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... those pesky p-values JAMA Feb 2019
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Andromeda Trial Hernández et al. 2019

• comparing two treatments for septic shock
• randomized clinical trial

• estimated hazard ratio 0.75 [0.55, 1.02] a�er adjusting for confounders

• 2-sided p-value 0.06 34.9% vs 43.4% unadjusted

• Discussion: “ a peripheral perfusion-targeted resuscitation strategy
did not result in a significantly lower 28-day mortality
when compared with a lactate level-targeted strategy”

• Abstract: “Among patients with septic shock, a resuscitation strategy targeting
normalization of capillary refill time, compared with a strategy targeting serum
lactate levels, did not reduce all-cause 28-day mortality.”
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A recent timeline

• 2014: Basic and Applied Social Psychology published an editorial banning p-values
actually “null hypothesis significance testing”

• “prior to publication, authors will need to remove all vestiges of the NHSTP ...
p-values, ... , statements about ‘significant di�erences’ or lack thereof, and so on”

“confidence intervals are also banned”

• 2014: Nature published a News Feature by R. Nuzzo: “p-values, the gold standard of
statistical validity, are not as reliable as many scientists assume”

• 2016: American Statistical Association released a public statement on statistical
significance and p-values
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... a recent timeline 2016
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... a recent timeline 2017

• 2017: Another Nature
article p < 0.005

• Articles solicited for
special issue of
American Statistician
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... a recent timeline 2019

• 2019: American Statistician publishes
special issue 43 articles; 400 pages

• Editorial introduction advises “abandon
‘statistical significance’ ”

• Nature publishes a letter agreeing with this
• “we are not advocating a ban on P values,

confidence intervals or other statistical
measures – only that we should not treat them
categorically

• “This includes dichotomization as statistically
significant or not, as well as categorization
based on other statistical measures such as
Bayes factors.”
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Later that year 2019
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... a recent timeline Schachtman 2019

“Lawyers and judges pay close attention to standards, guidances, and consenus
statements from respected and recognized professional organizations.”

“Despite the fairly clear and careful statement of principles, legal actors did not take
long to misrepresent the ASA principles.” 2016

“distorted into strident assertions that statistical significance was unnecessary for
scientific conclusions.”
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... a recent timeline Mayo 2020

outlines a 2018 Supreme Court case appealing a conviction for wire fraud,
based on misleading investors Harkonen v. United States 13-180

the fraud centered on p-hacking the results of a Phase III trial of a drug
marketed by Harkonen

in the appeal “his defenders argued that the ASA guide provides compelling new
evidence that the scientific theory upon which petitioner’s conviction was based [that of
statistical significance testing] is demonstrably false”
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What to do? ASA Task Force

• report actual p-value, not “*”, p < 0.05, etc. to sensible number of decimal points

• supplement p-value with sample size, estimated power, etc.
• clarify ‘exploratory’ and ‘confirmatory’ p-values Spiegelhalter 2017

• report e�ect sizes and estimated standard errors
• report confidence intervals

• pre-register trials, specifying primary and secondary outcomes
• pre-specify data analysis NEJM

• provide a p-value function significance function

• or some analogous distribution Bayes posterior
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Distributions for parameters



A p-value function Fraser 1991

ANDROMEDA trial

Died Lived

New 74 138 212
Old 92 120 212

Total 166 258 424

2-sided p-value = 0.07

likelihood ratio test
no adjustment for covariates 90% confidence interval: [−0.688,−0.030 ]

95% confidence interval: [ −0.751, 0.034 ]
99% confidence interval: [ −0.825, 0.107 ]
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Confidence distribution function Cox 1958

• “... the method of confidence intervals, as usually formulated, gives only one
interval at some preselected level of probability”

• “... in ... simple cases ... there seems no reason why we should not work with
confidence distributions for the unknown parameter

• “These can either be defined directly, or ... introduced in terms of the set of all
confidence intervals”
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Confidence Distribution Efron 1993

θy(α) upper endpt of interval

αy(θ) inverse function

πy(θ) = dαy(θ)/dθ
confidence density

• “assigns probability 0.05 to θ between upper endpoints of 0.90 and 0.95 confidence intervals, ...”
• “Of course this is logically incorrect, but it has powerful intuitive appeal”
• “... no nuisance parameters [this] is exactly Fisher’s fiducial distribution”

