
Likelihood inference in high dimensions

Nancy Reid
University of Toronto

joint with Heather Battey, Yanbo Tang

Statistics 2021 July 18, 2021 1/19



Introduction



Inference in high dimensions

... motivated by design of experiments and likelihood inference

Part 1: linear models with p > n Heather Battey & NR

Part 2: likelihood asymptotics with p = pn Yanbo Tang & NR

1. Linear model:
yn×1 = Xn×pβp×1 + εn×1, p > n 
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Motivation?

• data y = (y1, . . . , yn)

• model f (y; θ), θ ∈ Rp; or f (y | x;β) y = Xβ + ε

• parameter of interest and nuisance parameters θ = (ψ,λ)

• low-dimensional high-dimensional

• for example factorial and fractional factorial designs e.g. design matrix X is orthogonal

• for example adjustments to profile log-likelihood e.g. σ̂2 =
RSS
n

−→ σ̃2 =
RSS
n− p
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Part I: Linear Model, p > n



Linear model: set-up Part 1: HB & NR

yn×1 = Xn×pβp×1 + εn×1

assume column sums = 0

• parameter of interest βj = ψ; nuisance parameter β(−j) = λ

• if column j is orthogonal to all other columns, univariate regression

β̂j =
Σn
i=1yixij
Σn
i=1x

2
ij

• could arrange this by regressing column j on other columns
• and then regressing y on the univariate residual xj − x̂j
• this only works for p < n
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... transformation

• first note that β has same interpretation if A is n× n

Ayn×1 = AXn×pβ + Aεn×1; ỹ = X̃β + ε̃

• suppose we can choose A = Aj to make xj and X(−j) nearly orthogonal
super-saturated factorials

•

β̃j =
x̃Tj ỹ
x̃Tj x̃j

=

!
i ỹix̃ij!
i x̃2ij

=
xjTj ỹ

j

x̃jTj x̃
j
j

=

!
i ỹ

j
i x̃
j
ij

!
i x̃
j2
ij

LS estimate from univariate regression
for each j

•

E(β̃j) = βj +
"

k ∕=j

βkϑk

# $% &
bias

= βj +
"

k∈S

βkϑk = βj +
"

k∈S

βk
x̃Tj x̃k
x̃Tj x̃j# $% &
ϑk

x̃j = Ajxj
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... calculations

•

β̃j =
x̃Tj ỹ
x̃Tj x̃j

=

!
i ỹix̃ij!
i x̃2ij

LS estimate from univariate regression

•
E(β̃j) = βj +

"

k∈S

βkϑk

# $% &
bias

, var(β̃j) = σ2Vjj, Vjj = Vjjj = (x̃Tj x̃j)
−2x̃Tj A

jAjT x̃j

• Choose Aj to minimize mean-squared error = bias2 + variance ≤ ||β(−j)||2
!

k∈S ϑ2k

• Can we find Aj to minimize
Vjj +

"

k∈S

ϑ2k
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... strategy

• Choose Aj, linear transformation, to minimize
cumulative MSE over all parameters

• actually upper bound of cumulative MSE Vjj +
!

k∈S ϑ2k

• then estimate each βj by simple linear regression
• as if the jth column of X was orthogonal to all the others

• Proposition 1 (Battey & R 2021): qj = AjT x̃j = AjTAjxj

qj = (δIn + XT(−j)X(−j))
−1xj,

• condition for minimum: eigenvalues of a related matrix are non-negative
Lδ = (δIn + XT

(−j)X(−j))− {xTj (δIn + XT
(−j)X(−j))

−1xj}−1xjxTj
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... now what?

• Example: 70 observations with 2250 covariates; five covariates have non-zero β

• Compute 2250 Aj’s (transformations), leading to no model selection

• 2250 β̃j’s and 2250 confidence intervals β̃j ± (σ̃2Vjj)1/2z1−α/2

• asymptotically valid, if orthogonalization was successful conditions on distribution of εs

• but algorithm only tries to minimize total non-orthogonality
• for some j, this non-orthogonality might be larger for the signal variables,

leading to larger bias

• many other approaches that instead focus on identifying the signal variables first
under some sparsity assumptions

