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The sandboxes

• J Fluid Mechanics 2008
• Quantitative Finance 2005
• Pain 2006
• Physiological Entomology 2004
• Plant Physiology 2007
• Nonlinear and Nonstationary Signal Processing
2000

• Animal Biology 2006
• Water Resources Research 2013 2001
• Atmospheric Chemistry and Physics 2013 2010
2012

• Forensic Science International 2005
• Agricultural and Forest Meteorology 2010
• Methods in Ecology and Evolution 2014
• Tellus B: Chemical and Physical Meteorology
2010

• Physical Review E 2006

• Ecological Modelling 2006
• Journal of Insect Behavior 2007
• Ecological Entomology 2001
• Biomedical Optics Express 2007
• Atmospheric Environment 1989 1987
• The European Physical Journal 2004
• American J of Sports Medicine 1994
• Atmospheric Environment 1986
• J of Theoretical Biology 2009
• Theoretical and Applied Genetics 2007
• Journal of Hydrology 2018
• Stochastic Transport and Emergent Scaling
2007

• Radiation-risk-protection 1984
• Air Pollution Modeling and its Application 1984
• Mycologia 1959
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Approximate conditional inference

• linear exponential family model

f (y; θ) = exp{ψTs1(y) + λTs2(y)− c(ψ, λ)}h(y), y = (y1, . . . , yn)

• su�cient statistic

f (s; θ) = exp{ψTs1 + λTs2 − c(ψ, λ)}h̃(s), n ↓ p

• conditional inference

f (s1 | s2;ψ) = exp{ψTs1 − c̃(ψ)}h̃2(s1), p ↓ d

dim ψ

• saddlepoint approximation reinterpreted

f (s1 | s2;ψ)
.

= c exp{`(ψ̂, λ̂)− `(ψ, λ̂ψ)}︸ ︷︷ ︸
likelihood ratio

|jλλ(ψ, λ̂ψ)|1/2︸ ︷︷ ︸
null model

| jθθ(ψ̂, λ̂)|−1/2︸ ︷︷ ︸
full model
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Approximate conditional inference in generalized linearmodels

• saddlepoint approximation reinterpreted

f (s1 | s2;ψ)
.

= c exp{`(ψ̂, λ̂)− `(ψ, λ̂ψ)}︸ ︷︷ ︸
likelihood ratio

|jλλ(ψ, λ̂ψ)|1/2︸ ︷︷ ︸
null model

| jθθ(ψ̂, λ̂)|−1/2︸ ︷︷ ︸
full model

• generalized linear model canonical link

θ = Xβ; ψ = β(1); s = XTy; s1 = XTy(1)
• likelihood ratio −→ deviance full - deviance null

• constrained mle −→ offset = x2

• jλλ(ψ, λ̂ψ) −→ coef null$ covariance

• jθθ(ψ̂, λ̂) −→ coef full$covariance matrix full

jθθ(θ) = −∂2`(θ)/∂θ∂θT

• Davison (1988) provides similar analysis for unknown scale
parameter φ

• It turns out that other parametric models can be similarly analysed
although nuisance parameter λ is eliminated by marginalization
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Approximate p-values

• saddlepoint approximation reinterpreted

f (s1 | s2;ψ)
.

= c exp{`(ψ̂, λ̂)− `(ψ, λ̂ψ)}︸ ︷︷ ︸
likelihood ratio

|jλλ(ψ, λ̂ψ)|1/2︸ ︷︷ ︸
null model

| jθθ(ψ̂, λ̂)|−1/2︸ ︷︷ ︸
full model

• special case, scalar parameter of interest ψ ∈ R d = 1

• �nd distribution function at s01 observed value

F(s01 ;ψ)
.

