Example G Cost of construction of nuclear power plants

Description of data

Table G.1 gives data, reproduced by permission of the Rand Corporation, from a report (Mooz, 1978)
on 32 light water reactor (LWR) power plants constructed in USA. It is required to predict the capital
cost involved in the construction of further LWR power plants. The notation used in Table G.1is
explained in Table G.2. The final 6 lines of datain Table G. 1 relate to power plants for which
there were partial turnkey guarantees and for which it is possible that some manufacturer’s subsidies
might be hidden in the quoted capital costs.

Table G.1 Data on thirty-two LWR power plants in USA

C D T1 T2 S PR NE CT BW N PT
1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 452.99 67.33 10 73 1065 0 0 1 0 1 0
3 443.22 67.33 10 85 1065 1 0 1 0 1 0
4 652.32 68.00 11 67 1065 0 1 1 0 12 0
5 642.23 68.00 11 78 1065 1 1 1 0 12 0
6 345.39 67.92 13 51 514 0 1 1 0 3 0
7 272.37 68.17 12 50 822 0 0 0 0 5 0
8 317.21 68.42 14 59 457 0 0 0 0 1 0
9 457.12 68.42 15 55 822 1 0 0 0 5 0
10 690.19 68.33 12 71 792 0 1 1 1 2 0
11 350.63 68.58 12 64 560 0 0 0 0 3 0
12 402.59 68.75 13 47 790 0 1 0 0 6 0
13 412.18 68.42 15 62 530 0 0 1 0 2 0
14 495.58 68.92 17 52 1050 0 0 0 0 7 0
15 394.36 68.92 13 65 850 0 0 0 1 16 0
16 423.32 68.42 11 67 778 0 0 0 0 3 0
17 712.27 69.50 18 60 845 0 1 0 0 17 0
18 289.66 68.42 15 76 530 1 0 1 0 2 0
19 881.24 69.17 15 67 1090 0 0 0 0 1 0
20 490.88 68.92 16 59 1050 1 0 0 0 8 0
21 567.79 68.75 11 70 913 0 0 1 1 15 0
22 665.99 70.92 22 57 828 1 1 0 0 20 0
23 621.45 69.67 16 59 786 0 0 1 0 18 0
24 608.80 70.08 19 58 821 1 0 0 0 3 0
25 473.64 70.42 19 44 538 0 0 1 0 19 0
26 697.14 71.08 20 57 1130 0 0 1 0 21 0
27 207.51 67.25 13 63 745 0 0 0 0 8 1
28 288.48 67.17 9 48 821 0 0 1 0 7 1
29 284.88 67.83 12 63 886 0 0 0 1 11 1
30 280.36 67.83 12 71 886 1 0 0 1 11 1
31 217.38 67.25 13 72 745 1 0 0 0 8 1
32 270.71 67.83 7 80 886 1 0 0 1 11 1

Table G.2 Notation for data of Table G.2

¢} Cost in dollars X 107%, adjusted to 1976 base
D Date construction permit issued
Tl Time between application for and issue of permit
T2 Time between issue of operating license and construction permit
S Power plant net capacity (MwWe)
PR Prior existence of an LWR on same site (=1)
NE Plant constructed in north-east region (=1)
CT Use of cooling tower (=1)
BW Nuclear steam supply system manufactured by Babcock-Wilcox (=1)
N Cumulative number of power plants constructed by each architect-engineer
PT Partial turnkey plant (=1)

General considerations

One of the most common problems in advanced applied statistics is the study of the relation between a
single continuous response variable and a number of explanatory variables. When the expected response
can be represented as a linear combination of unknown parameters, with coefficients determined by the
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explanatory variables, and when the error structure is suitably simple, the techniques of multiple
regression based on the method of least squares are applicable. The formal theory of multiple regression,
and the associated significance tests and confidence regions, have been extensively developed; see, for
example, Draper and Smith (1981) and Seber (1977). Further, computer programs for implementing the
methods are widely available.

Nevertheless, there can be difficulties, partly of technique but more important of interpretation, in
applying methods, especially to observational data with fairly large number of explanatory variable. We
now mention briefly some commonly occurring points. Of course, in any particular application many of
the potential difficulties may be absent and indeed the present example seems relatively well behaved.

Some issues that arise fairly commonly are the following:

(i) What is the right general form of model to fit?

(i1) Are there aspects of error structure that seriously affect the analysis?

(ii1) Are there outliers or anomalous observations that need to be isolated?

(iv) What can be done if a subset of observations is isolated, possibly not following the same model
as the main body of data?

(v) Is it feasible to simplify the model, normally by reducing the number of explanatory variables?

(vi) What are the limitations on the interpretation and application of the final relation achieved?

All these points, except (vi), can to some extent be dealt with formally, for instance, by comparing the fits
of numerous competing models. Often, though, this would be a ponderous way to proceed.

Considerations of point (i), choice of form of relation, involves a possible transformation of response
variable, in the present instance cost and 1og (cost) being two natural variables for analysis, and a
choice of the nature and form of the explanatory variables. For instance, should the explanatory variables,
where quantitative, be transformed? Should derived explanatory variables be formed to investigate
interactions? Frequently in practice, any transformations are settled on the basis of general experience: the
need for interaction terms may be examined graphically or, especially with large numbers of explanatory
variables, may be checked by looking only for interactions between variables having large ‘main effects’.
In the present example, 1og (cost) has been taken as response variable and the explanatory variables S, @
T1, T2 and N have also taken in 1og form, partly to lead to unit-free parameters whose values can be
interpreted in terms of power-law relations between the original variables. It is plausible that random
variations in cost should increase with the value of cost and this is another reason for log transformation.