Seidenfeld 1992; Zabell 1992
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Fiducial Probability Fisher 1930

df = − ∂

∂θ
F(Y, θ)dθ

fiducial probability density for θ, given statistic Y

“It is not to be lightly supposed that men of the mental calibre of Laplace and Gauss ... could fall into error on
a question of prime theoretical importance, without an uncommonly good reason”
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Distributions for parameters

• significance function p(θ) = Pr(y ≥ y0 | θ)

• confidence distribution αy(θ) = θ−1
y (α)

• fiducial probability df = −(∂F/∂θ)(Y; θ)dθ

• structural probability a re-formulation of fiducial probability for transformation models
Fraser 1966

• belief functions
Dempster ’66; Schafer ’76

In spite of the naming, these are not ‘real’ probability distributions
Don’t obey the rules of probability calculus
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Isn’t it obvious? Bayes 1763

π(θ | yo) = f (yo; θ)π(θ)/m(yo)

a ‘real’ probability distribution for θ

yo is fixed
probability comes from π(θ)
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Posterior Distribution Bayes 1763

π(θ | y0) = f (y0; θ)π(θ)/m(y0)

a ‘real’ probability distribution for θ

y0 is fixed
probability comes from π(θ)

Pr(Θ ∈ A | y0) =

∫
A
π(θ | y0)dθ

Stigler 2013
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Why do we want distributions on parameters?

• inference is intuitive
• combines easily with decision theory
• de-emphasizes point estimation and arbitrary cut-o�s

• “it’s tempting to conclude that µ is more likely to be near the middle of this interval,
and if outside, not very far outside”

Cox 2006

• “assigns probability 0.05 to θ lying between the upper endpoints of the 0.90 and
0.95 confidence intervals, etc.”

Efron 1993

• all inference statements become probability statements about unknowns hmm...
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Nature of Probability Cox 2006; R & Cox 2015

• probability to describe physical haphazard variability aleatory/empirical
• probabilities represent features of the “real” world

in somewhat idealized form
• subject to empirical test and improvement
• conclusions of statistical analysis expressed in terms of interpretable parameters
• enhanced understanding of the data generating process

• probability to describe the uncertainty of knowledge epistemic
• measures rational, supposedly impersonal, degree of belief,

given relevant information Je�reys
• measures a particular person’s degree of belief, subject typically to

some constraints of self-consistency Ramsey, de Finetti, Savage

• “In short, the [Bayesian] paradigm does not produce probabilities from no
probabilities”

Fraser 2011
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Best Friends Forever Dongchu Sun, Xiao-Li Meng, Min-ge Xie
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... BFF 1 – 6

• posterior distribution 1763

• fiducial probability 1930

• confidence distribution 1958

• structural probability 1964

• significance function

• belief functions 1967

• objective Bayes

• generalized fiducial inference
Hannig; Taraldsen

• confidence distributions and
confidence curves Hjort, Schweder, Xie

• approximate significance functions
Brazzale et al 2007; Fraser & R 1993

• inferential models Martin & Liu

high-dimensional inference and model selectionMonash Feb 2020 23



What has changed?

computation

model complexity

model dimension

data

science
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... what has changed
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... BFF 1 – 6

• posterior distribution

• fiducial probability

• confidence distribution

• structural probability
• significance function

• belief functions

• objective Bayes

• generalized fiducial inference
Hannig; Taraldsen

• confidence distributions and
confidence curves Hjort, Schweder, Xie

• approximate significance functions
Brazzale et al 2007; Fraser & R 1993

• inferential models Martin & Liu

high-dimensional inference and model selection
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Objective Bayes



Objective Bayes

• there are many proposals for priors meant to be non-informative
• examples include reference, default, matching, vague, ... priors
• a popular choice is Je�reys’ prior π(θ) ∝ |i(θ)|1/2 expected Fisher information

• what interpretation do we put on the posterior distribution? empirical? epistemic?

