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Examples: a haphazard selection



Climate change Pster et al 

Scientic question: Can historical records of wine quality be used
as temperature proxies? observational data

Statistical model: “we used a statistical [linear regression] model for wine quality
based on local temperature and precipitation”

yes, if used carefully
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Income supplements Vivalt et al 

Scientic question: Does guaranteed income supplement aect
labor market measures? randomized controlled trial

Statistical model: Yi = α+ βTreatedi + γTXi + i

“support for both sides of this debate”
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Astronomy Meyer et al 

Yanbo Tang

Scientic question: Are observations of X-ray jets consistent with current theory?
observational data

Statistical model: compare background and sources measurements using Poisson:

xi ∼ Po(aiβi), yi ∼ Po (bi(βi + fiµi)) H : µi ≡ 

“variability in the X-ray emission is not compatible with proposed mechanism”UQAM Apr  





Shingles vaccine and dementia Eyting et al 

Scientic question: Does the shingles vaccine reduce the risk of dementia?
natural experiment

Statistical model: “We used regression discontinuity analysis ...
with kernel regression estimates for causal inference”

“receiving the vaccine reduced the probability of a new dementia diagnosis ... by .”
a  reduction in relative risk
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Models and parameters



Why these models?

• motivated by theory: economic, physical, ... X-ray jets

• motivated by design: RCT, survey, RDD vaccine

• standard in the literature of that eld income

• standard in the publications of that lab breast cancer; world weather attribution

• follow some prescription:
• binary response — use logistic regression
• time to event — use PH model
• time series — use ARMA wine
• repeated measures — use random eects
• ...
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Some guidance from the experts Davison; Cox & Donnelly

• the key feature of a statistical model is that variability
is represented using probability distributions

• the art of modelling lies in nding a balance that enables
the questions at hand to be answered or new ones posed

• probability models as an aid to the interpretation of data

• perturbations of no intrinsic interest distort
an otherwise exact measurement

• substantial natural variability in the phenomenon under study
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The role of parameters

• probability models very likely be parameterized
• thus dening a class of models {f (y; θ); θ ∈ Θ}
• parameters may be nite- or innite-dimensional parametric vs nonparametric

• ideally one or more parameters represent key aspects of the model
for the application at hand

• other parameters complete the specication
• the meaning of various parameters varies with the application

• this sounds simpler than it is

e.g. Box-Cox yλ = xTβ + UQAM Apr  



The likelihood function

• puts the emphasis on the model: L(θ; y) ∝ f (y; θ) =
n

i= f (yi; θ) inverse problem
• provides a convenient way to compare parameter values e.g. L(θ)/L(θ̂)

Pzer vaccine
Bin(+ , θ) via  Poissons

• provides reliable summary measures ℓ(θ; y) = log L(θ; y)

• can be converted to a probability, given a prior probability for θ
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Inference and asymptotics

(i) ℓ(θ) =
n

i=

log f (yi; θ | xi), (ii) ℓ′(θ) =
n

i=

∇θ log f (yi; θ | xi), (iii) ℓ′(θ̂) = 

Central Limit Theorem √
nℓ

′(θ)
d−→ N{, I(θ)} observed and expected Fisher information

=⇒ MLE is approximately normally distributed J(θ) = −ℓ′′(θ)

θ̂
.∼ Np{θ, J−(θ̂)}

=⇒ LRT is approximately χ distributed I(θ) = Eθ{j(θ)}

{ℓ(θ̂)− ℓ(θ)} .∼ χp
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... Limit theory

Large-sample approximation:

θ̂
.∼ Np{θ, J−(θ̂)}, {ℓ(θ̂)− ℓ(θ)} .∼ χp
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A bit too simple

• model f (y; θ), θ ∈ Rp

• θ = (ψ,λ) parameters of interest nuisance parameters

• results above used modied prole log-likelihood function

ℓmp(ψ) = ℓ(ψ, λ̂ψ)−

 log |Jλλ(ψ, λ̂ψ)|
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ψ ⊥ λ; Iψλ(θ) = 
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What can go wrong?

