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Examples: a haphazard selection



Climate change Pfister et al 2024

Clim. Past, 20, 1387-1399, 2024
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600 years of wine must quality and April to August

temperatures in western Europe 1420-2019 oo
. ) Figure 4. Observed series of wine quality (
Christian Pfister', Stefan Bronnimann®, Andres Altwegg’, Rudolf Brézdil*, Laurent Litzenburger®, Daniele Lorusso®, from 1420 to 2019 and series obtained with a statist

brated in 1781-1800 (green). The model is explainc

and Thomas Pliemon’

Scientific question: Can historical records of wine quality be used
as temperature proxies? observational data

Statistical model: “we used a statistical [linear regression] model for wine quality
based on local temperature and precipitation”
yes, if used carefully

UQAM Apr 2025 1



Income supplements Vivalt et al 2024

NBER WORKING PAPER SERIES .
Figure 5: Time Use Results: Mobile App

Time Use Outcomes — Mobile App
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THE EMPLOYMENT EFFECTS OF A GUARANTEED INCOME:
EXPERIMENTAL EVIDENCE FROM TWO U.S. STATES

Eva Vivalt
Elizabeth Rhodes
Alexander W. Bartik
David E. Broockman
Sarah Miller

—
—
—

Tl

Minutes Per Day

Scientific question: Does guaranteed income supplement affect
labor market measures? randomized controlled trial

Statistical model: Y; = « + STreated; + v™X; + ¢

“support for both sides of this debate”
UQAM Apr 2025 2



Astronomy Meyer et al 2023

Article https://doi.org/10.1038/541550-023-01983-1
Variability of extragalactic X-ray jetson :

. £
kiloparsecscales
Received: 17 May 2022 EileenT.Meyer®' , Aamil Shaik', Yanbo Tang?, Nancy Reid®, Karthik Reddy'*, B PR

Peter Breiding’, | i " Eri v, W Pvatve

Accepted: 27 April 2023 Devon Clautice’, William Sparks®®, Nat DeNigris'"® & Max Trevor'" -
i Yanbo Tang

Scientific question: Are observations of X-ray jets consistent with current theory?

observational data

Statistical model: compare background and sources measurements using Poisson:

X; ~ Po(a;B;), yi~ Po(bi(Bi+ fini)) H:pj=o0

UQAM Apr 2025 “variability in the X-ray emission is not compatible with proposed mechanism” 3



Ehe New York Eimes

Shingles Vaccine Can Decrease Risk of 42 NBCNEWS
Dementia, Study Finds

Shingles vaccine may protect against
A growing body of research suggests that preventing the viral dementia, new study suggests
infection can help stave off cognitive decline. Its hown th ; vation of the chickenpox virus can lead to the accumulation of
aberrant prote ed with Alzheimer's.
@ Mot s s | Rt utnt7oviizs [PTMBIMIEN
Le vaccin contre le zona et la réduction de risque de démence
Lundi 7 avril 2025
ogxz‘ier\'écoute » 0
NDC 58160-826:4¢ U%60.809.03  vaté!
Lyophilized gEATS b o €
: . prosel A
Shingles is awful, but there may be anoth E”
g - o
reason to get vacc g cge - may fight e
dementia sminyies vaccine tied to fewer dementla
@Y NEWS

diagnoses, study in Wales suggests

2 potential mechanisms might explain how shingles vaccine could reduce risk of
dementia



Shingles vaccine and dementia Eyting et al 2025

Article

Anatural experiment on the effect of herpes
zoster vaccination on dementia

https://doi.org/10.1038/541586-025-08800-x  Markus Eyting***°, Min Xie***, Felix Michalik*, Simon Hef*, Seunghun Chung' &
hitpesjdol.org/101038/641586-025-08800- n’

o
Received: 4 November 2023 Pascal Geldsetzer'

Scientific question: Does the shingles vaccine reduce the risk of dementia?

natural experiment

Statistical model: “We used regression discontinuity analysis ...
with kernel regression estimates for causal inference”

“receiving the vaccine reduced the probability of a new dementia diagnosis ... by 3.5"%

a 20% reduction in relative risk
UQAM Apr 2025



Models and parameters



Why these models?

