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Conditional Likelihood 1972
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... Conditional Likelihood 1972

Statist. Sci. 1994
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... Conditional Likelihood 1972

“...it really was a conditional likelihood; it was a form of conditional likelihood”
Statist. Sci. 1994
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Nuisance parameters

• model Y ∼ f (y;ψ,λ), ψ ∈ R,λ ∈ Rd−1, θ = (ψ,λ) y = (y1, . . . , yn)
• or Y | X ∼ f (y | X;ψ,λ) Xn×p, say

• log-likelihood function ℓ(ψ,λ; y) = log f (y;ψ,λ) =
!

log f (yi;ψ,λ) if independent

• likelihood-based inference
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• log-likelihood function ℓ(ψ,λ; y) = log f (y;ψ,λ) =
!

log f (yi;ψ,λ) if independent

• likelihood-based inference
• profile log-likelihood maximize over λ

ℓp(ψ) = ℓ(ψ, λ̂ψ)

• maximum likelihood estimate jp(ψ) = −ℓ′′p (ψ)

ψ̂
.∼ N{ψ, j−1/2

p (ψ)}

• likelihood ratio test
2{ℓp(ψ̂)− ℓp(ψ)} .∼ χ21
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Nuisance parameters

• model Y ∼ f (y;ψ,λ), ψ ∈ R,λ ∈ Rd−1 y = (y1, . . . , yn)
• or Y | X ∼ f (y | X;ψ,λ) Xn×d, say

• log-likelihood function ℓ(ψ,λ; y) = log f (y;ψ,λ) =
!

log f (yi;ψ,λ) if independent

• likelihood-based inference
• profile log-likelihood maximize over λ

ℓp(ψ) = ℓ(ψ, λ̂ψ)

• maximum likelihood estimate
ψ̂

.∼ N{ψ, j−1/2
p (ψ)}

• likelihood ratio test
2{ℓp(ψ̂)− ℓp(ψ)} .∼ χ21
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... Nuisance parameters

• inference based on profile log-likelihood may be inaccurate if p large, relative to n

• if the parameter of interest can be isolated in a conditional or marginal distribution,
this makes inference much easier

f (y;ψ,λ) ∝ fm(t1;ψ,λ) fc(t2 | t1;ψ)

f (y;ψ,λ) ∝ fm(t1;ψ) fc(t2 | t1;ψ,λ)
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... Nuisance parameters

• inference based on profile log-likelihood may be inaccurate if p large, relative to n

• if the parameter of interest can be isolated in a conditional or marginal distribution,
this makes inference much easier

f (y;ψ,λ) ∝ fm(t1;ψ,λ) fc(t2 | t1;ψ)

f (y;ψ,λ) ∝ fm(t1;ψ) fc(t2 | t1;ψ,λ)

• e.g. inference for common odds ratio in several 2× 2 tables conditional
• e.g. REML estimation for variance components marginal

• in the proportional hazards model, there are regression parameters, of interest,
which can be specified in familiar forms

• as well as the failure and censoring processes, which operate in continuous time
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Partial likelihood Cox 1975

• data (X1, S1, X2, S2, . . . , Xj, Sj, . . . , Xn, Sn)

• successive densities conditional on the past: Xj, given X(j−1), S(j−1); Sj, given X(j), S(j−1)
• likelihood function joint density

L(ψ,λ; x, s) ∝
n"

j=1

f (xj | x(j−1), s(j−1);ψ,λ)
n"

j=1

f (sj | x(j), s(j−1);ψ,λ)
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Partial likelihood Cox 1975

• data (S1, X1, S2, X2, . . . , Xj, Sj, . . . , Sn, Xn)

• successive densities conditional on the past: Xj, given X(j−1), S(j−1); Sj, given X(j), S(j−1)
• likelihood function joint density

L(ψ,λ; x, s) ∝
n"

j=2

f (xj | x(j−1), s(j−1);ψ,λ)
n"

j=2

f (sj | x(j), s(j−1);ψ )

• partial likelihood function

Lpart(ψ ; x, s) ∝
n"

j=2

f (sj | x(j), s(j−1);ψ )

• ideally, parameters of interest appear in Lpart and not in the other bit
• e.g. regression parameters affecting relative hazards, parameters determining baseline hazards
• has the flavour of a conditional likelihood as above but it’s not
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Partial likelihood and proportional hazards Cox 1972; 1975