• distribution approximations
might be poor

• too many parameters

• irregular parameter space

• computational intractability

• model is misspecied

likelihood skewed;
extremes more relevant

p ∼ nα, p/n→ C, p/n→ ∞

pf (y; θ) + (− p)f (y; θ),  ≤ p ≤ 

L(θ, τ ; y) =

Rk f (y | z; θ)f (z; τ)dz

true Y ∼ m(y), f (·; θ) ∕= m(·) ∀θ
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Some approaches to
misspecication



. Classical Cox ,; Huber ; White 

• true model m(y) tted model f (y; θ) y = (y, . . . , yn)
ℓ(θ; y) ≡ log f (y; θ)

• maximum likelihood estimator θ θ ≡ arg supθ ℓ(θ; y)

• θ converges to the “closest true value” KL-divergence

θm = argmin
θ


m(y) log{ m(y)

f (y; θ)}dy

• θ has asymptotic normal distribution, but is not fully ecient “sandwich variance”

a.var. (θ) = G−(θm), G(θ) = J(θ)I−(θ)J(θ)
I = varm(ℓ′), J = Em(−ℓ′′)

• change the inference goal, proceed more or less as usual
“we used robust standard errors ”
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. More exible inference functions

Composite likelihood

• true model m(yi) = f (yi; θ), yi ∈ Rd tted model


A∈A
f (yiA; θ) subsets A

• Example: pairwise likelihood y = (y, . . . , yn)

Lpair(θ; y) =
n

i=



s∕=t
f(yis, yit; θ)

• Example AR() likelihood y = (y, . . . , yn)

Lcond(θ; y) =
n

i=

f (yi | yi−; θ)

interpretation of θ

• Example pseudo-likelihood in spatial models condition on near neighbours; Besag 
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... More exible inference functions

Quasi-likelihood and generalized estimating equations

g{E(yi | xi)} = g(µi) = xT

i β, var(yi | xi) = σV(µi)

• estimating equation for β full distribution unspecied
n

i=

∂µi(β)

∂β

(yi − µi)

V(µi)
= 

column vector

Quadratic inference functions Qu, Lindsay, Li ; Hector 

• replace V−(µi) above with an expansion in basis functions
• apply generalized method of moments
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. More exible models

• identify one or more parameters of interest here β

• use a highly exible specication form for other aspects of the model

• Example: proportional hazards regression instantaneous failure rate

h(t; x,β) = h(t)exp(xTβ)

• Example: empirical likelihood T(F) to be specied; e.g. EF(Yi)

max
F
L(F; y), subject to T(F) = θ

L(F; y) =
n

i= F(yi)

• Example: semi-parametric regression

E (y | T, x) = ψ T + ω(x)

• when does parameter of interest have a stable interpretation model assumption
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Example: exponential matched pairs Battey & Cox 

• independent exponential pairs (yi, yi), i = , . . . ,n n+  parameters

• rate parameters γi/ψ and γiψ, respectively
• ψ common parameter of interest γi pair-specic nuisance parameters

• likelihood function

L(ψ,γ; y) ∝
n

i=

γi exp{−γi(
yi
ψ

+ ψyi)}

• possibilities for eliminating nuisance parameters
• prole (concentrated) likelihood maximize over γ
• marginal likelihood: f (t;ψ) =

n
i= f (ti;ψ) ti = yi/yi

• random eects γi ∼ g(·;λ) more ecient, if ...
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... Example: exponential matched pairs Battey & Cox 

• independent exponential pairs (yi, yi), i = , . . . ,n n+  parameters
• rate parameters γi/ψ and γiψ, respectively
• random eects: γi ∼ Gamma(α,β) λ  (shape, rate)
• likelihood function

L(ψ,α,β; y) ∝
n

i=


γi exp{−γi(

yi
ψ

+ ψyi)}g(γi;α,β)dγi

• orthogonality:

Egamma


−∂ log L(ψ,α,β)

∂ψ∂α


= , Egamma


−∂ log L(ψ,α,β)

∂ψ∂β


= 

• even better

Em


−∂ log L(ψ,α,β)

∂ψ∂α


= , Em


−∂ log L(ψ,α,β)

