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Ed the geometer

J. Appl. Prob. 24, 557-573 (1987)
Printed in Israel
© Applied Probability Trust 1987

SAMPLING RANDOM POLYGONS

EDWARD 1. GEORGE,* University of Chicago

Abstract

Every realization of a Poisson line process is a set of lines which subdivides
the plane into a population of non-overlapping convex polygons. To explore
the unknown statistical featurcs of this population, an alternative stochastic
construction of rand is developed. This construction, which is
based on an allemaung sequenoe of random angles and side lengths, provides
a fast simul d for ot ng a rand sample from the polygon

lation. For the i pic case, this construction is used to obtain a
random sample of 2500000 polygons, providing the most precise estimates to
date of some of the unknown distributional characteristics.

GEOMETRIC PROBABILITY; POISSON LINE PROCESS
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Ed the geometer and coder

TABLE Ic
Distribution estimates for 4

a= 0.005 0.010 0.025 0.050 0.100
P(A=a)= 0.04536 0.06388 0.09968 0.1392 0.1931
0.250 0.500 0.750 1.00 1.50
0.2924 0.3926 0.4615 0.5140 0.5929
2.50 .00 7.50 10.0 12.5
PA=a)= 0.6944 0.8228 0.8846 0.9201 0.9424
a= 15.0 20.0 30.0 50.0 100.0
PA=a)= 0.9574 0.9752 0.9902 0.9978 0.9999
b horizontal Note: 334 polygons with 4 > 10 were observed.
ly=1. !
oTn t The simulation was run on a PDP 10/KI computer using the SAIL programming language.
igure 2 - The uniform standard deviates were obtained from the random number generator RAN. Polygons
Fi 2.2. The notation for a polygon when N = 5 were processed at a rate of 8745 polygons per minute of CPU time.
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Ed the frequentist

The Annals of Statistics
1986, Vol. 14, No. 1, 188-205

MINIMAX MULTIPLE SHRINKAGE ESTIMATION

By EDWARD 1. GEORGE
University of Chicago

For the canonical problem of estimating a multivariate normal mean
under squared-error-loss, this article addresses the problem of selecting a
minimax shrinkage estimator when vague or conflicting prior information
suggests that more than one estimator from a broad class might be effective.
For this situation a new class of alternative estimators, called multiple
shrinkage estimators, is proposed. These estimators use the data to emulate
the behavior and risk properties of the most effective estimator under consid-
eration. Unbiased estimates of risk and sufficient conditions for minimaxity
are provided. Bayesian motivations link this construction to posterior means
of mixture priors. To illustrate the theory, minimax multiple shrinkage Stein
estimators are constructed which can adaptively shrink the data towards any
number of points or subspaces.
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Ed the empirical Bayesian

Biometrika (2000), 87, 4, pp. 731-747
© 2000 Biometrika Trust
Printed in Great Britain

Calibration and empirical Bayes variable selection

By EDWARD I. GEORGE

Department of Management Science and Information Systems,
The University of Texas at Austin, Austin, Texas 78712-1175, U.S.A.

egeorge@mail.utexas.edu

AND DEAN P. FOSTER
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Ed the Bayesian
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Ed the objective Bayesian

The Variable Selection Problem

Edward |. GEORGE

The problem of variable selection is one of the most pervasive model selecti in statistical applicati Often referred
to as the problcm of subset selection, it arises when one wants to model the relationship between a variable of interest and a subset

of p 1 expl y variables or predi but there is inty about which subset to use. This vignette reviews some of
the key developments that have led to the wide variety of approaches for this problem.

“freqentist justification is needed for Bayesian procedures”

JASA 2000 vignette series

Ed George Celebration  Dec 11 2021 9/25



Ed the (almost) nonparametric Bayesian

Ay

Spike-and-Slab Meets LASSO: A Review of the
Spike-and-Slab LASSO *

Ray Baif, Veronika Rockova!, Edward I. George®

May 11, 2021
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Ed the calibrated Bayesian SSL review 21

~uw-

et TETSTT vETSY e ms mmm e oem st Y MYy TEsTT Yy vEsy g vTT e s smmssye s ows
We have from (5.2) that the 100(1 — a)% asymptotic pointwise confidence
intervals for 8;,7 =1,...,p, are

By — c(,n,8%), By + c(,n,8%)], (5:3)

where ¢(a,n,52) := (1 — /2)1/52(OZOT),;/n and ®(-) denotes the

cumulatlve dlstrlbutlon functlon of N(0, 1)
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Objective priors Kass Wasserman 96; Consonni et al. 18

- don't influence the posterior very much - flat, uniform, vague, highly dispersed, ...
+ that we can all agree on - reference, other minimum information
versions
- lead to calibrated posterior credible sets + matching priors
« anything that modifies the likelihood - fiducial, generalized fiducial, default
function

These are all necessarily model-dependent

Some are data-dependent
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Model dependence

- parametric model f(y;0), yeR"0cRP, p<n
« Jeffreys’ invariant prior

m(0) o< [i(0)["2, i(6) = E{~0%U(6;y)/0606"};  ((6;y) = logf(y: )

* invariant to reparametrization
« if p =1m(0) is a matching prior, and a reference prior, and ...

« a Jeffreys’-like prior for p > 1is
7(0) o< g(N)iyp(0)V2, 0= (¥,)),  i(h) partitioned, ¢ L A
- objective priors need to be targetted on the function of interest
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Approximate matching priors

« matching priors ensure calibration of confidence bounds

« posterior credible bound

pr{f < 0" °(y) [y} =1-«a
pr{6(Y) > 0|0 =1—a+0(n"")

- when p = 1 matching to O(n~") achieved by Jeffreys’ prior
m(6) o« i(6)"/
- matching to O(n—3/2) only if

% [E{e(0)°} /P/2(0)] =0

model criterion
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Data-dependent priors

« Example: transformed regression

dy?

