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Practical asymptotics
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Approximate Conditional Inference in Generalized Linear Models

By A. C. DAVISONYt
Imperial College, London, UK
[Received February 1987. Revised May 1988]
SUMMARY
Easily calculated and accurate approximations are developed to the conditional densities
and distributions of sufficient statistics in generalized linear models with canonical link
functions. They enable conditional inferences based on modified profile log-likelihoods and
tail probabilities to be made using only the deviance and the variance matrix estimate based
on fitted models. Examples are given in binary logistic regression and a log-linear model,
and the results are applied to added variable tests of model adequacy.

Keywords: ADDED VARIABLE; CANONICAL LINK FUNCTION; CONDITIONAL INFERENCE;
DOUBLE-SADDLEPOINT APPROXIMATION; GENERALIZED LINEAR MODEL; MODIFIED
PROFILE LIKELTHOOD; NATURAL EXPONENTIAL FAMILY; ORTHOGONAL
PARAMETERS; PROFILE LIKELIHOOD; SADDLEPOINT METHODS

1. INTRODUCTION

6.2. Texas Ozone

The data in Table 2 are taken from a larger set of observations concerning levels
of ambient ozone in East Texas for the years 1981-84. The full data set is analysed
by Davison and Hemphill (1987). The data considered here consist of counts of the
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SUMMARY
Easily calculated and approximations are developed to the conditional densities
and distributions of i istics in lized linear models with canonical link

functions. They enable conditional inferences based on modified profile log-likelihoods and
tail probabilities to be made using only the deviance and the variance matrix estimate based
on fitted models. Examples are given in binary logistic regression and a log-linear model,
and the results are applied to added variable tests of model adequacy.
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1. INTRODUCTION

B, will in general be lost if inference 1 based on the conditional hikelihood /, alone.
See Barnard (1984, for a simple example. Further, it may be desirable to base a test
of a hypothesis about the value of f, on the conditional distribution of S, given
S, =s,. which is independent of 8, by sufficiency. However, even in cascs where these
simplifications can in principle be made, it may be difficull to make the calculations

required.
This paper is concerned with the construction ul b approximations to
diti likelihoods and si; dif tests in general-

ized lincar models with canonical link functions. pa important feature of the
approximations is that they use only standard output of regression packages, the
deviance and variance—covariance matrix, so that they are calculable, for example,
using GLIM. The results are based on saddlepoint approximations and extend
slightly those of Barndorfl-Nielsen and Cox (1979), but the development is different.
Sections 2 and 3 respectively describe saddlepoint expansions and generalized linear
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Approximate conditional inference

+ linear exponential family model

f(y:0) = exp{e"s1(y) + ATsa(y) — (¥, ) h(y), ¥y = (Y,..-.Vn)

- sufficient statistic

f(5:0) = exp{t)"s1 + A"s, — (v, A)}(s), nip

« conditional inference

f(s1]52:9) = exp{p™s, — 5(1/))}52(51)7 pld
dim v
+ saddlepoint approximation reinterpreted
f(s1152:9) = € exp{l(th, ) = (b, Ay} i (80, Ap) 2 oo (i), X) /2
likelih;gd ratio null model full model

EPFL September 15 2018 8



Approximate conditional inference in generalized linear models

+ saddlepoint approximation reinterpreted
f(s1152:9) = € exp{l(h, X) — £(0, Ay)} [ian (w0, A)| 2 Ljoo (4, X)|7"/2
likelihood ratio null model full model
+ generalized linear model canonical link

0=XB; ¢ =Pa; s=Xy s1=XY
« likelihood ratio — deviance full - deviance null
- constrained mle —s offset = x2
* jan(¥,Ay) — coef null$ covariance
« joo(1), ) —> coef_full$covariance matrix full

Joo(0) = —02£(0)/0000
« Davison (1988) provides similar analysis for unknown scale
parameter ¢

« It turns out that other parametric models can be similarly analysed

although nuisance parameter X is eliminated by marginalization
EPFL September 15 2018 9



Approximate p-values

+ saddlepoint approximation reinterpreted

f(s1]52:9) = € exp{l(, A) — (b, )} [ian (0, X)) "2 oo (40, X) /2

likelihood ratio null model full model
+ special case, scalar parameter of interest ¢y € R d=1
- find distribution function at s observed value

F(s3:9) = o(r})

ry ="ry+ —Iog(q¢)

ry = ry(sY) — log-likelihood root
Gy = qy(SY) — standardized MLE
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... approximate p-values
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Fig. 1. Comparison of saddlepoint approximations F (solid) and F (dashes) with exact distribution F

(solid, grey), which is identical to F, fornonnal/pomtmass mixture, with p = 0-05, 4 = 0,0 = 1and

n =2, 8. For clarity, the vertical scale is the equivalent normal variable ®~'{F(x)}. The horizontal
lines correspond to probabilities 0-025, 0-05, 0-95 and 0-975.
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Applied Asymptotics
Case Studies in Small-Sample

Statistics
A. R. Brazzale, A. C. Davison and N. Reid
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Accurate Parametric Inference for Small
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Alessandra R. Brazzale and Anthony C. Davison



Practical saddlepoint approximations

Likelihood estimation for the INAR(p)  JASA D & Pedeli, Fokianos
model
Saddlepoint approximation for Biometrika D & Mastropietro

mixture models

The Banff challenge: statistical Statistical D & Sartori
detection of a noisy signal Science

