably wouldn’t have
complained as much ”
“The pollsters are left with the challenge of forecasting
how everyone will vote, based on responses from the
small non-representative minority they can reach”
“polls accurately predicted the U.S. Presidential elections
of 2008 and 2012, the U.S. midterm elections of 2018, the
Canadian federal election of 2019...”

response rates are very low – between 1 and 5 %

“the people who do reply will be systematically different
from those who do not”
“turnout in this US election has been unusually high,
giving pollsters another headache”
“It’s not that the polls told us nothing. It’s that they could
not tell us what we yearned to know”
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Recap

• Generalized linear models theory
• link function, variance function, dispersion parameter φ, linear predictor
• derivation of maximum likelihood estimator re-weighted LS

• examples – binomial (esoph), Poisson (cloth), Gamma (chimps)

E(yi) = µi; g(µi) = xTi β; Var(yi) = φiV(µi) φi = aiφ

β̂ = (XTWX)−1XTWz; z = Xβ +W−1u; z(β) = Xβ +W−1(β)u(β)
Var(β̂) .

= (XTWX)−1 W is diagonal

On pp. 118-119 of FELM, this iteration is carried out in R on the bliss data
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Recap 2

β̂ = (XTWX)−1XTWz; z = Xβ +W−1u; z(β) = Xβ +W−1(β)u(β)
Var(β̂) .

= (XTWX)−1 W is diagonal

Wii =

ui =

Note β̂ is free of φ because of W and W−1, but Var(β̂) depends on φ

Warning: in FELM W is defined slightly differently (no φ), so he has Var(β̂) = (XTWX)−1φ̂
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Recap 2

β̂ = (XTWX)−1XTWz; z = Xβ +W−1u; z(β) = Xβ +W−1(β)u(β)
Var(β̂) .

= (XTWX)−1 W is diagonal

Wii =
1

φai{g′(µi)}2V(µi)

ui =
yi − µi

φaig′(µi)V(µi)

Note β̂ is free of φ because of W and W−1, but Var(β̂) depends on φ

Warning: in FELM W is defined slightly differently (no φ), so he has Var(β̂) = (XTWX)−1φ̂
Further, the wi on p.117 is not the same as the w0 on p. 188; SM uses ai instead which
would have been better for FELM
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The last slide about GLM theory

• choose a model, often based on type of response or on mean/variance relationship
• fit a model, using maximum likelihood estimation convergence (almost) guaranteed
• inference for individual coefficients β̂j from summary

• inference for groups of coefficients by analysis of deviance

• estimation of φ based on Pearson’s Chi-square
another typo in FELM p.121: cross out = var(µ̂)

φ̂ =
1

n− p

n!

i=1

(yi − µ̂i)
2

V(µ̂i)

• analysis of deviance: see p. 121 (near bottom) likelihood ratio tests
• diagnostics: same as for lm FELM p.124; SM p.477

• residuals: deviance or Pearson; can be standardized FELM likes 1/2 normal plots
• influential observations: uses hat matrix SMPracticals has very good GLM diagnostics

glm.diag, plot.glm.diag
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Really the last slide about GLM theory

• special to glm

• two models, Poisson and Binomial, have no φ parameter
• this has two consequences
• the residual deviance can be used as a test of fit of the model
• two pseudo-models are available called quasibinomial, quasipoisson

• quasi-binomial: var(yi) = φpi(1− pi)
• quasi-Poisson: var(yi) = φµi

• quasi- is a quick way to fit proportion or count responses, but allow the variance to
be bigger (or rarely, smaller) than it would be under the binomial or Poisson model

• caveat – none of this works for binary data, only binomial ni ≥ 5, approx
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Nonparametric Regression FELM, Ch. 11; SM, §10.7

• model yi = f (xi) + εi, i = 1, . . . ,n xi scalar

• mean function f (·) assumed to be “smooth”

• introduce a kernel function K(u) and define a set of weights

wi =
1
λ
K
"
xi − x0

λ

#

• estimate of f (x), at x = x0:

f̂λ(x0) =
$n

i=1 wiyi$n
i=1 wi

• Nadaraya-Watson estimator – local averaging local polynomial of degree 0
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Kernel smoothers FELM §11.1

• choice of bandwidth, λ controls smoothness of function
• larger bandwidth = more smoothing
• kernel estimators are biased
• making the estimate smoother increases bias, decreases variance

• choice of kernel function, K(·), controls smoothness and “local-ness”
• Faraway recommends Epanechnikov kernel K(x) = 3

4 (1− x2), |x| ≤ 1
• ksmooth(base) offers only uniform (box) or normal
• bkde(KernSmooth) offers normal, box, epanech, biweight, triweight

