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Examples: a haphazard selection



Climate change Pster et al 

Scientic question: Can historical records of wine quality be used
as temperature proxies? observational data

Statistical model: “we used a statistical [linear regression] model for wine quality
based on local temperature and precipitation”

yes, if used carefully
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Income supplements Vivalt et al 

Scientic questions: Does guaranteed income supplement aect
labor market measures? randomized controlled trial

Statistical model: Yi = α+ βTreatedi + γTXi + i

“support for both sides of this debate”
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Breast cancer mortality Giannakeas et al 

Scientic question: Does bilateral mastectomy for unilateral breast cancer
improve -year survival? matched case-cohort study

Statistical model: “We used the Kaplan-Meier method to estimate survival”

“preemptive surgery did not appear to reduce the risk of death”
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Dementia and mortality Jang et al 

Scientic question: Relationship between dementia and mortality
observational study of discordant twin pairs

Statistical model: multi-level Cox regression with random eects

“genetic variance contributes to the association between dementia risk and mortality”
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Astronomy Meyer et al 

Yanbo Tang

Scientic question: Are observations of X-ray jets consistent with current theory?
observational data

Statistical model: compare background and sources measurements using Poisson:

xi ∼ Po(aiβi), yi ∼ Po(biβi + bifiµi)
H : µi ≡ 

“variability in the X-ray emission is not compatible with proposed mechanism”JSM August  



Models and parameters



Why these models?

• standard in the literature of that eld income

• standard in the publications of that lab

breast cancer

• follow some prescription:
• binary response — use logistic regression
• time to event — use PH model
• time series — use ARMA wine
• repeated measures — use random eects Alzheimer’s twin study
• ...

• motivated by theory: economic, physical, ... X-ray jets
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Some guidance from the experts Davison; Cox & Donnelly

• the key feature of a statistical model is that variability is
represented using probability distributions

• the art of modelling lies in nding a balance that enables the
questions at hand to be answered or new ones posed

• probability models as an aid to the interpretation of data

• perturbations of no intrinsic interest distort an otherwise exact
measurement

• substantial natural variability in the phenomenon under study
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... Some guidance from the experts Statistical Science 

empirical, or predictive models, contrasted with explanatory models indirect models

The emphasis throughout is on the connection
– or lack of connection –

between the models and the real phenomena.
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The role of parameters

• probability models very likely be parameterized
• thus dening a class of models {f (y; θ); θ ∈ Θ}
• parameters may be nite- or innite-dimensional parametric vs nonparametric

• ideally one or more parameters represent key aspects of the model
for the application at hand

• other parameters complete the specication
• the meaning of various parameters varies with the application

• this sounds simpler than it is role of the data
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Some approaches to
misspecication



. Classical Cox ,; Huber, ; White, 

• true model m(y) tted model f (y; θ) y = (y, . . . , yn)
ℓ(θ; y) ≡ log f (y; θ)

• maximum likelihood estimator θ θ ≡ arg supθ ℓ(θ; y)

• θ converges to the “closest true value” KL-divergence

θm = argmin
θ


m(y) log{ m(y)

f (y; θ)}dy

• θ has asymptotic normal distribution, but is not fully ecient “sandwich variance”

a.var. (θ) = G−(θm), G(θ) = J(θ)I−(θ)J(θ)
I = varm(ℓ′), J = Em(−ℓ′′)

• change the inference goal, proceed more or less as usual
“we used robust standard errors ”

JSM August  



. More exible inference functions

Composite likelihood

• true model m(yi) = f (yi; θ), yi ∈ Rd tted model


A∈A
f (yiA; θ) subsets A

• Example: pairwise likelihood y = (y, . . . , yn)

Lpair(θ; y) =
n

i=



s∕=t
f(yis, yit; θ)

• Example AR() likelihood y = (y, . . . , yn)

Lcond(θ; y) =
n

i=

f (yi | yi−; θ)

interpretation of θ

• Example pseudo-likelihood in spatial models condition on near neighbours; Besag 
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... More exible inference functions

Quasi-likelihood and generalized estimating equations

g{E(yi | xi)} = g(µi) = xT

i β, var(yi | xi) = σV(µi)

• estimating equation for β full distribution unspecied
n

i=

∂µi(β)

∂β

(yi − µi)

V(µi)
= 

column vector

Quadratic inference functions Qu, Lindsay, Li ; Hector 

• replace V−(µi) above with an expansion in basis functions
• apply generalized method of moments
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. More exible models

• identify one or more parameters of interest here β

• use a highly exible specication form for other aspects of the model

• Example: proportional hazards regression instantaneous failure rate

λ(t; x,β) = λ(t)exp(xTβ)

