Asymptotic theory and practice

Nancy Reid University of Toronto

September 15, 2018

DATA, MODELS AND STATISTICAL INFERENCE

A one day workshop in honour of Anthony C. Davison

Practical asymptotics

= Google Scholar

Anthony Davison Professor of Statistics, EPFL Verified email at epfl.ch

Statistics

			i10-index	88	68
TILE	CITED BY	YEAR			1500
Bootstrap Methods and Their Application AC Davison, DV Hinkley Cambridge University Press	8060	1997		liih	1125 750
Models for exceedances over high thresholds AC Davison, RL Smith Journal of the Royal Statistical Society. Series B (Methodological), 393-442	1578	1990			375
Statistical Models AC Davison Cambridge University Press	776	2003	2011 2012 2013 2	014 2015 2016 2017 201	8
The Oxford dictionary of statistical terms Y Dodge Oxford University Press on Demand	593	2006	Co-authors	Zihotot	
Statistical modeling of spatial extremes Ac Davison, SA Padoan, M Ribatet Statistical science 27 (2), 161-186	335	2012	Assistant Raphaël I Assistant	Professor of Statistics, . Huser Professor, KAUST	
Generalized additive modelling of sample extremes V Chavez-Demoulin, AC Davison	254	2005	Sylvain S Universite	ardy è de Genève	>
Modelling excesses over high thresholds, with an application AC Davison	227	1984	Nancy Re Professor Nadaraia	id of Statistics, University.	
Statistical extremes and applications 461 482			i vauai aja	T T MATTEMPT	\[

FOLLOW

Cited by

Citations

h-index

VIEW ALL

Since 2013

7755

31

>

>

All

42

16456

... Practical asymptotics

J. R. Statist. Soc. B (1988) 50, No. 3, pp. 445-461

Approximate Conditional Inference in Generalized Linear Models

By A. C. DAVISON†

Imperial College, London, UK

[Received February 1987. Revised May 1988]

SUMMARY

Easily calculated and accurate approximations are developed to the conditional densities and distributions of sufficient statistics in generalized linear models with canonical link functions. They enable conditional inferences based on modified profile log-likelihoods and tail probabilities to be made using only the deviance and the variance matrix estimate based on fitted models. Examples are given in binary logistic regression and a log-linear model, and the results are applied to added variable tests of model adequacy.

Keywords: ADDED VARIABLE; CANONICAL LINK FUNCTION; CONDITIONAL INFERENCE; DOUBLE-SADDLEPOINT APPROXIMATION; GENERALIZED LINEAR MODEL; MODIFIED PROFILE LIKELHOOD; NATURAL EXPONENTIAL FAMILY; ORTHOGONAL PARAMETERS; PROFILE LIKELHOOD; SADDLEPOINT METHODS

1. INTRODUCTION

6.2. Texas Ozone

The data in Table 2 are taken from a larger set of observations concerning levels of ambient ozone in East Texas for the years 1981–84. The full data set is analysed by Davison and Hemphill (1987). The data considered here consist of counts of the

- J Fluid Mechanics 2008
- Quantitative Finance 2005
- Pain 2006
- Physiological Entomology 2004
- Plant Physiology 2007
- Nonlinear and Nonstationary Signal Processing 2000
- Animal Biology 2006
- Water Resources Research 2013 2001
- Atmospheric Chemistry and Physics 2013 2010 2012
- Forensic Science International 2005
- Agricultural and Forest Meteorology 2010
- Methods in Ecology and Evolution 2014
- Tellus B: Chemical and Physical Meteorology 2010
- Physical Review E 2006

- Ecological Modelling 2006
- Journal of Insect Behavior 2007
- Ecological Entomology 2001
- Biomedical Optics Express 2007
- Atmospheric Environment 1989 1987
- The European Physical Journal 2004
- American J of Sports Medicine 1994
- Atmospheric Environment 1986
- J of Theoretical Biology 2009
- Theoretical and Applied Genetics 2007
- Journal of Hydrology 2018
- Stochastic Transport and Emergent Scaling 2007
- Radiation-risk-protection 1984
- Air Pollution Modeling and its Application 1984
- Mycologia 1959

...The sandboxes

	Implementation of saddlepoint approximations in resampling problems AJ Canty, AC Davisor Statistics and Computing 9 (1), 9-15	2	1999
	Implementation of saddlepoint approximations to bootstrap distribution AJ Canty, AC Davison Proceedings of the 28th Symposium on the Interface, Computer Science and	2	1996
	An exact conditional test for covariance selection models AC Davison, PWF Smith, J Whitaker Australian Journal of Statistics 33 (3), 313-318	2	1991
	The probability distribution of individual exposure due to hypothetical accidental releases of various radionuclides to the atmosphere HM ApSimon, A Davison, AH Goddard Radiological protection, advances in beary and presider. Proceedings of the	2	1982
\leq	Myxomycetes from Iraq Y Al-Doory Mycologia, 299-300	<	1959
	Parameter estimation for discretely-observed linear birth-and-death processes AC Davison, S Hautphenne, A Kaus arXiv preprint arXiv:1902.05015	1	2018
	Optimal regionalization of extreme value distributions for flood estimation P Asadi, S Engeke, AC Davison Journal of Hydrolays 556, 182-193	1	2018
	Meta-analysis of incomplete microarray studies A Zollinger, AC Davison, DR Goldstein Biostatistics 16 (4), 688-700	1	-

