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We can think of the linear model

yi = xT
i β + εi, εi

ind∼ (0, σ2), (1)

in two parts. First we specify the mean structure

E(yi | xi) = xT
i β,

and then we specify the distribution of Yi:

Yi ∼ N(xT
i β, σ

2), (2)

where we may not always need to make the normality assumption, but this is implicit if we
base inference on t-tests and F -tests.

One possibility that is not very often addressed in textbooks is to relax the normality as-
sumption but keep model (1); for example to assume that ε follows a t-distribution with an
unknown number of degrees of freedom. This is touched on in Davison, §8.4.

The covariates in (1) may be of many types: measurements of continuous variables, trans-
formations of continuous variables, sets of functions of these variables, such as cubic polyno-
mials, and sets of dummy variables to index levels of a factor or categorical covariates. The
response variable y is typically continuous, as the model would not usually be suitable for a
response variable that was categorical.

One way to generalize (1) is to allow the mean structure to be nonlinear in β, leading to
solution by nonlinear least squares. This is addressed in Davison §10.1. So, for example, we
might have

E(yi | xi) = β0{1− exp(−xi/β1)}
and yi ∼ N{E(yi | xi), σ

2}. Equivalently of course we can write yi = E(yi | xi) + εi, where
εi ∼ N(0, σ2). It is usual in this model to estimate β by least squares, which is maximum
likelihood under the normality assumption: iterative solution will be needed. These types
of intrinsically non-linear models are most natural when there is a fairly well-understood
mechanism that converts x to y, such as in modelling the uptake of drugs in biological
systems, or the growth of populations in some ecological models.

Another generalization of (1) is to extend the distribution of response to accommodate a
wider variety of types of response. For example, if yi is a count variable, that takes values
0, 1, . . . , a simple starting point is the Poisson distribution:

f(yi) = λyi
i e

−λi/yi!, yi = 0, 1, . . . ;λi > 0. (3)

We then might link our n observations using a set of p covariates by modelling the mean
function as

E(yi) = λi = exp(xT
i β).
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The exponential form is chosen because this ensures λi > 0. Note that there is no εi in model
(2), i.e. no additive error. The randomness in the response is generated from the Poisson
distribution, not from measurement (or other types of) error. The final model for a sample
of size n is

L(β; y) ∝
n!

i=1

{exp(xT
i β)}yie− exp(xT

i β), (4)

where constants not involving β have been dropped.

When the response is a number of or a proportion of successes in independent trials, then a
binomial distribution seems a plausible starting point. Thus

f(yi) =

"
mi

yi

#
pyii (1− pi)

mi−yi , yi = 0, 1, . . . ,mi; 0 ≤ pi ≤ 1. (5)

The logistic model for pi assumes

log

"
pi

1− pi

#
= xT

i β,

or

pi =
exp(xT

i β)

1 + exp(xT
i β)

.

The likelihood function is then

L(β; y) ∝
n!

i=1

exp[(xT
i β)yi −mi log{1 + exp(xT

i β)}]. (6)

Models (4) and (6), and in fact also (2), are all examples of generalized linear models; the
generalization is through the mean structure, which is not linear in β, but is related to a linear
function of β via a link function. In R generalized linear models are fit using glm(formula

= ... , family = ... , data = ... ). If the family is binomial, then the formula
has as its left hand side either a vector of 1’s and 0’s, or a two-column matrix of successes
and failures. (The second is just a way to tell R what the mi’s are.)

Generalized linear models are fit by maximum likelihood, and we use general asymptotic
results from the theory of likelihood inference to construct confidence intervals and compute
p-values.
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