• biweight: K(x) = (1− |x|2)3, |x| ≤ 1
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Examples FELM Ch. 11
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... Examples FELM Ch. 11

exb <- data.frame(exb)

plota <- ggplot(exa) + geom_point(aes(x,y)) +

geom_line(aes(x,m))+ ggtitle("Example A")

plotb <- ggplot(exb) + geom_point(aes(x,y)) +

geom_line(aes(x,m))+ ggtitle("Example B")

plotc <- ggplot(faithful) + geom_point(aes(eruptions,waiting)) +

ggtitle("Old Faithful")

grid.arrange(plota, plotb, plotc, nrow=1) #in gridExtra library
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... Examples FELM Ch. 11
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... Examples FELM Ch. 11

with(faithful, plot(eruptions, waiting, cex=2, main = "bandwidth=0.1", pch="."))

lines(locpoly(faithful$eruptions,faithful$waiting,drv=0L,

degree=0,bandwidth=.1), col = "blue")

with(faithful, plot(eruptions, waiting, cex=2, main = "bandwidth=0.5", pch="."))

lines(locpoly(faithful$eruptions,faithful$waiting,drv=0L,

degree=0, bandwidth=.5), col = "blue")

with(faithful, plot(eruptions, waiting, cex=2, main = "bandwidth=2", pch="."))

lines(locpoly(faithful$eruptions,faithful$waiting,drv=0L,

degree=0, bandwidth=2), col = "blue")

Applied Statistics I November 19 2020 14



... Examples FELM Ch. 11

These are smoother than the plots in FELM using base::ksmooth
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Bias and MSE

• Nadaraya-Watson: f̂λ(x) = Σwiyi/Σwi; wi = 1
λK(

xi−x0
λ )

• f̂λ(x) is biased
E{f̂λ(x)}

.
=
1
2λ

2f ′′(x)

var{f̂λ(x)}
.
=

σ2

nλfλ(x)

%
K2(u)du

• could choose λ to minimize MSE = bias2 + var, at x
• could choose λ to minimize integrated MSE

• more usual to use cross-validation SM 10.7.1 (no n); FELM 11.1

CV(λ) = 1
n

n!

i=1

{yi − f̂−i(xi)}2
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Cross-validation

library(sm)

hm <- hcv(faithful$eruptions,

faithful$waiting, display = "lines")

sm.regression(faithful$eruptions,

faithful$waiting, h = hm,

xlab = "eruptions",

ylab = "waiting")
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Local Polynomials SM 10.7; FELM 11.3

• above uses local averaging based on kernel function
• better estimates can be obtained using local regression at point x

•
•

β̂ = (XTWX)−1XTWy

•
f̂λ(x0) = β̂0

• usually evaluate the function at sample points: f̂λ(xi), i = 1, . . . ,n
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... local polynomials SM 10.7; FELM 11.3

• odd-order polynomials work better than even; usually local linear fits are used

• kernel function is often a Gaussian density, or the tricube kernel
K(u) = (1− |u|3)3, |u| ≤ 1

• as with N-W (local averaging) estimators, choice of bandwidth controls smoothness
• loess is the most widely used, and is the default in ggplot2

• fits a local linear regression, but not by least squares

• uses a robust version of least squares that downweights outliers
• the result is that the bandwidth can change with x

Applied Statistics I November 19 2020 19



... local polynomials SM §10.7

• β̂ = (XTWX)−1XTWy W = diag(w1, . . . ,wn)

• f̂λ(x0) = β̂0 =
$n

i=1 S(x0; xi,λ)yi

• S(x0; x1,λ), . . . , S(x0; xn,λ) first row of “hat” matrix

• this makes it relatively easy to analyse the behaviour of local polynomial smoothers
SM §10.7

• and to simplify the expression for the cross-validation criterion CV(λ)

• fitting at each sample value gives

f̂λ(xi) =
n!

j=1

S(xi; xj,λ)yj

smoothing matrixApplied Statistics I November 19 2020 20



Another look at cross-validation SM §10.7 p.524

•

CV(λ) =
n!

i=1

{yi − f̂−i(xi)}2

• for local polynomials

CV(λ) =
n!

i=1

&
yi − f̂λ(xi)
1− Sii(λ)

'2

• even simpler

GCV(λ) =
n!

i=1

&
yi − f̂λ(xi)
1− tr(Sλ)/n

'2

•

f̂λ(xi) =
n!

j=1

S(xi; xj,λ)yj
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Examples FELM Ch. 11
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Examples FELM Ch. 11