Complexities of error structure, point (ii), can arise via systematic changes in variance, via notable non-
normality of distribution and, particularly importantly, via correlation in errors for different individuals.
All these effects may be of intrinsic interest, but more commonly have to be considered either because a
modification of the method of least squares is called for or because, while the least-squares estimates and
fit may be satisfactory, the precision of the least-squares estimates may be different from that indicated
under standard assumptions. In particular, substantial presence of positive correlations can mean that the
least-squares estimates are much less precise than standard formulae suggest. A special form of correlated
error structure is that of clustering of individuals into groups, the regression relations between and within
groups being quite different. There is no sign that any of these complications are important in the present
instance.

Somewhat related is point (iii), occurrence of outliers. Where interest is focused on particular regression @
coefficients, the most satisfactory approach is to examine informally or formally whether there is any

single observation or a small set of observations whose omission would greatly change the estimate in
question; see also point (iv).
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In the present example, there is a group of 6 observations distinct from the main body of 26 and there is
some doubt whether the 6 should be included. This is quite a common situation; the possibly anomalous
group may, for example, have extreme values of certain explanatory variables. The most systematic
approach is to fit additional linear models to test consistency. Thus one extra parameter can be fitted to
allow for a constant displacement of the anomalous group and the significance of the resulting estimate
tested. A more searching analysis is provided by allowing the regression coefficients also to be different
in the anomalous group; in the present instance this has been done one variable at a time, because with 10
explanatory variables and only 6 observations in the separate group there are insufficient observations to
examine for anomalous slopes simultaneously.

Point (v), the simplification of the fitted model, is particularly important when the number of explanatory @
variables is large, and even more particularly when there is an a priori suspicion that many of the

explanatory variables are measuring essentially equivalent things. The need for such simplification arises
particularly, although by no means exclusively, in observational studies. More explicitly, the reasons for
seeking simplification are that:

(a) estimation of parameters of clear interest can be degraded by including unnecessary terms in the
model;

(b) prediction of response of new individuals is less precise if unnecessary terms are included in the
predictor;

(c) itis often reasonable to expect that when explanatory variables are available only a few will have
a major effect on response and it may be of primary interest to isolate these important variables
and to interpret their effects;

(d) it may be desirable to simplify future work by recording a smaller number of explanatory
variables.

Techniques for the retention of variables are, as explained in Section 3.4 of Part I, forward, backward or
some mixture. Where some of the parameters represent effects of direct interest they should be included
regardless of operation of a selection procedure. It is entirely possible that forward selection leads to a
different equation from backward selection, although this has not happened in the present example. It is
therefore important, especially where interpretation of the particular form of equation is central to the
analysis, that if there are several simple equations that fit almost equally well, all should be isolated for
consideration and not one chosen somewhat arbitrarily.

Suppose now that a representation, hopefully quite a simple one, has been obtained for expected response @
as a function of certain explanatory variables. What are the principal aspects in using and interpreting
such an equation? This is point (vi) of the list above. There are at least five rather different possibilities.

Firstly, an equation such as that summarized in Table G. 4, including the residual standard deviation,
provides a concise description of the data, as regards the dependence of cost on the other variables. Such a
description can be useful in thinking about the data quantitatively and in comparing different, somewhat
related, sets of data.

A second descriptive use is in the study of the individual cases. The residual from the fitted model is an
index for each power station assessing its cost relative to what might have been anticipated given the
explanatory variables.

Thirdly, the equation can be used for prediction. A new individual has given (or sometimes predicted)
values of the relevant explanatory variables and the equation, and the associated measures of variability,
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are used to forecast cost, preferably with confidence limits. In such prediction the main assumption, in
addition to the technical adequacy of the model in the region of explanatory variables required for
prediction, is that any unmeasured variable affecting response keeps the same statistical relationship with
the measured explanatory variables as obtains in the data. Thus, in particular, if the new individual to be
predicted differs in some way from the reference data, other than is directly or indirectly accounted for in
the explanatory variables, a modification of the regression predictor is worth consideration. For example,
a major technological innovation between the data analyzed and the individual to be predicted would call
for such modification of the predictor.

Fourthly, the equation may be used to predict for a new individual, or sometimes for one of original
individuals, the consequences of changes in one or more of the explanatory variables. For example, one
might wish to predict not so much the cost for a new individual as the change in cost for that individual as
size changes. The relevant regression coefficient predicts the change, provided that the other explanatory
variables are held fixed and that any important unobserved explanatory variables change appropriately
with change in size. The prediction of changes in uncontrolled observational systems, e.g. the social
sciences, needs particularly careful specification of the changes in explanatory variables envisaged.

Finally, and in some ways most importantly, one may hope to gain insight into the system under study by
careful inspection of which explanatory variables contribute appreciably to the response and of the signs
and the magnitude of the associated regression coefficients. Thus in the present example, why do certain
variables appear not to contribute appreciably, why is the regression coefficient on log (size)
appreciably less than 1, the value for proportionality, and so on? As indicated in the previous paragraph,
the regression coefficients estimate changes in response under perturbations of the system whose precise
specification needs care.

The last two applications of the regressions need considerable thought, especially if there is any
possibility that an important explanatory variable has been overlooked.

The analysis

As explained in the preceding section, we take 1og (C), 1og(S), log(N), log(T1) and log(T2);
throughout natural logs are used.

A regression of 1og (C) on all 10 explanatory variables gives a residual mean square of
0.5680/21=0.0271 with 21 degree of freedom. Elimination of insignificant variables successively
one at a time removes BW, 1og(T1), log(T2) and PR (Table G.3), leaving 6 variables and a
residual mean square of 0.0253 with 25 degrees of freedom; the residual standard deviationis 0.159.