• we may avoid the need for a di�erent version of probability by appeal
to a notion of calibration Cox 2006, R & Cox 2015

• as with other measuring devices,
within this scheme of repetition, probability is defined as a hypothetical frequency

• it is unacceptable if a procedure yielding high-probability regions in some
non-frequency sense are poorly calibrated

• such procedures, used repeatedly, give misleading conclusions
Bayesian Analysis, V1(3) 2006

Monash Feb 2020 27



... objective Bayes

• there are many proposals for priors meant to be non-informative
• examples include reference, default, matching, vague, ... priors not flat

• some versions may not be correctly calibrated e.g. Je�reys’

• requires checking in each example

• calibrated versions must be targetted on the parameter of interest
Fraser 2011

• only in very special cases can calibration be achieved for more than one parameter
in the model, from the same prior

• the simplicity of a fully Bayesian approach to inference is lost
Gelman 2008; PPM LW
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... objective Bayes

• the simplicity of a fully Bayesian approach to inference is lost Gelman 2008
• for example

π(ψ | y) =

∫
ψ(θ)=ψ

π(θ | y)dθ, for any ψ : Θ↘ Ψ

lower dimension

• the prior can have unexpected influence on the posterior
• even if they are seemingly noninformative objective Bayes fails

• Stein’s example:

yi ∼ N(θi, 1/n), i = 1, . . . , k
π(θi) ∝ 1

π(θ | y) ∝ N(y, Ik/n)
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Example Stein, 1959

• yi ∼ N(θi, 1/n), i = 1, . . . , k; π(θi) ∝ 1

• posterior distribution of aTµ is well-calibrated

• marginal posterior distribution of ψ = ||µ|| is not

• discrepancy is a function of k− 1
ψ
√
n
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... objective Bayes Datta & Mukerjee; Berger& Bernardo

• calibrated posterior distributions must be targetted on the parameter of interest

• matching priors set out this requirement explicitly
defined by calibration of posterior quantiles

• reference priors are also targetted
although with a di�erent goal than calibration

• vague priors, hierarchical priors, weakly informative priors, ... are not (usually)
targetted on a particular parameter of interest

•
• “in short
• AoAS September 2018: 9/24 articles used Bayesian methods
• one checked the coverage of posterior intervals
• one used simulations to evaluate point estimates
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Haphazard sample AoAS Sept 2019
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Genetic expression of archived tissue NCounter; Jia et al.

“ we assume all these parameters are a priori independent”
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Tumour pathology image analysis; Li et al.
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Distributions for parameters

• what about fiducial, confidence, significance, inferential models, etc.?

• do they provide a way around the problems with objective Bayes?

• no

• confidence approach is to pre-specify, or identify, from the model, a quantity that
measures the parameter of interest focus parameter, Hjort & Schweder, 2016

• significance function approach is to use higher-order asymptotic theory to tell you
what that quantity should be F & R, 2018
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... distributions for parameters

• posterior distribution

• fiducial probability

• confidence distribution

• structural probability
• significance function

• belief functions

• objective Bayes

• generalized fiducial inference
Hannig; Taraldsen

• confidence distributions and
confidence curves Hjort, Schweder, Xie

• approximate significance functions
Brazzale et al 2007; Fraser & R 1993

• inferential models Martin & Liu

high-dimensional inference and model selection
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High-dimensional inference and
model selection



Bayesian linear regression Castillo et al. 2015

• Y = Xβ + ε, ε ∼ Nn(0, I), β ∈ Rp, p >> n
• assumption of sparsity – many components of β are 0 Lasso

• prior specification first on dimension s, then on subset S ⊂ {1, . . . ,p} with |S| = s,
finally on βS = {βi, i ∈ S}

π(S, β) ∝ πp(|S|) 1( p
|S|
)gS(βS)δ0(βSc)

• example
πp(|S|) ∝ (cpa)−s, βj ∼ i.i.d. Laplace

Castillo et al.
• example

πp = Bin(p, r), βj ∼ i.i.d. (1− r)δ0 + r Laplace, r ∼ Beta(1,pu)

spike and slab
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... Bayesian linear regression Castillo et al. 2015

• under conditions on design matrix X inf{
||Xβ||2
||X||||β||2

: |Sβ | ≤ s} > 0

• and on the scale parameter in the Laplace prior ||X||
p
≤ λ ≤ 2||X||(log p)1/2

• obtain various consistency results on posterior estimates of |S|, S and β

• in particular, Bayesian credible sets for β are well-calibrated

• special case n = p, X = I: “sequence model”:

Yi ∼ N(βi, 1), i = 1, . . . ,n

Stein’s example
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Sequence model Martin and Ning 2018

• yi ∼ N(θi, 1), i = 1, . . . ,n; θ sparse nonparametric Bayes

• prior specification first on dimension s, then on subset S ⊂ {1, . . . ,p} with |S| = s,
finally on θS = {θi, i ∈ S}