« motivated by theory: economic, physical, ... X-ray jets
« motivated by design: RCT, survey, RDD vaccine
- standard in the literature of that field income
- standard in the publications of that lab breast cancer; world weather attribution

- follow some prescription:
« binary response — use logistic regression
 time to event — use PH model
 time series — use ARMA wine
 repeated measures — use random effects

UQAM Apr 2025 6



Some guidance from the experts Davison; Cox & Donnelly

« the key feature of a statistical model is that variability
is represented using probability distributions

e ks - the art of modelling lies in finding a balance that enables
& the questions at hand to be answered or new ones posed

- probability models as an aid to the interpretation of data
Principles of
Applied
Statistics

- perturbations of no intrinsic interest distort
an otherwise exact measurement

« substantial natural variability in the phenomenon under study

UQAM Apr 2025 7



The role of parameters

« probability models very likely be parameterized
« thus defining a class of models {f(y;0);0 € ©}
+ parameters may be finite- or infinite-dimensional parametric vs nonparametric

- ideally one or more parameters represent key aspects of the model

for the application at hand
- other parameters complete the specification
+ the meaning of various parameters varies with the application

The Annals of Statistics
2002, Vol. 30, No. 5, 1225-1310

WHAT IS A STATISTICAL MODEL?!
BY PETER MCCULLAGH

University of Chicago

« this sounds simpler than it is

UQAM Apr 2025 e.g. Box-Cox y* =xTf+e 8



The likelihood function

* puts the emphasis on the model: L(6;y) « f(v; 0) = [T, f(vi; 0) inverse problem
« provides a convenient way to compare parameter values e.g L(6)/L(d)

+ provides reliable summary measures 06;y) = log L(6;y)

L@ =18

[¢]

« can be converted to a probability, given a prior probability for ¢

Bin(162 + 8, 6) via 2 Poissons
UQAM Apr 2025 9
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Inference and asymptotics

(i) €)= logf(yi:0 | x), (ii) €(6) =7 Vologf(y;:0|x), (iii) ¢'(6) =0

i=1 i=1

Central Limit Theorem %f’(@) , N{o, I,(0)} observed and expected Fisher information
= MLE is approximately normally distributed J(6) = —2"(0)

b~ Np{6.)7'(9)}
— LRT is approximately x? distributed 1(6) = Eg{j(6)}

2{0(6) — €(9)} ~ x3

UQAM Apr 2025 10



... Limit theory

Large-sample approximation:

0~ Np{0.070)),  2{60) - €O)} ~ 3

Coefficients: N .
Estimate Std. Error z value Pr(>|z]|) T(8) =-2"®)

(Intercept) -3.079 0.987 -3.12 0.0018 *x

agedl -0.292 0.754 -0.39 0.6988

stagel 1.373 0.784 1.75 0.0799 .

gradel 0.872 0.816  1.07 0.2850 Le) __

xrayl 1.801 0.810 2.22 0.0263 *

acidl 1.684 0.791 2.13 0.0334 x

Signif. codes: @ ‘skx’ 0.001 ‘xx’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ‘' ' 1

2
2?@@)»26%)% ~ C(P
(Dispersion parameter for binomial family taken to be 1)

A AN .
T “ o,
Null deviance: 40.710 on 22 degrees of freedom LQ "a) J [8) i /)

Residual deviance: 18.069 on 17 degrees of freedom

UQAM Apr 2025 1



A bit too simple

« modelf(y;0), 6€RP

0= (¢, N) parameters of interest nuisance parameters

« results above used modified profile log-likelihood function

fmp () = €3, Ay) — = log Uan (36, Ay)

UQAM Apr 2025 12




What can go wrong?