Table G.3 Elimination of wvariables

No. variables variables Residuals
included eliminated ss df ms
10 - 0.56803 21 0.02705
9 BW 0.57091 22 0.02595
8 log(T1) 0.57300 23 0.02491
7 log(T2) 0.61654 24 0.02569
6 PR 0.63374 25 0.02535

None of the eliminated variables is significant if re-introduced. The estimated coefficients and standard
errors for the six-variable regression are given in Table G. 4. The variable PT, denoting partial turnkey
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guarantee, has a coefficient of -0 .,0261, with a standard error of 0 35 (25df), suggesting that
cost tends to be reduced on average by about 20% for these 6 plants.

Table G.4 Multiple regression: full and reduced models

Variables Regression coefficient

Reduced model Full model

Estimate Std. Error Estimate Std. Error
Constant -13.26031 3.13950 -14.24198 4.22880
PT -0.22610 0.11355 -0.22429 0.12246
CT 0.14039 0.06042 0.12040 0.06632
log (N) -0.08758 0.04147 -0.08020 0.04596
log(S) 0.72341 0.11882 0.69373 0.13605
D 0.21241 0.04326 0.20922 0.06526
NE 0.24902 0.07414 0.25807 0.07693
log(T1) - - 0.09187 0.24396
log(T2) - - 0.28553 0.27289
PR - - -0.09237 0.07730
BW - - 0.03303 0.10112
Residual st.dev 0.1592 (25 df) 0.1645 (21 df)

To check whether these 6 plants and the 26 others can be fitted by a model with common coefficients for
each of the variables CT, 1og (N), Log (S) and D, we include in turn in the regression the interaction of
each variable with PT. This cannot be done for the variable NE since all 6 PT plants were constructed in
the same region. Table G.5 summarizes the results. None of the interaction coefficients is significant.

Table G.5. Regression including interaction with PT

Z = CT Z = log(N) Z = log(S) Z =D
Variable Estimate s.e Estimate s.e Estimate s.e Estimate s.e
Constant -13.23435 3.19296 -13.258896 3.225077 -13.08645 3.23858 -13.22438 3.23096
PT -0.24289 0.12210 -0.229274 0.826544 -2.18759 5.85357 -1.52852 15.17047
CT 0.13123 0.06515 0.140440 0.062872 0.13998 0.06154 0.14120 0.06237
log (N) -0.08680 0.04221 -0.087574 0.042334 -0.08683 0.04229 -0.08749 0.04234
log(cap) 0.72291 0.12083 0.723359 0.121937 0.71761 0.12222 0.72217 0.12210
D 0.21213 0.04399 0.212398 0.044348 0.21044 0.04444 0.21201 0.04440
NE 0.24899 0.07539 0.249020 0.075679 0.24841 0.07551 0.24889 0.07567
PT*Z 0.07976 0.18867 0.001427 0.368278 0.29159 0.87002 0.01928 0.22459

We note that the coefficients of the 6 common variables in the Table G. 5 remain fairly stable, except
for PT which, in two cases, is estimated very imprecisely. A model with common coefficients as given in
Table G.4 seems reasonable. With this model the predicted cost increases with size, although less
rapidly than proportionally to size, is further increased if a cooling tower is used or if constructed in the
NE region, but decreases with experience of architect-engineer.

Fitted values and residuals are given in Table G. 6. The residuals give no evidence of outliers or of any
systematic departure from the assumed model; this can be checked by plotting in the usual ways, against
the explanatory variables, for example, against D (Fig G.1) and 1log(S) (Fig G.2), against
fitted values (Fig G.3), and normal order statistics (FigG.4).

The getimated standard error of predicted 1og (cost) for a new power plant, provided conditions are @
fairly close to the avarage of the the observed 32 plants, is approximately 0.159 (1+1/32)*/?=0.161
with 25 degrees of freedom. Thus there is a 95% chance that the actual cost for the new plant will lie

within about +£39% of the predicted cost.
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Table G.6 Comparison of observed and fitted values based on

6-variable regression of Table G.4 fitted to log(C)

Observed Fitted Residual Observed Fitted Residual
1 6.13134 6.05053 0.08081 17 6.56846 6.37869 0.18976
2 6.11587 6.22464 -0.10877 18 5.66871 5.89063 -0.22192
3 6.09407 6.22464 -0.13057 19 6.78133 6.49187 0.28946
4 6.48054 6.39836 0.08218 20 6.19620 6.22961 -0.03341
5 6.46495 6.39836 0.06659 21 6.34175 6.17770 0.16405
6 5.84467 5.97577 -0.13109 22 6.50128 6.65139 -0.15011
7 5.60716 5.93437 -0.32721 23 6.43206 6.24881 0.18325
8 5.75956 5.70374 0.05583 24 6.41149 6.38393 0.02756
9 6.12495 5.98747 0.13748 25 6.16045 6.12914 0.03131
10 6.53697 6.41112 0.12585 26 6.54699 6.79742 -0.25043
11 5.85973 5.78855 0.07119 27 5.33518 5.40053 -0.06535
12 5.99792 6.26190 -0.26398 28 5.66463 5.60589 0.05873
13 6.02146 5.89063 0.13083 29 5.65207 5.62123 0.03084
14 6.20573 6.24130 -0.03558 30 5.63607 5.62123 0.01484
15 5.97726 6.01604 -0.03878 31 5.38165 5.40053 -0.01888
16 6.04813 5.99241 0.05572 32 5.60105 5.62123 -0.02018

Fig G.1 Residuals of log(C) from6-variable nodel vs D,date construction pernit issued Fig G.2 Residuals of log(C) fromé6-variable model vs log(S),power plant net capacity
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Appendix:

S i i i i i
# R code for Example G
HHAHHHHSH AR AR AR A AR SRS

R Code

# The data can be sourced from Prof Reid’s website:

# source(file=url ("http://www.utstat.utoronto.ca/reid/stad442f/ExGdata.

C = scan()

460.05 452.99 443.22 652.32 642.23 345
402.59 412.18 495.58 394.36 423.32 712.
621.45 608.80 473.64 697.14 207.51 288.
D = scan()

68.58 67.33 67.33 68 68 67.92 68.17 68.
68.92 68.42 69.50 68.42 69.17 68.92 68.
67.17 67.83 67.83 67.25 67.83

Tl = scan()

14 10 10 11 11 13 12 14 15 12 12 13 15
13 9 12 12 13 7

T2 = scan()

46 73 85 67 78 51 50 59 55 71 64 47 62
63 48 63 71 72 80

S = scan()

687 1065 1065 1065 1065 514 822 457 822 792 560 790 530 1050 850 778

.39

27
48

42

75

17

52

272.37 317.21 457.
289.66 881.24 490.
.38

284.88 280.36 217

68
70

.42 68.
.92 69.