• e.g. Zhang & Zhang (2014) estimate the bias term using the Lasso “debiased Lasso”
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... simulations

coverage is better Length is shorter

but not great but coverage poorStatistics 2021 July 18, 2021 9/19



... simulations

modal median median median 95th p.c.
ρ n p coverage coverage length ϑ2θ ϑ2θ
0.9 70 2450 0.941 0.921 1.509 0.0065 0.056
0.9 70 1225 0.941 0.923 1.534 0.0063 0.055
0.9 35 2450 0.941 0.909 2.127 0.0135 0.120
0.9 35 1225 0.947 0.910 2.134 0.0133 0.117
0.1 70 2450 0.939 0.732 0.504 0.0065 0.056
0.1 70 1225 0.942 0.745 0.511 0.0063 0.055
0.1 35 2450 0.948 0.715 0.707 0.0134 0.118
0.1 35 1225 0.942 0.696 0.717 0.0133 0.118

estimated main effect ρ n p
modal coverage 0.995 0.933 0.986
median coverage 4.185 1.166 1.005
median length 1.216 −0.407 −0.032
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... summary

• no model selection and no adjustment for multiplicity
• inference based on simple linear regression
• ignoring bias in non-orthogonality
• simple, fast, ... ?useful?

• we applied it to the selection of “confidence sets for models” Battey & Cox, 2018, 2019

• in high-dimensional situations, many models may be equally informative
• Battey & Cox method is to identify these collections of models
• we used confidence intervals described here to refine this process
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... example Buhlmann et al. 2014

variable index proportion !ψ lower limit upper limit
1516L,E 0.272 0.343 0.022 0.663
2564L,E 0.272 -1.481 -1.801 -1.160
1503L,E 0.251 -0.325 -0.646 -0.0050
2138 0.249 -0.062 -0.382 0.259
4008E 0.240 -0.366 -0.686 -0.046
4002L,E 0.240 -0.505 -0.825 -0.185
1639L,E 0.235 -0.406 -0.726 -0.086
1603 0.228 -1.048 -1.368 -0.728
403 0.225 0.902 0.582 1.223
3291 0.222 -0.640 -0.960 -0.320
978 0.222 -0.259 -0.580 0.061
3808E 0.222 0.677 0.356 0.997
1069E 0.221 -0.398 -0.718 -0.078
3514L,E 0.217 1.373 1.053 1.694
1436E 0.199 -0.463 -0.783 -0.143
1278L,E 0.190 0.147 -0.173 0.467
1285 0.179 0.172 -0.148 0.493
1303E 0.179 0.187 -0.133 0.507
1297L,E 0.179 0.219 -0.102 0.539
1423 0.176 0.043 -0.277 0.363
1290 0.171 0.189 -0.131 0.510
1312L,E 0.156 0.490 0.169 0.810
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Part 2



Likelihood methods, p = O(n) Tang & R 2020

• data y = (y1, . . . , yn) Slide 2 recap

• model f (y; θ), θ ∈ Rp; or f (y | x;β) y = Xβ + ε

• parameter of interest and nuisance parameters θ = (ψ,λ)

• low-dimensional high-dimensional

• for example factorial and fractional factorial designs e.g. design matrix X is orthogonal

• for example adjustments to profile log-likelihood e.g. σ̂2 =
RSS
n

−→ σ̃2 =
RSS
n− p
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... likelihood methods, p = O(n)

• log-likelihood function ℓ(θ; y) = log f (y; θ), θ ∈ Rp, y ∈ Rn

• profile log-likelihood function ℓp(ψ; y) = ℓ(θ̂ψ) = ℓ(ψ, λ̂ψ) θ = (ψ,λ)

• good enough if p fixed, n→ ∞
• for example n → ∞, p fixed

w = 2{ℓp(ψ̂)− ℓp(ψ)}
d→ χ21 , r = ±w1/2 d→ N(0, 1)

• fails if p = pn:

w d→ σ2∗
λ∗

χ21

Sur, Chen, Candès 2019; logistic regression, ψ = βj

• (σ∗,λ∗) characterized as the solution of two equations the optimization path
also depends on limn→∞ pn/n
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... likelihood methods, p = O(n) Sur et al. 2019, PTRF

Statistics 2021 July 18, 2021 15/19



Improvements to likelihood

• 1. adjust the profile log-likelihood function for estimation of nuisance parameters