Applied Statistics I November 19 2020 23



Example SM 10.15
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Example SM 10.14
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Example ISL 7.9
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Lineups
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Chowdhury et al. 2015, Comput. Statist.
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Class ended at this point

the following slides will be for next week
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How do we choose a model? CD Ch. 6.5

• in many fields of study the models used as a basis for interpretation do not have a
special subject-matter base

• rather represent broad patterns of haphazard variation quite widely seen
• this is typically combined with a specification of the systematic part of the variation
• which is often the primary focus
• modelling then often reduces to a choice of distributional form
• and of the independence structure of the random components
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... empirical models CD Ch. 6.5

• functional form of the probability distribution sometimes critical, for example where
an implicit assumption is involved of a relationship between variance and mean:
geometric, Poisson, binomial

• the simple situations that give rise to binomial, Poisson, geometric, exponential,
normal and log normal are some guide to empirical model choice in more complex
situations

• In some specific contexts there is a tradition establishing the form of model
• illustration: financial time series – Y(t) = log{P(t)/P(t− 1)} has a long-tailed
distribution, small serial correlation, large serial correlation in Y2(t) stock price

• often have a long tail of large values; exponential distribution is a natural staring point
• extensions may be needed, including Weibull, gamma or log-normal
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... empirical models CD Ch. 6.5

• often helpful to develop random and systematic parts of the model separately
• models should obey natural or known constraints, even if these lie outside the range
of the data

• example P(Y = 1) = α+ βx =⇒ log P(Y=1)
P(Y=0) = α′ + β′x

• however, β measures the change in probability per unit change in x β′ does not

• when relationship between y and several variables x1, . . . xp is of interest
• unlikely that the system is wholly linear
• impractical to study nonlinear systems of unknown form
• therefore reasonable to begin with a linear model
• and seek isolated nonlinearities
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... empirical models CD Ch. 6.5

• often helpful to develop random and systematic parts of the model separately
• naive approach: one random variable per study individual
• values for different individuals independent

• more realistic: possibility of structure in the random variation
• dependence in time or space, or a hierarchical structure corresponding to
levels of aggregation

• ignoring these complications may give misleading assessments of precision,
or bias the conclusions
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... empirical models CD Ch. 6.5

• example: standard error of mean σ/
√
n

• but, under mutual correlation, becomes (σ/
√
n)(1+ Σρij)

1/2

• if each observation correlated with k others, at same level,
(σ/

√
n)(1+ kρ)1/2

0.1 0.2 0.4 0.8

--------------------------

1.14 1.26 1.48 1.84

1.18 1.34 1.61 2.05

1.22 1.41 1.73 2.24

1.26 1.48 1.84 2.41

1.30 1.55 1.95 2.57

1.34 1.61 2.05 2.72

k = 3 : 8
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... empirical models CD Ch. 6.5

• important to be explicit about the unit of analysis
• has a bearing on independence assumptions involved in model formulation
• example: if all patients in the same clinic receive the same treatment
• then the clinic is the unit of analysis

• in some contexts there may be a clear hierarchy
• assessment of precision comes primarily from comparisons between units
• modelling of variation within units is necessary only if of intrinsic interest

• when relatively complex responses are collected on each individual, the simplest
way of condensing these is through a number of summary descriptive measures

• in other situations it may be necessary to represent explicitly the different
hierarchies of variation
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Example: The NMMAPS studies

• 90 largest cities in US by population (US Census)
• daily mortality counts from National Center for Health Statistics 1987–1994
• hourly temperature and dewpoint data from National Climatic data Center
• data on pollutants PM10, O3, CO, SO2, NO2 from EPA
• response: Yt number of deaths on day t
• explanatory variables: Xt pollution on day t− 1, plus various confounders: age and
size of population, weather, day of the week, time

• mortality rates change with season, weather, changes in health status, ...
Peng R., Dominici F., Louis T., (2006) JRSS A, 169, 179-203

NMMAPS: National Morbidity, Mortality and Air Pollution Study
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... the NMMAPS studies

• Yt ∼ Poisson(µt)

• logµt = age specific intercepts + βPMt + γDOW + g(t,df ) + s(tempt, 6) +
s(tempt−1, 6) + s(dewpointt, 3) + s(dewpointt−1, 3) + s4(dew0, 3) + s5(dew1−3, 3)

• three ages categories; separate intercept for each
(< 65, 65− 74, ≥ 75)

• dummy variables to record day of week
• s(x, 7) a smoothing spline of variable x with 7 degrees of freedom
• estimate of β for each city; estimates pooled using Bayesian arguments for an
overall estimate

• very difficult to separate out weather and pollution effects
see also: Crainiceanu, C., Dominici, F. and Parmigiani, G. (2008). Biometrika 95 635–51
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