33
67

68.
70.

58
08

13 11 18 15 15 16

65 67 60 76 67 59

1090 1050 913 828 786 821 538 1130 745 821 886 886 745 886

PR = scan{()

001010001 0000O000010101O01O0O00O0

NE = scan()
100111000101 000010

CT = scan()
011111000100100001

BW = scan{()
O0O0OOOOOOOLTI1TIO0OOODODTILTO0OODO

N = scan()
141112 12 3515236 2 716 3

001

0 001000O0O0CO0CO0CO

001010110100

00100000CO0CO0CT1T1

17 2 1 8 15

PT = c(rep(0,26), rep(l,6))
table.Gl = data.frame(C, D, T1, T2, S,
B

# Use backward stepwise regression
# to fit a linear regression model

PR, NE,

20 18 3

CT,

12
88

68.
70.

11

70

1

19 21

BW, N, PT)

690.19
567.79
270.71

350.63
665.99

75
42

68.42
71.08

68.
67.

92
25

22 16 19 19 20

57 59 58 44 57

845 530

8 7 11 11 8 11
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# Full regression model: regress log(C) on all 10 explanatory variables

nuclearl0.lm = 1Im(log(C) ~ PT + CT + log(N) + log(S) + D + NE + log(T1l)
+ log(T2) + PR + BW, data = table.Gl)

summary (nuclearl0.1lm)

anova (nuclearl1l0.1lm)

> summary (nuclearl0.1lm)

Call:

Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + log(Tl) +
log(T2) + PR + BW, data = nuclear)

Residuals:
Min 10 Median 30 Max

-0.28574 -0.10408 0.02784 0.09512 0.25031

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -14.24198 4.22880 -3.368 0.00291 **
PT -0.22429 0.12246 -1.832 0.08125

CT 0.12040 0.06632 1.815 0.08376

log (N) -0.08020 0.04596 -1.745 0.09562 .
log(8) 0.69373 0.13605 5.099 4.75e-05 ***
D 0.20922 0.06526 3.206 0.00425 *~*
NE 0.25807 0.07693 3.355 0.00300 **
log(T1) 0.09187 0.24396 0.377 0.71025
log(T2) 0.28553 0.27289 1.046 0.30731

PR -0.09237 0.07730 -1.195 0.24542

BW 0.03303 0.10112 0.327 0.74715
Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

Residual standard error: 0.1645 on 21 degrees of freedom
Multiple R-Squared: 0.8717, Adjusted R-squared: 0.8106
F-statistic: 14.27 on 10 and 21 DF, p-value: 3.08le-07

> anova (nuclearl10.1lm)
Analysis of Variance Table

Response: log(C)

Df Sum Sg Mean Sqg F value Pr (>F)
PT 1 2.01272 2.01272 74.4105 2.410e-08 ***
CT 1 0.04550 0.04550 1.6823 0.2086954
log (N) 1 0.26551 0.26551 9.8159 0.0050252 **
log(S) 1 0.75496 0.75496 27.9110 3.08le-05 ***
D 1 0.42961 0.42961 15.8828 0.0006729 ***
NE 1 0.28601 0.28601 10.5738 0.0038159 **
log(T1) 1 0.00101 0.00101 0.0372 0.8489384
log(T2) 1 0.01572 0.01572 0.5812 0.4543297
PR 1 0.04610 0.04610 1.7044 0.2058380
BW 1 0.00289 0.00289 0.1067 0.7471545
Residuals 21 0.56803 0.02705
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 " ' 1

# Now start backward stepwise reduction of the full model:
# Elimination of insignificant variables successively, one at a time

# Backward selection step 1: remove BW from the full model
nuclear9.lm = update(nuclearl0.lm, .~. — BW)

summary (nuclear9.1lm)
anova (nuclear9.1m)

> summary (nuclear9.1lm)

Call:

Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + log(Tl) +
log(T2) + PR, data = nuclear)

Residuals:
Min 10 Median 30 Max

-0.28582 -0.09830 0.02480 0.09404 0.24672

Coefficients:
Estimate Std. Error t value Pr(>|t])




(Intercept) -14.70537 3.90207 -3.769 0.00106 **
PT -0.21530 0.11688 -1.842 0.07899

CT 0.11655 0.06392 1.823 0.08188
log(N) -0.07684 0.04388 -1.751 0.09384 .
log(s) 0.68804 0.13216 5.206 3.20e-05 ***
D 0.21545 0.06113 3.524 0.00191 **
NE 0.25833 0.07535 3.428 0.00240 **
log(T1) 0.06313 0.22287 0.283 0.77962
log(T2) 0.32211 0.24375 1.321 0.19993

PR -0.09820 0.07367 -1.333 0.19622
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1611 on 22 degrees of freedom
Multiple R-Squared: 0.8711, Adjusted R-squared: 0.8183
F-statistic: 16.51 on 9 and 22 DF, p-value: 7.604e-08