Three examples of accurate American D & Lozada-Can
likelihood inference Statistician

Saddlepoint approximations as Biometrika D & Wang
smoothers

Implementation of saddlepoint JCGS D & Canty
approximation in resampling

problems
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Vector parameter of interest

+ saddlepoint approximation reinterpreted

f(s1]52:9) = € exp{l(, A) — (b, )} [ian (0, X)) "2 oo (40, X) /2

likelihood ratio null model full model

- a more general version

Fsp{s(t)i o} = cexplt{Pyo; S(t)} — {2: S(t) Ml (Pua) 2l (2)] 7/

- sis constrained to £,, where the nuisance parameter is fixed at

+ sis further constrained to a line in £,, on which we measure the
discrepancy from Hq : ¢ = 9
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... directional testing

spld:0=(¥,\), Ayconstrainedmle Ly, ={s|}{, =A%}

+ d ] 1 lineon £, between expected, s, and observed s°

« compute directional p-value on this line p=5d=2
S(t) Relative log likelihood
% o g«
9 9

Patyoa K™ slugodt
. »
Sy 0 $(tmax)
EPFL September 15 2018 15




... directional testing

s

J gttt fmex gt:go)dt

) .
Sy 0 LT T

+ need density on this line s(t) = sy + t(s° — sy)
‘/:]tmux g(t, Qf}o)dt
Jo7 g(t; o )dt

+ use saddlepoint approximation to get density for s € £,

- g(t;vo) =t fop{s(t)}

p(vo) =

implicitly creating a one-dimensional model
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The line s(t)

t =il
10 10 10
20 20 20
t=0.5
110 {115 | 75
19.0 | 18.5 | 22.5
Gl
12 13 5
18 17 25
=2
14 16 0
16 14 30
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a table on the line

observed data

largest value of t



» normal theory linear modely = X3 + ¢

- linear constraint A3 =0, Agyxp 1o =0

S g(two)dt
Jo™ g(t:wo)dt

g(t; o) td*1{32(t)}(nfpf2)/z
n&z(t) — (y _ XB)T{I o t2X(XTX)—1XT}(Y _ XB)

. = Pr{Fqn_p > MSR/MSE}

o
Il

McCormack et al., 2018; Sartori & Ruffato
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- ratio of exponential rates y,; ~ .=, y,; ~ 6,e=%¥:i, j=1,....n
M H . 01/92 = w
« directional p-value o
Pr(Fan, 2n, > ¥¥2/V1)
pr(Fan, 2n, > 1)

- ratio of normal variances H : 02 /02 =1
+ directional p-value
pr(Fn2_1,n1_1 > Z[JS%/S?)

Pr(Fa,—1n 1 > =)

+ multivariate normal mean y; ~ Ng(p,X), H:p=0
« directional p-value
pr{Fp,n—p > (n - p)Tz/p(n - 1)}

McCormack et al 2018
EPFL September 15 2018 19



Moderate dimension

needn>p(nlpld)
seems to accommodate large number of parameters of interest

and large number of nuisance parameters

* nuisance parameters eliminated using adjustment to

log-likelihood

+ this seems the most important aspect of HOA

Exponential rates
= 250,p = 50,d
1 nuisance par
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Moderate dimension

needn>p(nlpld)
seems to accommodate large number of parameters of interest
and large number of nuisance parameters

* nuisance parameters eliminated using adjustment to
log-likelihood
+ this seems the most important aspect of HOA

Directional Test P-Values Bartlett's Test P-Values

g
Normal variances
= 250,p = 100,d = 49
0.‘0 0‘2 0.‘4 0.‘6 O‘vB 1.‘0 0.‘0 0‘2 0.‘4 0.‘6 O‘vB 1.‘0

51 nuisance pars.
P-values P-values

5000

Frequency
3000

Frequency
3000

0 1000
0 1000
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... moderate dimension

Example datan parameterp par. ofint. d
contingency tables 1000 36 10
normal variances 5000 2000 999
exponential rates 5000 1000 999
covariance selection 60 (Ng) 1275 1176
normal means 1000 400 199
marginal independence 60 (\g) 1275 1000
Box-Cox 48 14 6

Improved asymptotics seems to adjust well for large numbers of
nuisance parameters Davison et al. 2014
Sartori et al. 2016

McCormack et al. 2018

New asymptotic theory being developed for p/n — s € (0,1)
EPFL September 15 2018 22
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Some technical details

+ exponential model, linear hypothesis
exp{1" s, + A"s, — k(2, \)}h(S)

+ based on conditional distribution of s,, given s,

+ exponential model, nonlinear hypothesis

exp{p(0)"s — r() }h(s)
+ uses a marginalization step to eliminate nuisance parameter A(1)

+ in a general model, use an approximating exponential family
model as first step (n | p)

Sy g(t; o) dt

p =]
Jamex g(t; 4o )t

EPFL September 15 2018



... some technical details

_ L™ gt o)t
fotmax g(t, ¢0)dt

g(t:v0) = t*"fsp{s(t); o}
fse{s(t)ivho} = Cexplt{Gyo; S(t)} — £{2: S() i (D)~ 2lian) (Guo)
U(i5) = ¢"(0)s + log f(y°; 0)
se plane £y, = {s | Ay, fixed }

son line in plane joining s, and s°
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