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Classical Approaches: A Look Way
Back



Posterior Distribution Bayes 1763

Stigler 2013
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Posterior Distribution Bayes 1763

π(θ | y0) = f (y0; θ)π(θ)/m(y0)

probability distribution for θ
y0 is fixed
probability comes from π(θ)
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http://farm4.static.flickr.com/3338/3571283086_3d28763011.jpg


Fiducial Probability Fisher 1930

df = − ∂

∂θ
F(T, θ)dθ

fiducial probability density for θ, given statistic T

probability comes from (dist’n of) T

“It is not to be lightly supposed that men of the mental calibre of Laplace and Gauss ... could fall into error on
a question of prime theoretical importance, without an uncommonly good reason”
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http://openplaques.org/plaques/507


Confidence Distribution Cox 1958; Efron 1993

• ”Much controversy has centred on the distinction between fiducial and confidence estimation”
• “ ... The fiducial approach leads to a distribution for the unknown parameter”
• “... the method of confidence intervals, as usually formulated, gives only one interval at some

preselected level of probability”
• “... in ... simple cases ... there seems no reason why we should not work with confidence distributions for

the unknown parameter
• “These can either be defined directly, or ... introduced in terms of the set of all confidence intervals”
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Confidence Distribution Cox 1958; Efron 1993

• “assigns probability 0.05 to θ lying between the upper endpoints of the 0.90 and 0.95 confidence
intervals, etc.”

• “Of course this is logically incorrect, but it has powerful intuitive appeal”
• “... no nuisance parameters [this] is exactly Fisher’s fiducial distribution”

Seidenfeld 1992; Zabell 1992
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https://commons.wikimedia.org/w/index.php?curid=6052585


Structural Probability Fraser 1966

• “a re-formulation of fiducial probability for transformation models”
• “This transformation re-formulation leads to a frequency interpretation”
• a change in the parameter value can be o�set by a change in the sample y → y + a; θ → θ − a
• a local location version leads to:

df = − ∂

∂θ
F(y, θ)dθ = −

∂

∂θ
F(y, θ)

f (y0, θ)

f (y0, θ)
=

Likelihood︷ ︸︸ ︷
f(y0, θ)

dy
dθ

∣∣∣∣
y0

O’Bayes 2019 5

https://robertmoffatt115.wordpress.com/2011/02/07/ron-thom%E2%80%99s-fraser-residence/


Significance Function Fraser 1991
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• “from likelihood to significance”
• “significance records probability le� of the observed data point”

”likelihood records probability at the observed data point”
• the significance function is a plot of this probability as a function of θ
• “... the alternate name confidence distribution function”
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Why do we want distributions on parameters?

• inference is intuitive
• combines easily with decision theory
• de-emphasizes point estimation and arbitrary cut-o�s

• “it’s tempting to conclude that µ is more likely to be near the middle of this interval,
and if outside, not very far outside”

Cox 2006

• “assigns probability 0.05 to θ lying between the upper endpoints of the 0.90 and
0.95 confidence intervals, etc.”

Efron 1993

• all inference statements become probability statements about unknowns hmm...
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That was then

• posterior distribution π(θ | y)

• fiducial distribution df = −Fθ(y, θ)dθ

• confidence distribution πy(θ) = dαy(θ)/dθ

• significance function p(θ) = Pr(Y ≤ y0; θ)

• belief functions Dempster 1966; Shafer 1976

O’Bayes 2019 8



BFF one to six



BFF 1 – 6

BFF1,2: “facilitate the exchange of recent research developments in Bayesian, fiducial
and frequentist methodology, concerning statistical foundations” 2014,5

BFF3: “re-examine the foundations of statistical inferences; develop links to bridge gaps
among di�erent statistical paradigms”

BFF4: “celebrates foundational thinking in statistics and inference under uncertainty”

BFF5: “... and foundations of data science”

BFF6: “... and model uncertainty”

BFF7: “... methodological, computational, and ethical principles of data science”
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... BFF 1 – 6 Qiang Sun
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... BFF 1 – 6

• posterior distribution

• fiducial probability

• confidence distribution

• structural probability
• significance function

• belief functions

• model misspecification

• objective Bayes

• generalized fiducial inference
Hannig; Taraldsen

• confidence distributions and
confidence curves Hjort, Schweder, Xie

• approximate significance functions
Brazzale et al; Fraser & R

• inferential models Martin & Liu

• generalized Bayes
pseudo-posterior, safe Bayes

tempered likelihoodO’Bayes 2019 11



What has changed?

computation

model complexity

model dimension

data

science
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... what has changed
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... BFF 1 – 6

• posterior distribution

• fiducial probability

• confidence distribution

• structural probability
• significance function

• belief functions

• model misspecification

• objective Bayes

• generalized fiducial inference

• confidence distributions and
confidence curves

• approximate significance functions

• inferential models

• generalized Bayes
pseudo-posterior, safe Bayes

tempered likelihoodO’Bayes 2019 14



Objective Bayes



Objective Bayes Berger, BFF4, e.g.