« distribution approximations
might be poor

- too many parameters
« irregular parameter space

« computational intractability

model is misspecified

UQAM Apr 2025

likelihood skewed;
extremes more relevant

p~n® p/n—C p/n— o
pfy:0:) + (1 —p)f(yi62), o<p<n

L, 7y) = [ f(y | 2:0)f(z, 7)dz

| true Y ~m(y), f(-0) #m()] V6

13



Some approaches to
misspecification



1. Classical Cox 1961,2; Huber 1967; White 1982

« true model m(y) fitted model f(y; 6) yv=©--,Yn)
R £(6;y) = logf(y; 0)
« maximum likelihood estimator ¢ 0 = argsup, £(6;y)
- 0 converges to the “closest true value” KL-divergence
0° —argmln/m ) log{ mly )} dy
f(y: 6)
- 9 has asymptotic normal distribution, but is not fully efficient “sandwich variance”
avar. () = G'(63), G(0) = J(0)I7"(8))(0)

I =varm(¢'), ) = Em(—£")
+ change the inference goal, proceed more or less as usual

“we used robust standard errors ”
UQAM Apr 2025 14



2. More flexible inference functions

Composite likelihood

- true model m(y;) = f(vi; 0),y; € RY
« Example: pairwise likelihood

pa:r

« Example AR(1) likelihood

cond

« Example pseudo-likelihood in spatial models

UQAM Apr 2025

fitted model ] f(via: 0) subsets A
Ac A
y=W.,..., Yn)
H [1:Wis yie: 0
i=1 s#t
y=0-- Yn)

ny,ly,1

interpretation of

condition on near neighbours; Besag 74

15



... More flexible inference functions

Quasi-likelihood and generalized estimating equations

g{E(yi | X))} = g(pi) = x7'B, var(y; | x;) = V(1)

« estimating equation for 8 full distribution unspecified
n
)9 Opi(B) (vi — i) _ 4
— B V()
column vector
Quadratic inference functions Qu, Lindsay, Li 2000; Hector 2023

« replace V~"(u;) above with an expansion in basis functions
- apply generalized method of moments

UQAM Apr 2025 16



3. More flexible models

- identify one or more parameters of interest here 8
« use a highly flexible specification form for other aspects of the model

» Example: proportional hazards regression instantaneous failure rate
h(t; x, 8) = ho(t)exp(x" )
- Example: empirical likelihood T(F) to be specified; e.g. E¢(Y;)
max L(F;y), subjectto T(F) =0

L(Fiy) =TT, F(vi)
« Example: semi-parametric regression

E(y|T,x)=¢T+ w(x)
« when does parameter of interest have a stable interpretation model assumption

UQAM Apr 2025 17



Example: exponential matched pairs Battey & Cox 2020

+ independent exponential pairs (Vqj,V»), i=1,...,n n -+ 1 parameters
« rate parameters v;/+ and v;2, respectively
+ 1) common parameter of interest ~; pair-specific nuisance parameters

« likelihood function

L, v:y) o< [[ 7 exp{—w(% +VYai)}

« possibilities for eliminating nuisance parameters

« profile (concentrated) likelihood maximize over
- marginal likelihood: f(t; ) = [T, f(ti; %) ti = Vai/Vai
« random effects 7; ~ g(+; A) more efficient, if ...

UQAM Apr 2025 18



... Example: exponential matched pairs Battey & Cox 2020

« independent exponential pairs (y.j,¥»), i=1,...,n n -+ 1 parameters
- rate parameters 4;/v and ~;1), respectively
» random effects: 7; ~ Gamma(a, g) ) = (shape, rate)

« likelihood function

L., 5iy) x [T [ 7 expl-n(%2 + vyt B

- orthogonality:
PlogL(, o, B) P logL(3h, o, B)
Egamma {_W =0, [Egamma —W =0
- even better

. {62 log L(w,a,ﬂ)}
m Yo«

Plogl(v,a,B8)\
& ["’{ N }‘°

any random effects distribution
UQAM Apr 2025
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... Example: exponential matched pairs Battey & Cox 2020

- independent exponential pairs (y4j,¥»)), i=1,...,n n + 1 parameters
- rate parameters 4;/+v and v, respectively
- random effects: 7; ~ Gamma(a, g) ) = (shape, rate)

« likelihood function
L, @ BY) o H [ exel-n + vyt e

- even better

Plogl(v,a,B8)\ *logL(v,a, )|
Em { 990 } =0 Em { 5908 } -0

- and
Y —

any random effects distribution

UQAM Apr 2025 20



Formalisation




Towards a formalisation Battey & R 2024

PNAS RESEARCH ARTICLE STATISTICS uf’ OPEN ACCESS

On the role of parameterization in models with a
misspecified nuisance component

Heather S. Battey®?! and Nancy Reid (&) 22!