... Practical asymptotics

J. R. Statist. Soc. B (1988) 50, No. 3, pp. 445-461

Approximate Conditional Inference in Generalized Linear Models

By A. C. DAVISON[†]

Imperial College, London, UK

[Received February 1987. Revised May 1988]

SUMMARY

Easily calculated and accurate approximations are developed to the conditional densities and distributions of sufficient statistics in generalized linear models with canonical link functions. They enable conditional inferences based on modified profile log-likelihoods and tail probabilities to be made using only the deviance and the variance matrix estimate based on fitted models. Examples are given in binary logistic regression and a log-linear model, and the results are applied to added variable tests of model adequacy.

Keywords: ADDED VARIABLE; CANONICAL LINK FUNCTION; CONDITIONAL INFERENCE; DOUBLE-SADDLEPOINT APPROXIMATION; GENERALIZED LINEAR MODEL; MODIFIED PROFILE LIKELIHOOD; NATURAL EXPONENTIAL FAMILY; ORTHOGONAL PARAMETERS; PROFILE LIKELIHOOD; SADDLEPOINT METHODS

1. INTRODUCTION

 β_i will memerab less that inference is based on the conditional likelihood l_i alone. See Barnad (1994), for a simple cample, Further, it may be desirable to base a test of a hypothesis about the value of β_i on the conditional distribution of S_1 given $S_2 = s_2$, which is independent of β_2 by sufficiency. However, even in cases where these simplifications can in principle be made, it may be difficult to make the calculations required.

This paper is concerned with the construction of accurate approximations to conditional likelihoods and significance probabilities for conditional testis in generalized innear models with canonical link functions. An important feature of the deviance and variance-covariance matrix, so that they are calculable, for example, deviance and variance-covariance matrix, so that they are calculable, for example, difference of the source of source of the source of t

EPFL September 15 2018

† Address for correspondence: Department of Mathematics, Imperial College of Science and Technology, Huxley Building, Ousens Gate, London, SW7 2BZ, UK. linear exponential family model

 $f(y;\theta) = \exp\{\psi^{\mathrm{T}} S_1(y) + \lambda^{\mathrm{T}} S_2(y) - C(\psi,\lambda)\}h(y), \quad y = (y_1,\ldots,y_n)$

sufficient statistic

$$f(s;\theta) = \exp\{\psi^{\mathrm{T}} s_1 + \lambda^{\mathrm{T}} s_2 - c(\psi,\lambda)\}\tilde{h}(s), \qquad n \downarrow p$$

conditional inference

$$f(\mathbf{S}_1 \mid \mathbf{S}_2; \psi) = \exp\{\psi^{\mathrm{T}} \mathbf{S}_1 - \tilde{\mathbf{C}}(\psi)\} \tilde{h}_2(\mathbf{S}_1), \qquad p \downarrow d$$

 $\dim\psi$

reinterpreted

saddlepoint approximation

$$f(\mathsf{S}_1 \mid \mathsf{S}_2; \psi) \doteq \mathsf{C} \underbrace{\exp\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi})\}}_{\text{likelihood ratio}} \underbrace{|j_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})|^{1/2}}_{\text{null model}} |\underbrace{j_{\theta\theta}(\hat{\psi}, \hat{\lambda})|^{-1/2}}_{\text{full model}}$$

Approximate conditional inference in generalized linear models

saddlepoint approximation

reinterpreted

 $f(\mathbf{S}_{1} \mid \mathbf{S}_{2}; \psi) \doteq c \underbrace{\exp\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi})\}}_{\text{likelihood ratio}} \underbrace{|j_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})|^{1/2}}_{\text{null model}} |\underbrace{j_{\theta\theta}(\hat{\psi}, \hat{\lambda})|^{-1/2}}_{\text{full model}}$

generalized linear model

$$\theta = X\beta; \quad \psi = \beta_{(1)}; \quad \mathbf{S} = X^{\mathrm{T}}\mathbf{y}; \quad \mathbf{S}_{1} = X^{\mathrm{T}}\mathbf{y}_{(1)}$$

- likelihood ratio $\longrightarrow \texttt{deviance full}$ deviance null
- constrained mle \longrightarrow offset = x2
- $j_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi}) \longrightarrow \text{coef_null}$ covariance
- $j_{ heta heta}(\hat{\psi},\hat{\lambda}) \longrightarrow \texttt{coef_full}$ covariance matrix full