• Sj is jth individual observed to fail; X(j) is everything else censoring, ∃ failure at tj
• hazard for failure at t is λ(t) = f (t)/{1− F(t)} density; survival
• proportional hazards has

λ(t; x) = λ0(t) exp(xTβ)
• data t1 < · · · < tn observed times failure or censoring
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• hazard for failure at t is λ(t) = f (t)/{1− F(t)} density; survival
• proportional hazards has

λ(t; x) = λ0(t) exp(xTβ)
• data t1 < · · · < tn observed times failure or censoring

L(β,λ0(·); t, x) =
n"

j=1

{λ(tj; xj){1− F(tj; xj)}δj{1− F(tj; xj)}1−δj =
n"

j=1

{λ(tj; xj)}δj{1− F(tj; xj)}

=
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}
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Partial likelihood and proportional hazards Cox 1972; 1975

• Sj is jth individual observed to fail; X(j) is everything else censoring, ∃ failure at tj
• hazard for failure at t is λ(t) = f (t)/{1− F(t)} density; survival
• proportional hazards has

λ(t; x) = λ0(t) exp(xTβ)
• data t1 < · · · < tn observed times failure or censoring

L(β,λ0(·); t, x) =
n"

j=1

{λ(tj; xj){1− F(tj; xj)}δj{1− F(tj; xj)}1−δj =
n"

j=1

{λ(tj; xj)}δj{1− F(tj; xj)}

=
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}

Lpart(β; t, x) =
"

failures

exp(xTj β)!
k∈Rj

exp(xTkβ)
jth individual fails, given there is a failure at tj

xj matches ordered times tj
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... Partial likelihood and Cox model Cox 1972; 1975

• full likelihood

L(β,λ0(·); t, x) =
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}

• partial likelihood

Lpart(β; t, x) =
"

failures

exp(xTj β)!
k∈Rj

exp(xTkβ)
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... Partial likelihood and Cox model Cox 1972; 1975

• full likelihood

L(β,λ0(·); t, x) =
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}

• partial likelihood

Lpart(β; t, x) =
"

failures

exp(xTj β)!
k∈Rj

exp(xTkβ)

• inference ℓpart(β) = log Lpart(β)

ℓ′part(β̂) = 0; − ℓ′′part(β̂)
.
= {#var(β̂)}−1

LSHTM November 10 2022 14



... Partial likelihood and Cox model Cox 1972; 1975

• full likelihood

L(β,λ0(·); t, x) =
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}

• partial likelihood

Lpart(β; t, x) =
"

failures

exp(xTj β)!
k∈Rj

exp(xTkβ)

• inference ℓpart(β) = log Lpart(β)

ℓ′part(β̂) = 0; − ℓ′′part(β̂)
.
= {#var(β̂)}−1

β̂ − β
.∼ N(0,#var(β̂))

2{ℓpart(β̂)− ℓpart(β0)}
.∼ χ2pLSHTM November 10 2022 14



Pseudo-likelihood Besag 1974; Renard et al. 2004

• modelling of spatial data
• analogue to auto-regression in time series
• condition on nearest neighbours of a given point

Lpseudo(θ) =
m"

r=1
f (yr | ys; site s is a neighbour of site r)
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m"

r=1
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• e.g. pr(yij = 1 | bi) = Φ(xTijβ + zTijbi), j = 1, . . . ,q; i = 1, . . . ,m; bi ∼ N(0,Σb)

• likelihood function

L(β,Σb) =
n"

i=1

$ q"

j=1

{Φ(xTijβ + zTijbi)}
yij{1− Φ(xTijβ + zTijbi)}

(1−yij)φ(bi;Σb)dbi
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Pseudo-likelihood Besag 1974; Renard et al. 2004

• modelling of spatial data
• analogue to auto-regression in time series
• condition on nearest neighbours of a given point

Lpseudo(θ) =
m"

r=1
f (yr | ys; site s is a neighbour of site r)

• multi-level/longitudinal binary data
• e.g. pr(yij = 1 | bi) = Φ(xTijβ + zTijbi), j = 1, . . . ,q; i = 1, . . . ,m; bi ∼ N(0,Σb)