> anova (nuclear9.1lm)
Analysis of Variance Table

Response: log(C)
Df Sum Sg Mean Sqg F value Pr (>F)

PT 1 2.01272 2.01272 77.5597 1.155e-08 ***
CT 1 0.04550 0.04550 1.7534 0.199037
log(N) 1 0.26551 0.26551 10.2313 0.004145 **
log(S) 1 0.75496 0.75496 29.0923 2.042e-05 ***
D 1 0.42961 0.42961 16.5550 0.000510 ***
NE 1 0.28601 0.28601 11.0214 0.003112 **
log(T1) 1 0.00101 0.00101 0.0388 0.845732
log(T2) 1 0.01572 0.01572 0.6058 0.444674

PR 1 0.04610 0.04610 1.7765 0.196217
Residuals 22 0.57091 0.02595

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '." 0.1 " ' 1

# Backward selection step 2: remove log(Tl) from the previous model

nuclear8.lm = update(nuclear9.lm, .~. — log(T1l))
summary (nuclear8.1lm)
anova (nuclear8.1m)

> summary (nuclear8.lm)

Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + log(T2) +
PR, data = nuclear)
Residuals:
Min 10 Median 30 Max
-0.29131 -0.09935 0.02178 0.09351 0.24800
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -15.22561 3.37328 -4.514 0.000156 ***
PT -0.21572 0.11451 -1.884 0.072280 .
CT 0.11462 0.06227 1.841 0.078631
log (N) -0.07873 0.04249 -1.853 0.076751 .
log(8S) 0.68246 0.12805 5.330 2.07e-05 **x*
D 0.22722 0.04394 5.171 3.06e-05 **x*
NE 0.25895 0.07379 3.509 0.001886 **
log(T2) 0.30186 0.22833 1.322 0.199155
PR -0.09336 0.07022 -1.330 0.196709
Signif. codes: 0 '"***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 " ' 1

Residual standard error: 0.1578 on 23 degrees of freedom
Multiple R-Squared: 0.8706, Adjusted R-squared: 0.8256
F-statistic: 19.34 on 8 and 23 DF, p-value: 1.709e-08

> anova (nuclear8.1m)
Analysis of Variance Table

Response: log(C)

Df Sum Sg Mean Sqg F value Pr (>F)
PT 1 2.01272 2.01272 80.7905 5.495e-09 ***
CT 1 0.04550 0.04550 1.8265 0.1896866
log (N) 1 0.26551 0.26551 10.6575 0.0034084 *~*
log(S) 1 0.75496 0.75496 30.3042 1.345e-05 ***
D 1 0.42961 0.42961 17.2446 0.0003848 ***
NE 1 0.28601 0.28601 11.4805 0.0025293 *~*
log(T2) 1 0.01671 0.01671 0.6707 0.4212245
PR 1 0.04404 0.04404 1.7677 0.1967092
Residuals 23 0.57300 0.02491



Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1
# Backward selection step 3: remove log(T2) from the previous model

nuclear7.lm = update(nuclear8.1lm, .~. — 1log(T2))
summary (nuclear7.1lm)
anova (nuclear7.1m)

> summary (nuclear7.1lm)

Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + PR,
data = nuclear)
Residuals:
Min 10 Median 30 Max
-0.34152 -0.09161 0.03175 0.07992 0.26041
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.58533 3.18531 -4.265 0.000269 ***
PT -0.20915 0.11617 -1.800 0.084379 .
CT 0.13603 0.06106 2.228 0.035525 *
log (N) -0.09146 0.04202 -2.177 0.039574 ~*
log(S) 0.74194 0.12174 6.095 2.70e-06 ***
D 0.21566 0.04373 4.932 4.94e-05 ***
NE 0.25051 0.07465 3.356 0.002629 **
PR -0.05235 0.06397 -0.818 0.421213
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 ' ' 1

Residual standard error: 0.1603 on 24 degrees of freedom
Multiple R-Squared: 0.8608, Adjusted R-squared: 0.8202
F-statistic: 21.2 on 7 and 24 DF, p-value: 7.918e-09

> anova (nuclear7.1m)
Analysis of Variance Table

Response: log(C)
Df Sum Sg Mean Sqg F value Pr (>F)

PT 1 2.01272 2.01272 78.3493 5.033e-09 ***

CT 1 0.04550 0.04550 1.7713 0.1957277

log (N) 1 0.26551 0.26551 10.3355 0.0037047 **

log(S) 1 0.75496 0.75496 29.3885 1.437e-05 ***

D 1 0.42961 0.42961 16.7236 0.0004202 ***

NE 1 0.28601 0.28601 11.1336 0.0027535 *x*

PR 1 0.01720 0.01720 0.6697 0.4212134

Residuals 24 0.61654 0.02569

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Backward selection step 4: remove PR from the previous model

nuclear6.lm = update(nuclear7.1lm, .~. - PR)
summary (nuclear6.1lm)
anova (nuclear6.1lm)

> summary (nuclear6.lm)

Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE, data = nuclear)

Residuals:
Min 10 Median 30 Max
-0.32721 -0.07620 0.02920 0.08115 0.28946

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -13.26031 3.13950 -4.224 0.000278 **x*
PT -0.22610 0.11355 -1.991 0.057490 .
CT 0.14039 0.06042 2.323 0.028582 *
log (N) -0.08758 0.04147 -2.112 0.044891 ~*
log(S) 0.72341 0.11882 6.088 2.31le-06 ***
D 0.21241 0.04326 4.910 4.70e-05 ***
NE 0.24902 0.07414 3.359 0.002510 **



Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

Residual standard error: 0.1592 on 25 degrees of freedom
Multiple R-Squared: 0.8569, Adjusted R-squared: 0.8225
F-statistic: 24.95 on 6 and 25 DF, p-value: 2.058e-09