= Φ(r∗ψ)

r∗ψ = rψ +
1
rψ

log(
qψ
rψ

)

rψ = rψ(s01 ) −→ log-likelihood root

qψ = qψ(s01 ) −→ standardized MLE
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... approximate p-values

Davison & Mastropietro, 2009
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In fields such as biology, medical sciences, sociology, and economics, researchers
often face the situation where the number of available observations, or the amount of
available information, is sufficiently small that approximations based on the normal
distribution may be unreliable. Theoretical work over the last quarter-century has
yielded new likelihood-based methods that lead to very accurate approximations in
finite samples, but this work has had limited impact on statistical practice. This book
illustrates by means of realistic examples and case studies how to use the new theory,
and investigates how and when it makes a difference to the resulting inference. The
treatment is orientated towards practice and is accompanied by code in the R lan-
guage that enables the methods to be applied in a range of situations of interest to
practitioners.The analysis includes some comparisons of higher order likelihood infer-
ence with bootstrap and Bayesian methods.

ALESSANDRA BRAZZALE is a Professor at the Universita’di Modena e Reggio Emilia

ANTHONY DAVISON is a Professor of Statistics at the Ecole Polytechnique Fédérale de
Lausanne.

NANCY REID is a University Professor of Statistics at the University of Toronto.
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R.Gill (Department of Mathematics,Utrecht University)
B.D.Ripley (Department of Statistics, University of Oxford)
S. Ross (Department of Industrial & Systems Engineering, University of Southern
California)
B.W.Silverman (St Peter’s College, Oxford)
M.Stein (Department of Statistics,University of Chicago)

This series of high-quality upper-division textbooks and expository monographs cov-
ers all aspects of stochastic applicable mathematics.The topics range from pure and
applied statistics to probability theory, operations research, optimization and mathe-
matical programming.The books contain clear presentations of new developments in
the field and also of the state of the art in classical methods.While emphasizing rigor-
ous treatment of theoretical methods, the books also contain applications and discus-
sions of new techniques made possible by advances in computational practice.
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Practical saddlepoint approximations

Likelihood estimation for the INAR(p)
model

Saddlepoint approximation for
mixture models

The Ban� challenge: statistical
detection of a noisy signal

Three examples of accurate
likelihood inference

Saddlepoint approximations as
smoothers
Implementation of saddlepoint
approximation in resampling
problems

JASA

Biometrika

Statistical
Science

American
Statistician

Biometrika

JCGS

D & Pedeli, Fokianos

D & Mastropietro

D & Sartori

D & Lozada-Can

D & Wang

D & Canty
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Vector parameter of interest

• saddlepoint approximation reinterpreted

f (s1 | s2;ψ)
.

= c exp{`(ψ̂, λ̂)− `(ψ, λ̂ψ)}︸ ︷︷ ︸
likelihood ratio

|jλλ(ψ, λ̂ψ)|1/2︸ ︷︷ ︸
null model

| jθθ(ψ̂, λ̂)|−1/2︸ ︷︷ ︸
full model

• a more general version

fSP{s(t);ψ0} = c exp[`{ϕ̂ψ0 ; s(t)} − `{ϕ̂; s(t)}]|j(λλ)(ϕ̂ψ0)|1/2|jϕϕ(ϕ̂)|−1/2

• s is constrained to Lψ , where the nuisance parameter is �xed at λ̂ψ

• s is further constrained to a line in Lψ on which we measure the
discrepancy from H0 : ψ = ψ0
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... directional testing

• p ↓ d : θ = (ψ, λ), λ̂ψ constrained mle Lψ = {s | λ̂ψ = λ̂0ψ}

• d ↓ 1: line on Lψ between expected, sψ and observed s0
• compute directional p-value on this line p = 5, d = 2
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... directional testing
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• need density on this line s(t) = sψ + t(s0 − sψ)

p(ψ0) =

∫ tmax
1 g(t;ψ0)dt∫ tmax
0 g(t;ψ0)dt

• use saddlepoint approximation to get density for s ∈ Lψ
• g(t;ψ0) = td−1fSP{s(t)}

implicitly creating a one-dimensional model
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The line s(t)