• noninformative, default, matching, reference, ... priors

• we may avoid the need for a di�erent version of probability by appeal
to a notion of calibration Cox 2006, R & Cox 2015

• as with other measuring devices
within this scheme of repetition, probability is defined as a hypothetical frequency

• it is unacceptable if a procedure yielding high-probability regions in some
non-frequency sense are poorly calibrated

• such procedures, used repeatedly, give misleading conclusions
Bayesian Analysis, V1(3) 2006
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... objective Bayes

• pragmatic solution as a starting point

• some versions may not be correctly calibrated

• requires checking in each example

• calibrated versions must be targetted on the parameter of interest

• only in very special cases can calibration be achieved for more than one parameter
in the model, from the same prior

• the simplicity of a fully Bayesian approach to inference is lost
Gelman 2008; PPM LW
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... objective Bayes

• the simplicity of a fully Bayesian approach to inference is lost Gelman 2008
• meaning?
•

π(ψ | y) =

∫
ψ(θ)=ψ

π(θ | y)dθ, for any ψ : Θ↘ Ψ

lower dimension
• this is the step where the prior can have unexpected influence

— flat priors can be a disaster objective Bayes fails

• as does fiducial Dawid, BFF 6

• theory of confidence distributions gets around this by constructing a CD separately
for each parameter of interest Hjort and Schweder , 2016, focus parameter

• theory of significance functions targets parameter of interest
using a higher order pivotal Fraser 2017 ARSIAO’Bayes 2019 17



Example Stein, 1959

• yi ∼ N(µi, 1/n), i = 1, . . . , k; π(µi) ∝ 1

• posterior distribution of aTµ is well-calibrated

• marginal posterior distribution of ψ = ||µ|| is not

• discrepancy is a function of

k− 1
ψ
√
n

• global-local shrinkage priors (horseshoe)
shrink the posterior in the right direction

Bhadra et al., Bka, 2016
• reference and targetted priors do the same 2 3 4 5 6 7 8
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... objective Bayes

• calibrated versions must be targetted on the parameter of interest

• penalized complexity priors: separate the parameters ‘as much as possible’, put
independent priors adapted to the model Rue, OBayes 2019

• new class of objective priors Walker, OBayes 2019

• doesn’t depend on the model
• doesn’t reduce to Je�reys’ prior in R1

• can’t be calibrated
• can’t be marginalized (?)

• objective Bayes is not Bayes Lewis, OBayes 2019

• problems with updating sequentially
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Generalized Bayes



Sparse normal means Martin and Ng 2018

• also called sequence model Castillo et al. 2015
• yi ∼ N(θi, 1), i = 1, . . . ,n; θ ‘sparse’ more generally yi ∼ N(xTi β, σ

2);β ‘sparse’
• informative prior on |S|
• uniform prior on S given |S|
• normal prior on θS, given S : N|S|(YS, γ−1I|S|) YS = {yi, i ∈ S}

• doesn’t use Normal likelihood
• uses instead

π(· | y) ∝
{
N|S|(θS, γ−1I|S|)

}α
π(θ, |S|, S)

α < 1 to be determined

π(θ | y) ∝ {Ln(θ; y)}α π(θ)

generalized Bayes; Gibbs posterior, corrected likelihood
• another approach has prior on β as product of Laplace densities; no tempering

needed for convergence of πm(θ | y) Castillo et al 2015
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Aside: composite likelihood Pauli et al

• multivariate response y ∼ f (·; θ)

• likelihood function L(θ; y) ∝
∏n

i=1 f (yi; θ)

• composite likelihood function cL(θ; y) ∝
∏n

i=1
∏

r<s f2(yir, yis; θ)

• not a real likelihood probability of an observable random vector

• doesn’t give a real posterior misspecified model

• doesn’t give usual asymptotics, e.g. 2 log{cL(θ̂CL; y)/cL(θ); y} d→ Σjλjχ
2
1j

• proposal: compute ‘posterior’ as

π(θ | y) ∝ {cL(θ; y)}1/λ̃n π(θ)