• ℓp(ψ) = ℓ(ψ, λ̂ψ) −→ ℓmp(ψ) = ℓ(ψ, λ̂ψ)− 1
2 log |jλλ(ψ, λ̂ψ)| jλλ: Fisher info

• can lead to improved inference in finite samples
e.g. Kosmidis & Firth 2019 Bka for logistic regression

e.g. Sartori 2003 Bka for stratified models
• 2. adjust the log-likelihood ratio statistic

w = 2{ℓp(ψ̂)− ℓp(ψ)}

• or its signed square root r = sign(ψ̂ − ψ)[2{ℓp(ψ̂)− ℓp(ψ)}]1/2

r∗ = r + rnp + rinf , r∗∼ N(0, 1) + Op(n−3/2)
• Barndorff-Nielsen, 1990, JRSS B; Fraser, 1990, Bka; Pierce & Peters, 1992 JRSS B
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... improvements to r Tang & R 2020
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Fig. 3. Plots for logistic regression illustrating the difference in the breakdown point of uniformity of the p-value distribution based on the standard nor-
mal approximation to the distribution of (a) r and of (b) r*: we see that p-values based on the r*-approximation appear to be uniformly distributed
up to about pDO.n2=3/, whereas those based on the normal approximation to the distribution of r begin to exhibit non-uniformity at about pDO.n1=2/
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... improvements to r Tang & R 2020

•
r∗ = r + rnp + rinf ∼ N(0, 1)

• Tang & R Theorem 1:

rnp = Op(p3/2/n1/2), can be as small as Op(p/n1/2)

• Tang & R Theorem 2:

rinf = Op(p/n1/2), can be as small as Op(1/n1/2)

•

rnp ≃
1
r log

'
|jλλ(ψ̂, λ̂)|1/2

|jλλ(ψ, λ̂ψ)|1/2

(
, rinf ≃

1
r log

)
t
r

*
, t = (ψ̂ − ψ)/σ̂
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Summary

1. Linear regression, one variable at a time, no corrections for multiplicity

Relies on isolating each variable from the others by approximate orthogonalization

2. Likelihood inference and improvements

Relies on adjusting for estimation of nuisance parameters, and

(less important) fine-tuning the distribution approximation

3. Classical theory impacting modern problems — much more work needed on
comparisons and extensions

Statistics 2021 July 18, 2021 19/19



References i

Battey, H. and Reid, N. (2021). Inference in high-dimensional linear regression.
https://arxiv.org/abs/2106.12001

Battey, H. S. and Cox, D. R. (2018). Large numbers of explanatory variables: a probabilistic assessment. Proc
Roy Soc A
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Moderate dimensional inference – asymptotics

• f (y; θ), y ∈ Rn, θ ∈ Rp

• classical: p fixed, n→ ∞

• semi-classical: pn/n→ 0, or p3/2n /n→ 0
Huber, Portnoy; Sartori, Lunardon, ...

• moderate dimension pn/n→ β Candes, Lei/Bickel/El Karoui, ...

• “high dimension” pn/n→ ∞
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Semi-classical, HOA Sartori 03, Lunardon 18

• yij ∼ f (·;ψ,λi), i = 1, . . . ,q; j = 1, . . . ,m; n = mq
Neyman-Scott problems

• q→ ∞, m fixed: classical likelihood inference fails

• q→ ∞, m→ ∞: can recover if q = o(n1/2)

• using modified likelihood from HOA, can recover if q = o(n3/4)
Sartori

• using bias-adjusted score equation , can recover if q = o(n3/4)
Lunardon

• HOA elimination of nuisance parameters gives large improvements in asymptotic
theory and finite-sample approximations
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Moderate dimension Lei, El-Karoui, Bickel 18

• β̂(ρ) = argmin 1
n
!n

i=1 ρ(yi − xT

i β)

• coordinate-wise asymptotic normality

maxjdTV

'
L
+

β̂j − β∗
j√

var(β̂j)

,
,N(0, 1)

(
= o(1)

• “For instance for least-squares, standard degrees of freedom adjustments effectively
take care of many dimensionality-related problems”

• ?perhaps HOA adjustments for nuisance parameters (= ‘standard degrees of freedom
adjustments’) can be effective as using p/n→ κ asymptotics? when? why not? Kosmidis
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