∂ψ∂β


= 

any random eects distribution
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... Example: exponential matched pairs Battey & Cox 

• independent exponential pairs (yi, yi), i = , . . . ,n n+  parameters

• rate parameters γi/ψ and γiψ, respectively
• random eects: γi ∼ Gamma(α,β) λ  (shape, rate)

• likelihood function

L(ψ,α,β; y) ∝
n

i=


γi exp{−γi(

yi
ψ

+ ψyi)}g(γi;α,β)dγi

• even better

Em


−∂ log L(ψ,α,β)

∂ψ∂α


= , Em


−∂ log L(ψ,α,β)

∂ψ∂β


= 

• and
ψ̂

p−→ ψ

any random eects distribution
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Formalisation



Towards a formalisation Battey & R 

UQAM Apr  



Towards a formalisation Battey & R 

• true model m(y) with parameter ψ and true value ψ∗

• tted model f (y;ψ,λ) same parameter of interest, (many) nuisance parameters
interpretation of ψ is stable

• we know maximum likelihood estimates (ψ̂, λ̂) p−→ (ψm,λ

m) KL divergence

• assume no value of λ ∈ Λ gives back m(·) ‘truly’ misspecied

• Does ψom = ψ∗? need Em{∂ℓ(ψ∗,λ

m)/∂ψ} =  () λm unknown

• can be easier to show Em{∂ℓ(ψ∗,λ)/∂ψ} =  ∀λ ()

• Result : () ≡ () ⇐⇒ ψ∗ is m-orthogonal to Λ: ∀λ Em


∂ℓ(ψ,λ)
∂ψ∂λ


= 

BR: Prop .
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... towards a formalisation Battey & R 

• true model m(y) with parameter ψ and true value ψ∗

• tted model f (y;ψ,λ), maximum likelihood estimate ψ
• Result : m-orthogonal parameters lead to consistent MLE ψom = ψ∗

• But, ψ can be consistent without this requirement

• Result : A weaker requirement: if BR: Prop .

IψψEm


∂ℓ(ψ∗,λ)

∂ψ


+ IψλEm


∂ℓ(ψ∗,λ)

∂λ


= , ∀λ, then ψm = ψ∗

I = I(ψ∗,λ) = Em


−∂ℓ(ψ∗,λ)

∂θ∂θT


, I− =


Iψψ Iψλ

Iλψ Iλλ


,

still too strong

UQAM Apr  



Parameter orthogonality

• we can oen establish parameter orthogonality in the assumed model f (y;ψ,λ)

• all expectations with respect to this assumed model

• this is not usually the same as parameter orthogonality in the true model m(y;ψ)

• Result : a special case BR: Prop .

If ∇
ψλℓ(ψ,λ; y) a function of S = (S, . . . , Sk), and is additive in S, and

Em(Sj) = E(ψ,λ)(Sj)

then assumed-model orthogonality =⇒ true-model orthogonality

• easier: information calculations under assumed model
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Parameter Symmetry

• matched exponential pairs is a scale model: E(Yi) = ψ/γi; E(yi) = /(ψγi)

• the parameter of interest enters symmetrically

• the proof of consistency repeatedly uses the change of variables to yi/yi and yiyi

• how to generalize this observation?
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... Parameter Symmetry

• from earlier results, want extended orthogonal parametrization ℓ = log L

Em{−∂ℓ(ψ,λ)/∂ψ∂λT} = 

or at least at ψ∗

• we don’t know the true model m, so can’t check this
• exponential matched pairs is a group models
• parametrization ensures cancellation of terms

• Result : If the joint distribution of Y, Y is parametrized ψ-symmetrically, and
this parametrization induces anti-symmetry on the ψ-score function, then

ψ∗ ⊥m Λ, Em{∂ℓ(ψ∗,λ)/∂ψ} = , which implies
ψ is consistent ψm = ψ∗.

• Result : a version of Result  for two-group problems stratied not matched
BR: Props ., .UQAM Apr  



... Formalization and Parameter Symmetry

• Result : If the joint distribution of Y, Y is parametrized ψ-symmetrically, and
this parametrization induces anti-symmetry on the ψ-score function, then

ψ∗ ⊥m Λ, Em{∂ℓ(ψ∗,λ)/∂ψ} = , which implies
ψ is consistent ψm = ψ∗.