• λ̃ related to information matrices for log cL(θ; y) Pauli, Racugno, Ventura 2011

• patches up model misspecification caused by using cL(θ; y) instead of L(θ; y)
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Model misspecification Miller and Dunson; Grünewald and van Ommen, 2017

• Dunson and Miller propose a c-posterior

πc(θ | y) ∝ {L(θ; y)}a/(a+n)

a a hyper-parameter
• based on modelling misspecification via a distance between

observations y1, . . . , yn and ‘ideal’ observations Y1, . . . , Yn

• see also ‘coverage inducing priors’ Müller & Norets 2016

• Grünewald and van Ommen refer to ‘generalized posterior’

π(θ | y) ∝ {L(θ; y)}ηπ(θ), η < 1

• argues that this can be interpreted as ‘ordinary Bayes’ with a di�erent model
Walker and Hjort 2002; data-dependent prior
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Comparisons



Comparisons: conditioning

• objective Bayes

• generalized fiducial inference

• confidence distributions and confidence curves

• approximate significance functions

• inferential models

• generalized Bayes

• yes

• yes and no JASA ’16

• needs to be built in ahead of
time

• yes; via approximate location
model

• needs to be built in ahead of
time

• yes, as with objective Bayes
data is fixed
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Comparisons: Eliminating Nuisance Parameters

• objective Bayes

• generalized fiducial inference

• confidence distributions and confidence curves

• approximate significance functions

• inferential models

• generalized Bayes

• marginalization
rarely works ...

• depends on the problem
?

• use profile log-likelihood, or
similar

focus parameter

• marginalization
via Laplace approximation

• marginalization
invoked ahead of time

• ?? probably not easy
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Comparisons: Calibration

• objective Bayes

• generalized fiducial inference

• confidence distributions and confidence curves

• approximate significance functions

• inferential models

• generalized Bayes

• o�en

• yes

• typically approximate

• typically approximate

• yes

• ?? possibly
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Comparisons: Nature of Probability

• Bayes / objective Bayes

• generalized fiducial inference

• confidence distributions and confidence curves

• approximate significance functions

• inferential models

• generalized Bayes

• epistemic / empirical

• empirical

• empirical
but not prescriptive

• empirical

• epistemic

• not
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What’s the end goal?

• Applications – something that works
• gives ‘sensible’ answers
• not too sensitive to model assumptions
• computable in reasonable time
• provides interpretable parameters

• Foundations – peeling back the layers
• what does ’works’ mean?
• what probability do we mean
• ‘Goldilocks’ conditioning Meng & Liu, 2016
• how does this impact applied work?
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Role of Foundations Cox & R, 2015

• avoid apparent discoveries based on spurious patterns

• shed light on the structure of the problem

• obtain calibrated inferences about interpretable parameters

• provide a realistic assessment of precision

• understand when/why methods work/fail
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Are we making progress?

objective Bayes

confidence distributions

generalized fiducial

inferential models

significance functions

Larry W: “the perpetual motion machine
of Bayesian inference”

Min-ge, Regina: “everything fits”
Nils: “CDs are the ‘gold standard’ ”

Jan: “bring it on ... I’ll figure it out”

Ryan: “it’s the only solution”
Chuanhai: “ it might take 100 years”

Don: “it’s the best solution ...
you can’t solve everything at once”
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... are we making progress?

confidence distributions

generalized fiducial

inferential models

significance functions

generalized Bayes

Min-ge, Regina: “everything fits”
Nils: “CDs are the ‘gold standard’ ”

Jan: “bring it on ... I’ll figure it out”

Ryan: “it’s the only solution”
Chuanhai: “ it might take 100 years”

Don: “it’s the best solution ...
you can’t solve everything at once”

Peter: “ideally develop ... a general theory of substitution
likelihoods; pseudo(composite) likelihood, rank-based
likelihood, would become special cases”
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Summary

• Bayes, fiducial, structural, confidence, belief

• BFF 1 - 6: Develop links to bridge gaps among di�erent statistical paradigms

• targetting parameters
• limit distributions
• calibration in repeated sampling
• relevant repetitions for the data at hand

• complex models, high-dimensional parameters Rue, OBayes 2019

NR: Why is conditional inference so hard?
DRC: I expect we’re all missing something, but I don’t know what it is

StatSci Interview 1996
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