> anova (nuclear6.1lm)
Analysis of Variance Table

Response: log(C)
Df Sum Sg Mean Sqg F value Pr (>F)

PT 1 2.01272 2.01272 79.398 3.117e-09 ***

CT 1 0.04550 0.04550 1.795 0.1923681

log (N) 1 0.26551 0.26551 10.474 0.0033989 **

log(S) 1 0.75496 0.75496 29.782 1.147e-05 ***

D 1 0.42961 0.42961 16.948 0.0003669 ***

NE 1 0.28601 0.28601 11.283 0.0025104 **

Residuals 25 0.63374 0.02535

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Reintroduce the eliminated variables into the reduced model
# to check if any of them are now significant

# Reintroduce variable PR into the reduced model C:j

nuclearPR.1lm = update(nuclear6.lm, . ~ . + PR)
summary (nuclearPR. 1m)

> summary (nuclearNW. 1lm)

Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + PR,
data = nuclear)
Residuals:
Min 10 Median 30 Max
-0.34152 -0.09161 0.03175 0.07992 0.26041
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.58533 3.18531 -4.265 0.000269 ***
PT -0.20915 0.11617 -1.800 0.084379 .
CT 0.13603 0.06106 2.228 0.035525 *
log (N) -0.09146 0.04202 -2.177 0.039574 ~*
log(S) 0.74194 0.12174 6.095 2.70e-06 **x*
D 0.21566 0.04373 4.932 4.94e-05 ***
NE 0.25051 0.07465 3.356 0.002629 **
PR -0.05235 0.06397 -0.818 0.421213
Signif. codes: 0 '"***' 0.001 '**' 0.01 '*' 0.05 '.'" 0.1 " ' 1

Residual standard error: 0.1603 on 24 degrees of freedom
Multiple R-Squared: 0.8608, Adjusted R-squared: 0.8202
F-statistic: 21.2 on 7 and 24 DF, p-value: 7.918e-09

# Reintroduce variable 1log(T2) into the reduced model

nuclearT2.lm = update(nuclear6.lm , . ~ . + 1log(T2))
summary (nuclearT2.1m)

> summary (nuclearT2.1lm)

Call:

Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + log(T2),
data = table.Gl)

Residuals:
Min 10 Median 30 Max
-0.29307 -0.07166 0.03338 0.10803 0.29521



nancy
Sticky Note
This first one is unnecessary.  Can you tell why?


Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -14.03038 3.30287 -4.248 0.000281 ***
PT -0.23714 0.11517 -2.059 0.050501 .
CT 0.13039 0.06210 2.100 0.046466 *
log (N) -0.07881 0.04316 -1.826 0.080340 .
log(s) 0.68228 0.13008 5.245 2.24e-05 ***
D 0.21743 0.04401 4.941 4.83e-05 ***
NE 0.25307 0.07483 3.382 0.002465 **
log(T2) 0.16775 0.20809 0.806 0.428072
Signif. codes: 0 “***’ (0.001 “**’ 0.01 “*’ 0.05 “.” 0.1 * " 1
Residual standard error: 0.1603 on 24 degrees of freedom
Multiple R-squared: 0.8607, Adjusted R-squared: 0.82
F-statistic: 21.18 on 7 and 24 DF, p-value: 7.992e-09

# Reintroduce variable log(Tl) into the reduced model

nuclearTl.lm = update(nuclear6.lm , . ~ .
summary (nuclearTl.1lm)

+ log(T1l))

> summary (nuclearTl.1lm)

Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + log(Tl),
data = table.Gl)
Residuals:
Min 10 Median 30 Max
-0.32898 -0.06925 0.02966 0.08120 0.28899
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.68517 3.87064 -3.536 0.00169 **
PT -0.22623 0.11580 -1.954 0.06250 .
CT 0.13805 0.06277 2.199 0.03774 *
log (N) -0.08837 0.04249 -2.080 0.04840 ~*
log(S) 0.71758 0.12480 5.750 6.32e-06 ***
D 0.22079 0.06151 3.590 0.00147 **
NE 0.24985 0.07572 3.299 0.00302 **
log(T1) -0.04170 0.21349 -0.195 0.84678
Signif. codes: 0 “***’/ 0.001 “**’ 0.01 “*’ 0.05 “.” 0.1 * " 1

Residual standard error: 0.1624 on 24 degrees of freedom
Multiple R-squared: 0.8571, Adjusted R-squared: 0.8154
F-statistic: 20.57 on 7 and 24 DF, p-value: 1.070e-08

# Reintroduce variable BW into the reduced model

nuclearBW.lm = update(nuclear6.lm , . ~ . + BW)

summary (nuclearBW. 1m)

> summary (nuclearBW.1lm)

Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + BW,
data = table.Gl)
Residuals:
Min 10 Median 30 Max
-0.31729 -0.09564 0.02267 0.09110 0.29218
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.33089 3.15629 -4.224 0.000299 ***
PT -0.24631 0.11648 -2.115 0.045031 ~*



CT 0.13950 0.06074 2.297 0.030657 *
log (N) -0.09268 0.04210 -2.202 0.037552 *
log(S) 0.71240 0.12009 5.932 4.03e-06 ***
D 0.21451 0.04354 4.926 5.01e-05 ***
NE 0.25188 0.07458 3.377 0.002493 *=*
BW 0.06953 0.08023 0.867 0.394685

Signif. codes: 0 ‘***’ (0.001 “**’ 0.01 “*" 0.05 “.” 0.1 * " 1

Residual standard error: 0.16 on 24 degrees of freedom
Multiple R-squared: 0.8612, Adjusted R-squared: 0.8207
F-statistic: 21.28 on 7 and 24 DF, p-value: 7.62e-09