Contributed by Nancy Reid; received February 8, 2024, accepted July 23, 2024; reviewed by Emmanuel J. Candés and
Edward |. George

August 30,2024 121 (36) e2402736121

UQAM Apr 2025 21
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Towards a formalisation Battey & R 2024

« true model m(y) with parameter ) and true value 1,

- fitted model f(y; ¢, A) same parameter of interest, (many) nuisance parameters

interpretation of ¢ is stable

- we know maximum likelihood estimates (), X) - (¥2, A3,) KL divergence
« assume no value of A € A gives back m(-) ‘truly’ misspecified
« Does 9%, = 1,? need  En{0l(¢., A\y)/0¢} =0 (1) A2, unknown
+ can be easier to show Em{00(vs,\)/OY} =0 VYA (2)

« Result: (1) =(2) <= 4. is m-orthogonal to A: VA Enm {"fff‘m*)} =0

BR: Prop 14
UQAM Apr 2025 22



... towards a formalisation Battey & R 2024

+ true model m(y) with parameter ¢ and true value v,
- fitted model f(y; 1, \), maximum likelihood estimate 1)

+ Result 1: m-orthogonal parameters lead to consistent MLE )G = 1

- But, ¢ can be consistent without this requirement

* Result 2: A weaker requirement: if BR: Prop 1.2
IYYEp, {05(;;;, /\)} + Y Ep {(%(lg/*\)‘)} =0, V) then ¢% =1,

(-)2((1,',4_,.)\) Iz,'z,' Iz_',\
(%0 2) = En { 00007 } <,M A

UQAM Apr 2025 .

still too strong



Parameter orthogonality

+ we can often establish parameter orthogonality in the assumed model f(y; ), \)
- all expectations with respect to this assumed model
« this is not usually the same as parameter orthogonality in the true model m(y; )

+ Result 3: a special case BR: Prop 1.3
If Vi,\£(¥, \;y) a function of S = (S,, ..., S¢), and is additive in S, and

Em(sj) - [(1/1)\)(5])
then assumed-model orthogonality = true-model orthogonality

« easier: information calculations under assumed model

UQAM Apr 2025 24



Parameter Symmetry

- matched exponential pairs is a scale model: E(Y;;) = /vi;  E(V2i) = 1/(¢i)
- the parameter of interest enters symmetrically
- the proof of consistency repeatedly uses the change of variables to y,;/v,; and y.;V.i

 how to generalize this observation?

UQAM Apr 2025 25



... Parameter Symmetry

« from earlier results, want extended orthogonal parametrization ¢ =logl
Em{—0?0(1), \)/ OO} = O

or at least at .
+ we don’t know the true model m, so can’t check this
- exponential matched pairs is a group models
- parametrization ensures cancellation of terms

* Result 4: If the joint distribution of Y;, Y, is parametrized ¢)-symmetrically, and
this parametrization induces anti-symmetry on the 1)-score function, then

1/}* J_m /\7 Em{ag(ll/J*-A)/a’l/J} = ()7 Wh|Ch Imp|.|es
¥ is consistent ¢ = 1,

- Result 5: a version of Result 4 for two-group problems stratified not matched

UQAM Apr 2025 BR: Props 21,22 4



... Formalization and Parameter Symmetry

+ Result 4: If the joint distribution of Y, Y, is parametrized «-symmetrically, and
this parametrization induces anti-symmetry on the 1-score function, then

* Lm N, Em{00(¢,\)/0¢} = 0, which implies
¥ is consistent 2 = ..
+ Example: Location family gy, € location group
froyai A +9) = fulys — i ),
f.(y2i A =) = fu(ya + i A)
« Example: Scale family g., € scale group
fro(yai M) = fu(ya /i A)(1/9),
fro (V2 A/Y) = fu(ya1os Ao,

d __1. d
U=g, Yi=0gyY>
UQAM Apr 2025 27



« parameter of interest +/ is well-defined

« model with nuisance parameters may be misspecified random effects
« when can we recover the true value of ¢

+ does parameter orthogonality play a role?