• likelihood function

L(β,Σb) =
n"

i=1

$ q"

j=1

{Φ(xTijβ + zTijbi)}
yij{1− Φ(xTijβ + zTijbi)}

(1−yij)φ(bi;Σb)dbi

Lpseudo(β,Σb) =
n"

i=1

"

r<s
pyiryis11 pyir(1−yis)10 p(1−yir)yis01 p(1−yir)(1−yis)00

each pij from bivariate normal probabilities
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Pairwise likelihood Cox & R 2004; Lindsay 1988

• random vector of responses yi = (yi1, . . . , yiq); joint density f (yi; θ)
• likelihood function L(θ; y) =

%n
i=1 f (yi; θ)

• pairwise likelihood function

Lpair(θ; y) =
n"

i=1

"

s<t
f2(yis, yit; θ), or possibly

n"

i=1

"

s<t
{f2(yis, yit; θ)}wi
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f2(yis, yit; θ), or possibly

n"

i=1

"

s<t
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• or even q → ∞?

ℓpair(θ) =
n&

i=1

&

s<t
log{f2(yis, yit)}− aq

n&

i=1
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Pairwise likelihood Cox & R 2004; Lindsay 1988

• random vector of responses yi = (yi1, . . . , yiq); joint density f (yi; θ)
• likelihood function L(θ; y) =

%n
i=1 f (yi; θ)

• pairwise likelihood function

Lpair(θ; y) =
n"

i=1

"

s<t
f2(yis, yit; θ), or possibly

n"

i=1

"

s<t
{f2(yis, yit; θ)}wi

• or even q → ∞?

ℓpair(θ) =
n&

i=1

&

s<t
log{f2(yis, yit)}− aq

n&

i=1

log{f1(yis)}

• partial, pseudo-, pairwise, ... all examples of composite likelihood Lindsay 1988

• inference via maximum “likelihood” estimate and “likelihood” ratio test
with corrections for misspecification
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PH partial likelihood is special Andersen & Gill 1982

Lpart(β; t, x) =
"

failures

exp(xTj β)!
k∈Rj

exp(xTkβ)
, ℓpart(β; t, x) =

&

failures

{xTj β − log
&

k∈Rj

exp(xTkβ)}

• score function ℓ′part(β; t, x) is a martingale
• information function −ℓ′′part(β; t, x) estimates asymptotic variance of β̂part
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PH partial likelihood is special Andersen & Gill 1982

Lpart(β; t, x) =
"

failures

exp(xTj β)!
k∈Rj

exp(xTkβ)
, ℓpart(β; t, x) =

&

failures

{xTj β − log
&

k∈Rj

exp(xTkβ)}

• score function ℓ′part(β; t, x) is a martingale
• information function −ℓ′′part(β; t, x) estimates asymptotic variance of β̂part

β̂ − β
.∼ N[0, {−ℓ′′part(β̂part)}−1]

• and weak convergence of the estimated cumulative hazard function
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... PH partial likelihood is special Murphy & van der Vaart 2001

L(β,λ0(·); t, x) =
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}

• assume hazard function is an arbitrary constant between successive failure times
Breslow 1972

• a type of semi-parametric model
• we end up with n nuisance parameters, which is too many Cox 1972
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... PH partial likelihood is special Murphy & van der Vaart 2001

L(β,λ0(·); t, x) =
n"

j=1

{λ0(tj) exp(xTj β)}
δj exp{− exp(xTj β)Λ0(tj)}

• assume hazard function is an arbitrary constant between successive failure times
Breslow 1972

• a type of semi-parametric model
• we end up with n nuisance parameters, which is too many Cox 1972
• but, Lpart is the profile likelihood, after maximizing over these n nuisance parameters

M & vdV 2001; Davison 2003 §10.8
• equivalently, L{β,λ0(·)} is an empirical likelihood, with baseline hazard function a
point mass at the observed failure times

• leads to proof that β̂part is asymptotically normal and efficient
• likelihood ratio test asymptotically χ2 Murphy & vdV 2001; Sorensen 1983
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Aside: Composite likelihood is less special Lindsay 1988

• each component is a density marginal or conditional or ...

• e.g.

Lpair(θ; y) =
n"

i=1

"

s<t
f2(yis, yit; θ)

• estimating equation based on score function is unbiased for 0

ℓ′pair(θ̃; y) = 0; Eθ{ℓ′pair(θ; Y)} = 0

• leads to proof that θ̃ is consistent for θ
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Aside: Composite likelihood is less special Lindsay 1988

• each component is a density marginal or conditional or ...