# Conclusion: none of the eliminated variables is significant if reintroduced

# degrees of freedom of several models

df = c(anova(nuclearl0.1lm)[11,1], anova(nuclear9.1lm)[10,1],
anova (nuclear8.1lm) [9,1], anova(nuclear7.1m)([8,1],
anova (nuclear6.1lm) [7,171)

# sum of squares of several models

SS = c(anova(nuclearl0.1lm) [11,2], anova(nuclear9.1lm) [10,2],
anova (nuclear8.1lm) [9,2], anova(nuclear77.1lm) [8,2],
anova (nuclear6.1lm) [7,2])

# mean sum of squares of several models

MS = c(anova(nuclearl10.1lm) [11,3], anova(nuclear9.1lm) [10,3],
anova (nuclear8.1lm) [9,3], anova(nuclear77.1lm) [8,3],
anova (nuclear6.1lm) [7,3])

NumIncluded = 10:6

VariableElim = c("-", "BW", "log(T1l) ", "log(T2) ", "PR")

SS round (SS, 4)

MS = round (MS, 4)

(table.G3 data.frame (NumIncluded, VariableElim, df, SS, MS))
NumIncluded VariableElim df SS MS
1 10 - 21 0.5680 0.0270
2 9 BW 22 0.5709 0.0260
3 8 log(T1l) 23 0.5730 0.0249
4 7 log(T2) 24 0.6165 0.0257
5 6 PR 25 0.6337 0.0253
o
# Reproducing Table G.4
$oo
# Estimates of coefficients and standard error for full model
table.G4.1 = round(summary (nuclearl0.1lm)Scoefficients[, 1:2], 4)
> table.G4.1
Estimate Std. Error
(Intercept) -14.2420 4.2288
PT -0.2243 0.1225
CT 0.1204 0.0663
log (N) -0.0802 0.0460
log(S) 0.6937 0.1361
D 0.2092 0.0653
NE 0.2581 0.0769
log(T1) 0.0919 0.2440
log(T2) 0.2855 0.2729
PR -0.0924 0.0773




| BW 0.

# Estimates of coefficients and standard error for reduced model
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0.1011

1:2]

table.G4.2 = round(summary (nuclear6.lm)S$Scoefficients]|,
> table.G4.2
Estimate Std. Error
(Intercept) -13.2603 3.1395
PT -0.2261 0.1135
CT 0.1404 0.0604
log (N) -0.0876 0.0415
log(8S) 0.7234 0.1188
D 0.2124 0.0433
NE 0.2490 0.0741

# Include in turn in the regression model
# the interaction of each variable with P

# Interaction between PT and CT

(with 6 wvariables)
T

interactl.lm = update(nuclear6.lm, . ~ . + PT * CT)
summary (interactl.lm)
> summary (interactl.lm)
Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + PT:CT,
data = nuclear)
Residuals:
Min 10 Median 30 Max
-0.33157 -0.06591 0.02536 0.07838 0.28676
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.23435 3.19296 -4.145 0.000365 ***
PT -0.24289 0.12210 -1.989 0.058181
CT 0.13123 0.06515 2.014 0.055310
log (N) -0.08680 0.04221 -2.056 0.050782 .
log(S) 0.72291 0.12083 5.983 3.55e-06 ***
D 0.21213 0.04399 4.822 6.53e-05 ***
NE 0.24899 0.07539 3.303 0.002991 *~*
PT:CT 0.07976 0.18867 0.423 0.676234
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '."' 0.1 "' ' 1
Residual standard error: 0.1619 on 24 degrees of freedom
Multiple R-Squared: 0.8579, Adjusted R-squared: 0.8165
F-statistic: 20.71 on 7 and 24 DF, p-value: 1.000e-08
# Interaction between PT and log(N)
interact2.lm = update (nuclear6.lm, . ~ . + PT * log(N))
summary (interact2.1lm)
> summary (interact2.1lm)
Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + PT:log(N
data = nuclear)
Residuals:
Min 10 Median 0 Max
-0.32719 -0.07607 0.02910 0.08115 0.28950
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.258896 3.225077 -4.111 0.000398 **x*
PT -0.229274 0.826544 -0.277 0.783857
CT 0.140440 0.062872 2.234 0.035079 *
log (N) -0.087574 0.042334 -2.069 0.049518 *
log(S) 0.723359 0.121937 5.932 4.03e-06 ***
D 0.212398 0.044348 4.789 7.09e-05 ***

),



NE 0.249020 0.075679 3.290 0.003083 **
PT:1log(N) 0.001427 0.368278 0.004 0.996941
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.'

Residual standard error:

o.r " "1

0.1625 on 24 degrees of freedom

Multiple R-Squared: 0.8569, Adjusted R-squared: 0.8151
F-statistic: 20.53 on 7 and 24 DF, p-value: 1.090e-08
# Interaction between PT and log(S)
interact3.lm = update (nuclear6.lm, .~. + PT * log(S))
summary (interact3.1lm)
> summary (interact3.1lm)
Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + PT:log(S),
data = nuclear)
Residuals:
Min 10 Median 30 Max
-0.32866 -0.05714 0.02067 0.07979 0.29282
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.08645 3.23858 -4.041 0.000475 ***
PT -2.18759 5.85357 -0.374 0.711895
CT 0.13998 0.06154 2.275 0.032156 *
log (N) -0.08683 0.04229 -2.053 0.051102 .
log(S) 0.71761 0.12222 5.872 4.68e-06 ***
D 0.21044 0.04444 4.735 8.14e-05 ***
NE 0.24841 0.07551 3.290 0.003088 **
PT:1log(S) 0.29159 0.87002 0.335 0.740418
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.'" 0.1 "' ' 1
Residual standard error: 0.1621 on 24 degrees of freedom
Multiple R-Squared: 0.8575, Adjusted R-squared: 0.816
F-statistic: 20.64 on 7 and 24 DF, p-value: 1.033e-08
# Interaction between PT and D
interact4.lm = update(nuclear6.lm, . ~ . + PT * D)

summary (interact4.1lm)