• Example: Location family gψ ∈ location group

fY(y;λ+ ψ) = fU(y − ψ;λ),

fY(y;λ− ψ) = fU(y + ψ;λ)

• Example: Scale family gψ ∈ scale group

fY(y;λψ) = fU(y/ψ;λ)(/ψ),
fY(y;λ/ψ) = fU(yψ;λ)ψ,

U, d=g−ψ Y
d
=gψY
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Overview

• parameter of interest ψ is well-dened
• model with nuisance parameters may be misspecied random eects
• when can we recover the true value of ψ
• does parameter orthogonality play a role?

• yes, it does, but may be dicult to verify directly Em

• models based on groups satisfy this orthogonality
• with particular parameter structure

• most natural examples seem to involve misspecied random eects GLM disp
• another example is marginal structural model in a ‘frugal parameterization’
• propensity score is the nuisance; other aspects correspond to ψ Evans & Didelez ()
• E&D model has a parameter space cut, hence orthogonal
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Tentative conclusions, further work

• Results above only establish consistency
• asymptotic variance is much more dicult although estimating it might be okay

• in the matched pairs examples, nuisance parameters treated as arbitrary constants
can be eliminated by transformation to conditional or marginal distributions

• eectively assuming an arbitrary (nonparametric) mixing distribution
• less ecient when the random eects model is correct

• orthogonality under assumed model Eθ{−∂ℓ(θ)/∂θ∂θT} =  θ = (ψ,λ)

• m-orthogonality under true model Em{−∂ℓ(θ)/∂θ∂θT} = 
• connection to Neyman orthogonality? decorrelated score

∂ℓ(ψ,λ)/∂ψ − wT∂ℓ(ψ,λ)/∂λ, w = IψλI−λλ

• extension to general estimating equations important in -debiased ML
Chernozhukov et al , Ning et al , Jorgensen & Knudsen UQAM Apr  



Conclusion



What can go wrong?

• the distributional approximations
might be poor

• too many parameters

• irregular parameter space

• computational intractability

• model is misspecied

likelihood skewed;
extremes more relevant

p ∼ nα, p/n→ C, p/n→ ∞

pf (y; θ) + (− p)f (y; θ),  ≤ p ≤ 

L(θ, τ ; y) =

Rk f (y | z; θ)f (z; τ)dz

true Y ∼ m(y), f (·; θ) ∕= m(·) ∀θ
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Some solutions Brazzale & Mameli 

• the normal and/or χ

approximations
might be poor

• too many parameters

• irregular parameter
space

• computational
intractability

more accurate approximations HOA
dierent limit theory extremes

new asymptotic theory (p ∼ n) Sur & Candès ; Zhao et al 
regularization (p > n) Lasso, SCAD, MCP

dierent asymptotic theory,
e.g. χD → Σλjχ


j Battey & McCullagh 

composite likelihood Genton et al 

... and so much more!
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Examples

• climate change

• guaranteed income

• Xray jets

• shingles vaccine

linear regression; time
series

linear regression;
treatment eect

Poisson distribution

nonparametric regression



This just in
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Climate damage Nature April 
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August 
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... August 

• “As a measure of anthropogenic climate change we use smoothed GMST”
Global Mean Surface Temperature

• “Methods for observational and model analysis ... and synthesis are used according
to the World Weather Attribution Protocol” Philip et al. 

. trend using observational data
. nd climate models consistent with .
. compare predictions from . and .
. synthesize results in . to provide conclusions
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... August 
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Attribution of climate damage
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... Attribution of climate damage

• climate model simulations of changes in global mean surface temperature over time

• simulate historical climates and “counter-factual” climates
• counter-factual climates leave out emissions of a given entity

• next convert surface temperature change to likelihood of extreme heat events
linear regression

• nally convert extreme heat events to economic cost

UQAM Apr  



... Attribution of climate damage Callahan & Mankin 

Authors’
Figure 
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Statistics is everywhere!



Thank you
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