• e.g.

Lpair(θ; y) =
n"

i=1

"

s<t
f2(yis, yit; θ)

• estimating equation based on score function is unbiased for 0

ℓ′pair(θ̃; y) = 0; Eθ{ℓ′pair(θ; Y)} = 0

• leads to proof that θ̃ is consistent for θ

• but −ℓ′′comp(θ̃) doesn’t estimate a.var(θ̃) Eθ{ℓ′comp(θ̃; y)}2 ∕= Eθ{−ℓ′′comp(θ̃)}

• estimate is consistent but not asymptotically efficient
• correction needed for asymptotic variance and for likelihood ratio statistic
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The ANDROMEDA Trial Hernandez et al., 2019

• randomized clinical trial to compare two treatments for septic shock
• 28-day mortality as response; analysed with Cox proportional hazards model
• estimated hazard ratio 0.75 [0.55, 1.02] after adjusting for confounders
• 2-sided p-value 0.06
• survival proportions (unadjusted for covariates) 34.9% vs 43.4% 8% reduction
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The ANDROMEDA Trial Hernandez et al., 2019

• randomized clinical trial to compare two treatments for septic shock
• 28-day mortality as response; analysed with Cox proportional hazards model
• estimated hazard ratio 0.75 [0.55, 1.02] after adjusting for confounders
• 2-sided p-value 0.06
• survival proportions (unadjusted for covariates) 34.9% vs 43.4% 8% reduction

• Discussion: “ a peripheral perfusion-targeted resuscitation strategy
did not result in a significantly lower 28-day mortality
when compared with a lactate level-targeted strategy”

• Abstract: “Among patients with septic shock, a resuscitation strategy targeting
normalization of capillary refill time, compared with a strategy targeting serum
lactate levels, did not reduce all-cause 28-day mortality.”

Spiegelhalter, 2019
LSHTM November 10 2022 20



ANDROMEDA, revisited Zampieri et al 2020

• Bayesian re-analysis to focus on posterior probability β < 0
• equivalently P(hazard ratio < 1 | data)
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• Bayesian re-analysis to focus on posterior probability β < 0
• equivalently P(hazard ratio < 1 | data)

• added random effect for center, used default priors for covariates,
changed analysis to logistic regression

• with several different normal priors for the log odds-ratio
• the posterior probability that the odds-ratio is less than 1 treatment is beneficial

• ranged from 0.94 to 0.99 most pessimistic to most optimistic prior
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ANDROMEDA, revisited Zampieri et al 2020

• with several different normal priors for the log odds-ratio
• the posterior probability that the odds-ratio is less than 1 treatment is beneficial
• ranged from 0.94 to 0.99 most pessimistic to most optimistic prior

see also van Zwet et al. 2021
used empirical prior
posterior prob 0.91
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ANDROMEDA again Zampieri et al 2020
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ANDROMEDA again Zampieri et al 2020

OR 0.59 (0.38,0.92); risk diff -8% (-17% to 1%)
LSHTM November 10 2022 24



... ANDROMEDA Hernandez et al; Zampieri et al 2020

• initial analysis: “Observed hazard ratio of 0.75 was not statistically significantly
different from 1 at level 0.05”

• p = 0.06, 95% confidence interval (0.55, 1.02)

• translation: “new therapy has no benefit”
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... ANDROMEDA Hernandez et al; Zampieri et al 2020

• initial analysis: “Observed hazard ratio of 0.75 was not statistically significantly
different from 1 at level 0.05”

• p = 0.06, 95% confidence interval (0.55, 1.02)

• translation: “new therapy has no benefit”

• second analysis: “Posterior probability that odds ratio is less than one is 0.98”
• posterior credible interval (0.38,0.92) van Zwet et al. 2020

• translation: “new therapy is better” logistic regression

• is more study needed?
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This just in Goligher et al 2022
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... This just in Goligher et al 2022

“Conclusions Among outpatients with mild to moderate COVID-19, treatment with
ivermectin, compared with placebo, did not significantly improve time to recovery. ”
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... This just in Goligher et al 2022

“Conclusions Among outpatients with mild to moderate COVID-19, treatment with
ivermectin, compared with placebo, did not significantly improve time to recovery. ”
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Thank you!
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