]

dy;

vy = XB + oe, w(A) = % Jv; A = H

i=1

Box & Cox 1964

« Example: mixture model

Zp,¢{ )/}, =1, 7rn(c9)=7r(0){1_2;((99))}

“the only priors that produce intervals with second-order correct coverage are
data-dependent” Wasserman 2000
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.. data-dependent priors: BFF

« anything that modifies the likelihood function

- Example: the fiducial density (as defined by Fisher) is of the form

df = — 5y Fri ) =~ RO = Loy |
likelihood “p?:;’/’

y fixed at observed value; total derivative for fixed quantile of y

« Example: generalized fiducial density

d
() x £00) J69) 109) =D { 5 66 O)lucmmn |
S S~
Likelihood “prior’’
Hannig 2009ff

- distribution for 0: posterior, confidence, fiducial all of the same form
Ed George Celebration  Dec 11 2021 16/25



Empirical Bayes Efron 2010; 2019; 2021

fly: 0)m(6)
(0 |y) = 2
@1 =""10
- version 1: use special model properties to estimate m(y) or its moments
« e.g. Robbins E(0 | y) = (y +1) my(;q m(-) via multinomial sometimes density estimate

version 2: 7(# | ) hyperparameter — m(y; «), estimate o by maximum likelihood

marginal ML

. e.g. species

Et)=s / e=0(1— e=")r(9)do —s E(t) = S / e=0(1— e=")7(9)do

(0] &) = #(0)
e.g. multiple shrinkage 6. = > pr(y)mr(y) = E-. (0 | y), pr(y) =pr(me |y)  George 1986
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... empirical Bayes Efron 2021

- “there are good reasons one might want an estimator of g(6), involving questions that
can't be answered directly in terms of the marginal density” g=n

- “Taking g literally allows for Bayes estimates, e.g. pr(0 > 1|z = 3)"

- can we “take g(0) literally”? Efron has a particular construction of §

- the examples above have 6; ~ 7(0| o) — f(y; | 6;)), i=1,...,n 6; €R
- difficult to see if marginalization paradoxes might arise

a “good” prior for 6 has unsatisfactory performance
for a specific parameter of interest +(0)" Consonni et al.
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+ how to assess empirical Bayes posteriors such as Efron’s g-estimate?
- “Bayes and empirical Bayes: do they merge?” Petrone, Rousseau, Scricciolo (2014)
« [7(0] o, y)m(e)dow — (0 | &n,y) o hyperparameter
+ shows that the two methods will agree (“merge”) in the limit if EB is consistent
and much more
- empirical Bayes methods in George & Foster (2000), Cui & George (2008)
asymptotic discrepancy in Scott & Berger (2010)

AW Further
a rice's

On the Frequentist Properties
J of Bayesian Nonparametric

Methods

Judith Rousseau'"?

'CEREMADE,

& Paris Dauphine, Paris 75016, France;
rousseaut dauphine fr
*Laboratoire de Staistique, CREST-ENSAE, Malakoff 92245, France

nal use only.
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Spike and slab

Spike-and-Slab Meets LASSO: A Review of the
Spike-and-Slab LASSO *

Ray Baif, Veronika Ro¢kova?, Edward I. George$
May 11, 2021

« high-dimensional regression y = X3 + ¢

p
TTLO =% (B | X0) + (B | M)}

(B lv) =
j=1
p

n(y|a) = [[{a(1—a)—7}
j=1

a ~ Beta(a,b)
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... Spike and slab Bai, Réckova, G

- adaptive: large amount of shrinkage if | 3;| is small or a very small amount of shrinkage
if |5 is large

« borrows strength: marginal prior for 8 is not a product

« posterior mode can be de-biased 6 estimated

Ba=B+6X(y—XB)/n

Vn(Ba = B) ~ N(0,0*©10)
+ leading to confidence intervals for components of 5

- e e e el R
‘We have from (5.2) that the 100(1 — )% asymptotic pointwise confidence
intervals for 8;,j =1,..., P, are

By — elo,m,8%), By + cl,m,5%)], (53)
where ¢(a,n,52) 1= ®1(1 — /2),/62(O8O7);;/n and ®(-) denotes the
cumulative distribution function of A’(0,1).
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A somewhat random walk

+ Donnet et al. (2018) Posterior concentration rates for empirical Bayes procedures

nonparametric data-dependent priors

- Rousseau & Szabo (2020) Asymptotic frequentist coverage properties of Bayesian
credible sets for sieve priors

+ Martin & Walker (2019) Data-driven priors and their posterior concentration rates

+ Zhang & Gao (2020) Convergence rates of empirical Bayes posterior distributions: a
variational perspective

+ Klebanov et al. (2020) Objective priors in the empirical Bayes framework scalar parameter
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A work in progress

- data-dependent priors are necessary in non-parametric problems

data-dependent priors are necessary to obtain strong matching
in parametric problems

« many interesting parametric models have eitherp = p, orp > n

prototype the sequence model Y; = 0; +¢;, ¢ ~ N(0,1/n) or1,0rao2/n

lots of difficult analysis, but what about interpretation?
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Model selection and inference

- inference about models is quite difficult
+ has much in common with nonparametric methods
- inference after model selection is also very difficult

- Battey & Cox (2017, 2018, 2019) consider finding sets of models that are equally useful

using ideas from incomplete block designs

- Battey & R (2021) consider inference for individual components j; without correction
for selection

can be used to narrow down selected sets from Battey/Cox strategy
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What can | say?

THANK YOU ED
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