• Example: empirical likelihood T(F) to be specied; e.g. EF(Yi)

max
F
L(F; y), subject to T(F) = β

L(F; y) =
n

i= F(yi)

• Example: semi-parametric regression

E (y | T, x) = β T + ω(x)

• does parameter of interest have a stable interpretation model assumption
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Assumption-lean inference VanSteelandt & Dukes 

• Possible model E (y | T, x) = β T + ω(x) binary treatment T

• Dene an estimand of interest limit of E-estimator, Robins et al 

E[π(x){− π(x)}{E(y | T = , x)− E(y | T = , x)}]
E[π(x){− π(x)}]

propensity score π(x) = pr(T =  | x)
• reduces to β under this model
• is a meaningful quantity when the model is incorrect e.g. interaction between T and x

• more generally, given a link function g:

g{E(y | T, x)} = βT + ω(x)

E (π(x){− π(x)}[g{E(y | T = , x)}− g{E(y | T = , x)}])
E[π(x){− π(x)}]
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... Assumption lean inference Discussion of VanSteelandt & Dukes 

• the proposed estimand is ‘parsimonious’: more complicated models not allowed to
permit more complicated estimands Daniel

• models, even used only as tools, may implicitly aect the meaning of our estimands
Didelez

• marginal assessment of treatment eect may be more relevant for policy Ding

• for a parameter of interest to be stable over uncertainty in other aspects of the
model, is some version of orthogonality required/useful Battey

• estimands as nonparametric projections Hines & Diaz-Ordaz

• ...
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Example



Exponential Matched Pairs Battey & Cox 

• survival times for n matched pairs (yi, yi)

• random assignment of pair members to treatment/control
• nuisance parameters describing the pairs λ, . . . ,λn

• parameter of interest is the treatment eect

• model yi exponential with rate λi/ψ

yi exponential with rate λi ψ

• ψ common parameter of interest; λi pair-specic nuisance parameters

• possible approaches to inference for ψ
• prole likelihood: maximize over nuisance parameters
• marginal likelihood: distribution of yi/yi is free of nuisance parameters
• integrated likelihood: assume a distribution for λi random eects model
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... Exponential matched pairs Battey & Cox 

• model yi exponential with rate λi/ψ

yi exponential with rate λi ψ

• random eects model: λi ∼ Gamma(α,β) shape, rate

• integrated likelihood

L(ψ,α,β; y) =

f (y;ψ,λ)g(λ;α,β)dλ

• in the integrated model, ψ is orthogonal to (α,β) w.r.t. Fisher information
• even better: this is the case for any random eects distribution not just Gamma

• conclude MLE ψ p→ ψ even if random eects model is misspecied
could be inecient

can this be generalized?
JSM August  



Aside: details B & C 

. for pair (yi, yi)

L(ψ,α,β; yi, yi) =
Γ(α+ )
Γ(α)

βα

(yi/ψ + ψyi + β)α+

. orthog

∂

∂ψ∂α
log L(ψ,α,β; yi, yi) =

yi − yi/ψ
yiψ + yi/ψ + β

.
Em


yi − yi/ψ

yiψ + yi/ψ + β


= 

. for Gamma random eects, but also for any random eects distribution

interpretation of α,β when not Gamma
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Formalization



Towards formalization Battey & R 

• true model m(y) with parameter ψ and true value ψ∗

• tted model f (y;ψ,λ) same parameter of interest, (many) nuisance parameters
interpretation of ψ is stable

• maximum likelihood estimates (ψ̂, λ̂) p→ (ψm,λ

m)

Em{∂ℓ(ψm,λm)/∂(ψ,λ)} = 
• assume no value of λ ∈ Λ gives back m(·) misspecied

• Does ψ p→ ψ∗? need Em{∂ℓ(ψ∗,λ

m)/∂ψ} =  () λm unknown

• can be easier to show Em{∂ℓ(ψ∗,λ)/∂ψ} =  ∀λ ()

• Result : () ≡ () ⇐⇒ ψ∗ is m-orthogonal to Λ
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... Towards formalization Battey & R 

• Result : () ≡ () ⇐⇒ ψ∗ is m-orthogonal to Λ hard ≡ easy

• Denition m-orthogonal ψ∗ ⊥m Λ

∀λ Em


∂ℓ(ψ,λ)

∂ψ∂λ


=  ()

• But, ψ can be consistent without this requirement

• Result : A weaker requirement still too strong

If Iψψgψ + Iψλgλ = , ∀λ, then ψm = ψ∗

I = Em{−∂ℓ(θ)/∂θ∂θT}; g = Em{∂ℓ(θ)/∂θ}; partitioned
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Parameter orthogonality

• we can oen establish parameter orthogonality in the assumed model f (y;ψ,λ)

• all expectations with respect to this assumed model

• this is not usually the same as m-orthogonality in the true model m(y;ψ)

• Result  a special case
If the assumed log-likelihood function is linear in sucient statistics S,
and

Em(Sj) = E(ψ,λ)(Sj),

• then assumed-model orthogonality =⇒ m-orthogonality Sartori et al., 
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Parameter Symmetry

• Example: matched exponential pairs E(Yi) = ψ/λi; E(yi) = /(ψλi)

• detailed calculation established ψ̂
p→ ψ∗ under misspecication using orthogonality

• why did this work?