π(S, θ) ∝ πp(|S|) 1( p
|S|
)gS(θS)δ0(θSc)

• example

πp(|S|) ∝ (cpa)−s, θj ∼ i.i.d. Laplace → Normal N(YS, σ2τ−1I|S|)

• tempered likelihood generalized Bayes

π(θ | y) ∝ {Ln(θ; y)}α π(θ)

• posterior coverage for linear functions of θ e.g. components
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...sequence model van der Pas et al 2018

• Yi = θi + εi, εi ∼ N(0, 1)

• “horseshoe” prior θi ∼ N(0, ν2
i τ

2), νi ∼ C+(0, 1) τ hyperparameter
Carvalho et al. 2010

• frequentist coverage of Bayesian credible sets for θ based on horseshoe posterior

• identify three regions, or three “types” of parameters: small, medium and large

• posterior calibrated for small and large θ but not intermediate values

small: |θi| < kSτ
medium: fττ ≤ |θi| ≤ kM

√
2 log(1/τ)

large: kL
√

2 log(1/τ) ≤ |θi|
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... sequence model van der Pas et al 2017
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Horseshoe prior Bhadra et al. 2016

• also called global-local shrinkage prior

• proposed here as a default (objective) prior

• for regular (low-dimensional) models

• “Global-local shrinkage priors can separate a low-dimensional signal from
high-dimensional noise even for nonlinear functions.” abstract

• Example yi = θi + εi, ψ = ||θ||
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...horseshoe prior Bhadra et al. 2016
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Model misspecification Miller and Dunson; Grünewald and van Ommen, 2017

• Miller and Dunson propose a c-posterior

πc(θ | y) ∝ {L(θ; y)}a/(a+n)π(θ)

a a hyper-parameter

• based on modelling misspecification via a distance between
observations y1, . . . , yn and ‘ideal’ observations Y1, . . . , Yn robust Bayes

• Grünewald and van Ommen refer to ‘generalized posterior’

π(θ | y) ∝ {L(θ; y)}ηnπ(θ), η < 1

• with a complicated method for estimating ηn from the data
• this can also be interpreted as ‘ordinary Bayes’ with a data-dependent prior

Walker and Hjort 2002
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Too much notation

• sparse regression or sparse normal means

• prior on sparsity × prior on means or spike and slab; Castillo et al

• normal prior on means; Cauchy hyperprior on variance or
horseshoe; Carvalho et al

• empirical prior on means; tempered likelihood function Martin & Ning

• consistency and asymptotic normality theorems re posterior for the means

• empirically good behaviour of horseshoe for non-linear functions of means
Bhadra et al

Monash Feb 2020 45



... distributions for parameters

• posterior distribution

• fiducial probability

• confidence distribution

• structural probability
• significance function

• belief functions

• objective Bayes

• generalized fiducial inference
Hannig; Taraldsen

• confidence distributions and
confidence curves Hjort, Schweder, Xie

• approximate significance functions
Brazzale et al 2007; Fraser & R 2013

• inferential models Martin & Liu

high-dimensional inference and model selection
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Approximate significance functions Fraser & R 2018
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Approximate significance functions Fraser & R 2018

Died Lived

New 74 138 212
Old 92 120 212

Total 166 258 424

p(ψ) based on saddlepoint approximation
to conditional density of s1, given s2

full exponential family
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Summary



Statistical theory, reproducibility and data science

• dichotomizing conclusions based on p-values is not a good idea
• statistical science is more nuanced than that
• science rarely advances on the basis of a single study

• posterior distributions need to be treated with care
• they can depend heavily on the prior, even when it seems uninformative

• several current versions of fiducial inference: confidence, significance,
generalized fiducial

• “making a Bayesian omelette without cracking the Bayesian eggs”

• all these methods require a reduction of data and parameter space to a scalar
dimension

• how do we do this ??
• foundationsMonash Feb 2020 49



Role of Foundations Cox & R, 2015

• avoid apparent discoveries based on spurious patterns

• shed light on the structure of the problem

• obtain calibrated inferences about interpretable parameters

• provide a realistic assessment of precision

• understand when/why methods work/fail
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Needs in applications

• something that works

• gives ‘sensible’ answers

• not too sensitive to model assumptions

• computable in reasonable time

• provides interpretable parameters
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Thank you!
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