> summary (interact4.1lm)
Call:
Im(formula = log(C) ~ PT + CT + log(N) + log(S) + D + NE + PT:D,
data = nuclear)
Residuals:
Min 10 Median 30 Max
-0.32710 -0.07242 0.02690 0.08112 0.29047
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -13.22438 3.23096 -4.093 0.000416 ***
PT -1.52852 15.17047 -0.101 0.920581
CT 0.14120 0.06237 2.264 0.032900 *
log (N) -0.08749 0.04234 -2.066 0.049736 *
log(S) 0.72217 0.12210 5.915 4.21e-06 ***
D 0.21201 0.04440 4.775 7.36e-05 ***
NE 0.24889 0.07567 3.289 0.003092 **
PT:D 0.01928 0.22459 0.086 0.932294
Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.'" 0.1 "' ' 1
Residual standard error: 0.1625 on 24 degrees of freedom
Multiple R-Squared: 0.8569, Adjusted R-squared: 0.8152
F-statistic: 20.53 on 7 and 24 DF, p-value: 1.086e-08
oo
# Reproducing Table G.5
o
table.G5 = cbind (round(summary (interactl.lm)$coefficient[,1:2],

4),



round (summary (interact2.1lm) Scoefficient[,1:2], 4),

round (summary (interact3.1lm) Scoefficient[,1:2], 4),

round (summary (interact4.1lm) Scoefficient[,1:2], 4))

rownames (table.G5) [8] = "PT:2Z"

colnames (table.G5) = c("Est z=CT", "StdErr Z=CT", "Est Z=log(N)",
"StdErr Z=log(N)", "Est Z=log(S)", "StdErr Z=log(S)",
"Est Zz=D", "StdErr 2Z=D")

> table.G5
Est Z=CT StdErr Z=CT Est Z=log(N) StdErr Z=log(N) Est Z=log(S)
(Intercept) -13.2344 3.1930 -13.2589 .2251 -13.0865
PT -0.2429 0.1221 -0.2293 0.8265 -2.1876
CT 0.1312 0.0651 0.1404 0.0629 0.1400
log (N) -0.0868 0.0422 -0.0876 0.0423 -0.0868
log(S) 0.7229 0.1208 0.7234 0.1219 0.7176
D 0.2121 0.0440 0.2124 0.0443 0.2104
NE 0.2490 0.0754 0.2490 0.0757 0.2484
PT:Z 0.0798 0.1887 0.0014 0.3683 0.2916
StdErr Z=log(S) Est Z=D StdErr Z=D
(Intercept) 3.2386 -13.2244 3.2310
PT 5.8536 -1.5285 15.1705
CT 0.0615 0.1412 0.0624
log (N) 0.0423 -0.0875 0.0423
log(S) 0.1222 0.7222 0.1221
D 0.0444 0.2120 0.0444
NE 0.0755 0.2489 0.0757
PT:Z 0.8700  0.0193 0.2246
o
# Reproducing Table G.6
o
Observed = round(log(table.G1S$C), 3) # observed value of log(cost)
Fitted = round(nuclear6.lm$Sfitted, 3) # fitted value of log(cost)
Residual = round(nuclear6.lmSresidual, 3)
table.G6 = data.frame (Observed, Fitted, Residual)
table.G6
> table.G6
Observed Fitted Residual
1 6.131 6.051 0.081
2 6.116 6.225 -0.109
3 6.094 6.225 -0.131
4 6.481 6.398 0.082
5 6.465 6.398 0.067
6 5.845 5.976 -0.131
7 5.607 5.934 -0.327
8 5.760 5.704 0.056
9 6.125 5.987 0.137
10 6.537 6.411 0.126
11 5.860 5.789 0.071
12 5.998 6.262 -0.264
13 6.021 5.891 0.131
14 6.206 6.241 -0.036
15 5.977 6.016 -0.039
16 6.048 5.992 0.056
17 6.568 6.379 0.190
18 5.669 5.891 -0.222
19 6.781 6.492 0.289
20 6.196 6.230 -0.033
21 6.342 6.178 0.164
22 6.501 6.651 -0.150
23 6.432 6.249 0.183
24 6.411 6.384 0.028
25 6.160 6.129 0.031
26 6.547 6.797 -0.250
27 5.335 5.401 -0.065
28 5.665 5.606 0.059
29 5.652 5.621 0.031
30 5.636 5.621 0.015
31 5.382 5.401 -0.019
32 5.601 5.621 -0.020
o



par (mfrow=c(2,2))

# Figure G.1
plot (table.G1$D, Residual, xlab ="D", ylab="Residuals", pch=4, col="red")
title(main=1list ("Fig G.1l Residuals of logC from 6-variable model wvs D,

date construction permit issued", cex=0.6, font=3, col ="blue"))

# Figure G.2

plot (log(table.G1$S),Residual, xlab="logS",ylab="Residuals", pch=4,col="red")

title(main=1list ("Fig G.2 Residuals of logC from 6-variable model vs logS,
power plant net capacity", cex=0.6, font=3, col="blue"))

# Figure G.3
plot (Fitted,Residual, xlab="fitted wvalues",ylab="Residuals", pch=4,col="red")
title(main=1list ("Fig G.3 Residuals of logC from 6-variable model

vs fitted values", cex=0.8, font=3, col ="blue"))

# Figure G.4
ggnorm (Residual, xlab="Normal order statistic", ylab="Residuals",
pch=4, col="red")
title(sub=1ist ("Fig G.4 Residuals of log(C) from 6-variable model vs normal
order statistic", cex=0.8, font=3, col="blue"))