independence (null hypothesis)

a table on the line

observed data

largest value of t
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F-tests

• normal theory linear model y = Xβ + ε

• linear constraint Aβ = 0, Ad×p ψ0 = 0

p =

∫ tmax
1 g(t;ψ0)dt∫ tmax
0 g(t;ψ0)dt

g(t;ψ0) ∝ td−1{σ̂2(t)}(n−p−2)/2

nσ̂2(t) = (Y − Xβ̂)T{I− t2X(XTX)−1XT}(Y − Xβ̂)

p = ... = Pr{Fd,n−p ≥ MSR/MSE}

McCormack et al., 2018; Sartori & Ru�ato
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... F-tests

• ratio of exponential rates y1j ∼ θ1e−θ1y1j , y2j ∼ θ2e−θ2y2j , j = 1, . . . ,n
• H : θ1/θ2 = ψ

• directional p-value
pr(F2n1,2n2 > ψȳ2/ȳ1)
pr(F2n1,2n2 > 1)

• ratio of normal variances H : σ21/σ
2
2 = 1

• directional p-value
pr(Fn2−1,n1−1 > ψs22/s21)
pr(Fn2−1,n1−1 >

n2(n1−1)
n1(n2−1) )

• multivariate normal mean yi ∼ Nq(µ,Σ), H : µ = 0
• directional p-value

pr{Fp,n−p > (n− p)T2/p(n− 1)}

McCormack et al 2018
EPFL September 15 2018 19



Moderate dimension

• need n > p ( n ↓ p ↓ d)
• seems to accommodate large number of parameters of interest
and large number of nuisance parameters

• nuisance parameters eliminated using adjustment to
log-likelihood

• this seems the most important aspect of HOA

Exponential rates
n = 250,p = 50,d = 49
1 nuisance par
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Moderate dimension

• need n > p ( n ↓ p ↓ d)
• seems to accommodate large number of parameters of interest
and large number of nuisance parameters

• nuisance parameters eliminated using adjustment to
log-likelihood

• this seems the most important aspect of HOA

Normal variances
n = 250,p = 100,d = 49
51 nuisance pars.
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... moderate dimension

Example data n parameter p par. of int. d

contingency tables 1000 36 10
normal variances 5000 2000 999
exponential rates 5000 1000 999
covariance selection 60 (Nq) 1275 1176
normal means 1000 400 199
marginal independence 60 (Nq) 1275 1000
Box-Cox 48 14 6

Improved asymptotics seems to adjust well for large numbers of
nuisance parameters Davison et al. 2014

Sartori et al. 2016
McCormack et al. 2018

New asymptotic theory being developed for p/n→ κ ∈ (0, 1)
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Thank You!
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Some technical details

• exponential model, linear hypothesis

exp{ψTs1 + λTs2 − κ(ψ, λ)}h(s)

• based on conditional distribution of s1, given s2

• exponential model, nonlinear hypothesis

exp{ϕ(θ)Ts− κ(ϕ)}h(s)

• uses a marginalization step to eliminate nuisance parameter λ(ψ)

• in a general model, use an approximating exponential family
model as �rst step (n ↓ p)

•

p =

∫ tmax
1 g(t;ψ0)dt∫ tmax
0 g(t;ψ0)dt
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... some technical details

p =

∫ tmax
1 g(t;ψ0)dt∫ tmax
0 g(t;ψ0)dt

g(t;ψ0) = td−1fSP{s(t);ψ0}

fSP{s(t);ψ0} = c exp[`{ϕ̂ψ0 ; s(t)} − `{ϕ̂; s(t)}]|jϕϕ(ϕ̂)|−1/2|j(λλ)(ϕ̂ψ0)|1/2

`(ϕ; s) = ϕT(θ)s+ log f (y0; θ)

s ∈ plane Lψ0 = {s | λ̂ψ0 �xed }
s on line in plane joining sψ0 and s0
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