• the parameter of interest enters symmetrically

• the calculations repeatedly use a change of variables to yi/yi and yiyi

• how to generalize this observation?
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... Parameter Symmetry

• from earlier results, want m-orthogonal parametrization ℓ = log L

Em{−∂ℓ(ψ,λ)/∂ψ∂λT} = 

or at least at ψ∗

• we don’t know the true model m, so can’t check this
• the exponential matched pairs example is a group model scale group
• their parametrization ensures cancellation of terms

• Result : If the joint distribution of (Y, Y) is parametrized ψ-symmetrically, and
this parametrization induces anti-symmetry on the ψ-score function, then

ψ∗ ⊥m Λ, Em{∂ℓ(ψ∗,λ)/∂ψ} = 

• this in turn implies
ψ p→ ψ∗.
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... Formalization and Parameter Symmetry

• Result : If the joint distribution of (Y, Y) is parametrized ψ-symmetrically, and
this parametrization induces anti-symmetry on the ψ-score function, then

ψ∗ ⊥m Λ, Em{∂ℓ(ψ∗,λ)/∂ψ} = 

• this in turn implies
ψ p→ ψ∗.

• Example: Scale family gψ ∈ scale group

fY(y;λψ) = fU(y/ψ;λ)(/ψ),
fY(y;λ/ψ) = fU(yψ;λ)ψ,

U, d=g−ψ Y
d
=gψY

• Example: Location family gψ ∈ location group

fY(y;λ+ ψ) = fU(y − ψ;λ),

fY(y;λ− ψ) = fU(y + ψ;λ)JSM August  



Aside: denitions

• joint distribution of Y, Y parametrized ψ-symmetrically:
• p and p are measures for a transformation model on G

p(gy;gλ)d(gy) = p(y;λ)dy, g ∈ G, y ∈ Y,λ ∈ Λ

• and group action g depends only on ψ

• and p and p are on the same λ-orbit: ∀u ∈ Y,p(gu;gλ)d(gu) = p(g−u;g−λ)d(g−u)

• if this parametrization induces anti-symmetry on the ψ-score function
• log-likelihood function

ℓ(ψ;λ, y, y) = log f(y;gψλ) + log f(y;g−
ψ λ)

• as a function of u:

ℓ(ψ;λ,u,u), u = g−
ψ y, u = gψy

• anti-symmetry:
∂ℓ(ψ;λ,u,u)/∂ψ = −∂ℓ(ψ;λ,u,u)/∂ψ

• then ψ p→ ψ∗
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Overview

• parameter of interest ψ is well-dened
• model with nuisance parameters may be misspecied random eects
• when can we recover the true value of ψ
• does parameter orthogonality play a role?

• yes, it does, but may be dicult to verify directly Em

• models based on groups satisfy this orthogonality
• with particular parameter structure

• most natural examples seem to involve misspecied random eects GLM disp
• another example is marginal structural model in a ‘frugal parameterization’
• propensity score is the nuisance; other aspects correspond to ψ Evans & Didelez ()
• E&D model has a parameter space cut, hence orthogonal
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Discussion



Tentative conclusions, further work

• Results above only establish consistency
• asymptotic variance is much more dicult although estimating it might be okay

• in the matched pairs examples, nuisance parameters treated as arbitrary constants
can be eliminated by transformation to conditional or marginal distributions

• eectively assuming an arbitrary (nonparametric) mixing distribution
• less ecient when the random eects model is correct

• orthogonality under assumed model Eθ{−∂ℓ(θ)/∂θ∂θT} =  θ = (ψ,λ)

• m-orthogonality under true model Em{−∂ℓ(θ)/∂θ∂θT} = 
• connection to Neyman orthogonality? decorrelated score

∂ℓ(ψ,λ)/∂ψ − wT∂ℓ(ψ,λ)/∂λ, w = IψλI−λλ

• extension to general estimating equations important in -debiased ML
Chernozhukov et al , Ning et al , Jorgensen & Knudsen JSM August  



Summary

• Result : orthogonal parameters lead to consistent estimate

• Result : slightly weaker condition than orthogonality but hard to check

• Result : linearity in sucient statistics =⇒ orthogonality

• Result : certain symmetries of parametrization also =⇒ orthogonality

• hence consistency
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What’s old is new again
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