- yes, it does, but may be difficult to verify directly Em
- models based on groups satisfy this orthogonality
« with particular parameter structure

+ most natural examples seem to involve misspecified random effects GLM disp
+ another example is marginal structural model in a ‘frugal parameterization’

« propensity score is the nuisance; other aspects correspond to ¢y Evans & Didelez (202z)
- E&D model has a parameter space cut, hence orthogonal //\

UQAM Apr 2025 28



Tentative conclusions, further work

« Results above only establish consistency
« asymptotic variance is much more difficult although estimating it might be okay

- in the matched pairs examples, nuisance parameters treated as arbitrary constants
can be eliminated by transformation to conditional or marginal distributions

- effectively assuming an arbitrary (nonparametric) mixing distribution

« less efficient when the random effects model is correct

- orthogonality under assumed model Fy{—8%¢(0)/0000T} = O 0= (1, )
« m-orthogonality under true model Ep{—02%¢(0)/0000"} =0
 connection to Neyman orthogonality? decorrelated score

- extension to general estimating equations important in 2-debiased ML
UQAM Apr 2025 Chernozhukov et al 2018, Ning et al 2017, Jorgensen & Knudsen 2004 54



Conclusion




What can go wrong?

« the distributional approximations
might be poor

* too many parameters

« irregular parameter space

« computational intractability

model is misspecified

UQAM Apr 2025

likelihood skewed;
extremes more relevant

p~n® p/n—C p/n— o
pfy:0:) + (1 —p)f(yi62), o<p<n

L, 7y) = [ f(y | 2:0)f(z, 7)dz

| true Y ~m(y), f(-0) # m(-) v

30



Some solutions Brazzale & Mameli 2024

« the normal and/or ¥? more accurate approximations HOA
approximations different limit theory TS

might be poor

- t00 many parameters new asymptotic theory (p ~ n)  Sur & Candés 19; Zhao et al 22
regularization (p > n) Lasso, SCAD, MCP

- irregular parameter different asymptotic theory,
space e.8. x5 = ZNX; Battey & McCullagh 24
- computational composite likelihood Genton et al 15

intractability

UQAM Apr 2025 31
.. and so much more!



+ climate change '1.‘\l‘l«W!W’A“M‘*W’&“w'r'\'iiv& linear regression; time
I series

- guaranteed income
linear regression;

treatment effect

. Xray jets

Poisson distribution

« shingles vaccine . .
nonparametric regression




This just in

World’s biggest companies have caused $28-trillion in climate damage: study

SETH BORENSTEIN WASHINGTON and Dr. Mankin said.
The researchers started with
known final emissions of the
The world’s biggest corporations products - such as gasoline or
have caused US$28-trillion in cli- electricity from coal-fired power
mate damage, a new study esti- plants - produced by the 111 big-

ence gets and the better we know
what makes a difference and
what does not,” Dr. Otto said. So
far, no climate liability lawsuit
against a major carbon emitter

has been successful, but maybe
showing “how overwhelmingly
strong the scientific evidence” is
can change that, she said.

In the past, damage caused by

individual companies were lost
in the noise of data, so it couldn’t
be calculated, Dr. Callahan said.

ASSOCIATED PRESS

mates as part of an effort to gest carbon-oriented companies
make it easier for people and going as far back as 137 years, be-
governments to hold companies cause that’s as far back as any of
financially accountable, like the the companies’ emissions data
tobacco giants have been. go and carbon dioxide stays in

A Dartmouth College research the air for much longer than
team came up with the estimat- that. They used 1,000 different
ed pollution caused by 111 com- computer simulations to trans-
panies, with more than half of late those emissions into chang-
the total dollar figure coming es for Earth’s global average sur-
from 10 fossil fuel providers: Sau- face temperature by comparing
di Aramco, Gazprom, Chevron, it to a world yi that compa-
ExxonMobil, BP, Shell, National
Iranian Oil Co., Pemex, Coal
dia and the British Coal Cor
tion.

For comparison, US$28-tri
is a shade less than the sum of a!
goods and services produced in
tht) QAMAREROREL year. ed how much each company’s

At the top of the list, Saudi pollution contributed to the five

Aramen and Carnram have earch hnatteet Aave nf the vear 11¢ino RA

Using this approach, they de-
ra- termined that pollution from

Chevron, for example, has raised
n the Earth’s temperature by .025

58]



Climate damage Nature April 24

Perspective

Carbon majors and the scientific case for
climateliability

https://doi.org/101038/s41586-025-08751-3  Christopher W. Callahan'** & Justin S. Mankin'%34%
Received: 27 March 2023

Accepted: 6 February 2025 Willit ever be possible to sue anyone for damaging the climate? Twenty years after this
Published online: 23 April 2025 question was first posed, we argue that the scientific case for climate liability is closed.
Here we detail the scientific and legal implications of an ‘end-to-end’ attribution that
links fossil fuel producers to specific damages from warming. Using scope 1and 3
emissions data from major fossil fuel companies, peer-reviewed attribution methods
and advances in empirical climate economics, weillustrate the trillions in economic
losses attributable to the extreme heat caused by emissions from individual

% Check for updates

UQAM Apr 2025 34
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: ‘ world weather attribution

Home  About v  Analyses v

News  Peer reviewed research «

Onaverage,

Home

re > Climate change moro than doubled th ikslinood of extrem fire weather conditions i Eastern Canada

Climate change more than doubled the likelihood of extreme

Full study

fire weather conditions in Eastern Canada  Download the fllstudy: Climate change
more than doubled the ikeliood of
extreme fire weather conditions n Eastern
Canada 26 pages, LMB)

22 August, 2023 During May and June 2023 Canada witnessed exceptionally extreme fire-

35



.. August 2023

+ “As a measure of anthropogenic climate change we use smoothed GMST”
Global Mean Surface Temperature

+ “Methods for observational and model analysis ... and synthesis are used according
to the World Weather Attribution Protocol” Philip et al. 2020

. trend using observational data

. find climate models consistent with 1.
compare predictions from 1. and 2.

synthesize results in 3. to provide conclusions

NI

UQAM Apr 2025 36



.. August 2023

(a) Estimated trend in FWI7x as a function of GMST (b) !

25
25

—— location
—— 1-in-G-year event
—— 1-in-40-year event

20
20

15
I

15
I

x x
[ =
E E
= Q /
I -~ /
¢ et e -
o | NI o/
o o
T T T
-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 1

GMST anomaly wrt 2023

Figure 7: (a) Linear trend in ERA5 FWI7x as a function of GMST.
parameter of the fitted distribution, and the blue lines show estimat
lines show the 95% confidence interval for the location parameter

UQAM Apr 2025 37



Attribution of climate damage

Perspective

Carbon majors and the scientific case for
climateliability

https://doi.org/101038/s41586-025-08751-3  Christopher W. Callahan'** & Justin S. Mankin'%34%
Received: 27 March 2023

Accepted: 6 February 2025 Willit ever be possible to sue anyone for damaging the climate? Twenty years after this
Published online: 23 April 2025 question was first posed, we argue that the scientific case for climate liability is closed.
Here we detail the scientific and legal implications of an ‘end-to-end’ attribution that
links fossil fuel producers to specific damages from warming. Using scope 1and 3
emissions data from major fossil fuel companies, peer-reviewed attribution methods
and advances in empirical climate economics, weillustrate the trillions in economic
losses attributable to the extreme heat caused by emissions from individual

% Check for updates

UQAM Apr 2025 38



... Attribution of climate damage

« climate model simulations of changes in global mean surface temperature overtime
- simulate historical climates and “counter-factual” climates
+ counter-factual climates leave out emissions of a given entity

+ next convert surface temperature change to likelihood of extreme heat events

linear regression

- finally convert extreme heat events to economic cost

Specifically, we use the coefficients from the following regression
estimated using ordinary least squares:

g, =T+ a27;'t2 +ﬁ1TX,-t + (ﬁZTXit X Ty)+ VViet (Vzvit xA;)

+TP+p, + O+ &

@®

UQAM Apr 2025 39



Attribution of climate damage n & Mankin 2024

.
Perspective
a Emissions by carbon majors b Contributions to global warming
500 — Saudi Aramco 5 0.04 4
. — Chevron e
’ 8 ~— ExxonMobil =)
Authors § ool B 2 ol
. g Gazprom ; .
Figure 1 2 oo H L
< 3 0.024
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Statistics is everywhere!



Thank you
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