 $j_{\theta\theta}(\theta) = -\partial^2 \ell(\theta) / \partial \theta \partial \theta^{\mathrm{T}}$

- Davison (1988) provides similar analysis for unknown scale parameter ϕ
- It turns out that other parametric models can be similarly analysed

although nuisance parameter $\boldsymbol{\lambda}$ is eliminated by marginalization

Approximate *p*-values

saddlepoint approximation

reinterpreted

 $f(\mathbf{S}_{1} \mid \mathbf{S}_{2}; \psi) \doteq c \underbrace{\exp\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi})\}}_{\text{likelihood ratio}} \underbrace{|j_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})|^{1/2}}_{\text{null model}} |\underbrace{j_{\theta\theta}(\hat{\psi}, \hat{\lambda})|^{-1/2}}_{\text{full model}}$

- special case, scalar parameter of interest $\psi \in \mathbb{R}$ d=1
- find distribution function at s^o₁

observed value

$$F(s_1^{\mathsf{o}};\psi) \doteq \Phi(r_{\psi}^*)$$

$$r_{\psi}^* = r_{\psi} + \frac{1}{r_{\psi}} \log(\frac{q_{\psi}}{r_{\psi}})$$

 $egin{aligned} r_\psi = r_\psi(\mathsf{S}^{\mathsf{o}}_1) & \longrightarrow \texttt{log-likelihood root} \ q_\psi = q_\psi(\mathsf{S}^{\mathsf{o}}_1) & \longrightarrow \texttt{standardized MLE} \end{aligned}$

... approximate *p*-values

Fig. 1. Comparison of saddlepoint approximations \tilde{F} (solid) and \hat{F} (dashes) with exact distribution F (solid, grey), which is identical to \hat{F} , for normal/point mass mixture, with p = 0.05, $\mu = 0$, $\sigma = 1$ and n = 2, 8. For clarity, the vertical scale is the equivalent normal variable $\Phi^{-1}{F(x)}$. The horizontal lines correspond to probabilities 0.025, 0.05, 0.95 and 0.975.

EPFL September 15 2 Table 1. Percent relative errors for estimation of quantiles using saddlepoint approximations \tilde{F} and \hat{F} , based on the normal mixture distribution, with

Statistical Science 2008, Vol. 23, No. 4, 465–484 DOI: 10.1214/08-STS273 © Institute of Mathematical Statistics, 2008

Accurate Parametric Inference for Small Samples

Alessandra R. Brazzale and Anthony C. Davison

Practical saddlepoint approximations

Likelihood estimation for the INAR(p) model	JASA	D & Pedeli, Fokianos
Saddlepoint approximation for mixture models	Biometrika	D & Mastropietro
The Banff challenge: statistical detection of a noisy signal	Statistical Science	D & Sartori
Three examples of accurate likelihood inference	American Statistician	D & Lozada-Can
Saddlepoint approximations as smoothers	Biometrika	D & Wang
Implementation of saddlepoint approximation in resampling problems	JCGS	D & Canty

Vector parameter of interest

saddlepoint approximation

$$f(\mathsf{S}_1 \mid \mathsf{S}_2; \psi) \doteq \mathsf{C} \underbrace{\exp\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi})\}}_{\text{likelihood ratio}} \underbrace{|j_{\lambda\lambda}(\psi, \hat{\lambda}_{\psi})|^{1/2}}_{\text{null model}} |\underbrace{j_{\theta\theta}(\hat{\psi}, \hat{\lambda})|^{-1/2}}_{\text{full model}}$$

• a more general version

 $f_{\mathsf{SP}}\{\mathsf{S}(\mathsf{t});\psi_{\mathsf{O}}\} = \mathsf{C}\exp[\ell\{\hat{\varphi}_{\psi_{\mathsf{O}}};\mathsf{S}(\mathsf{t})\} - \ell\{\hat{\varphi};\mathsf{S}(\mathsf{t})\}]|\mathbf{j}_{(\lambda\lambda)}(\hat{\varphi}_{\psi_{\mathsf{O}}})|^{1/2}|\mathbf{j}_{\varphi\varphi}(\hat{\varphi})|^{-1/2}$

- s is constrained to \mathcal{L}_ψ , where the nuisance parameter is fixed at $\hat{\lambda}_\psi$
- s is further constrained to a line in \mathcal{L}_{ψ} on which we measure the discrepancy from $H_{o}: \psi = \psi_{o}$

... directional testing

- $p \downarrow d : \theta = (\psi, \lambda), \quad \hat{\lambda}_{\psi} \text{ constrained mle} \qquad \mathcal{L}_{\psi} = \{s \mid \hat{\lambda}_{\psi} = \hat{\lambda}_{\psi}^{o}\}$
- $d \downarrow$ 1: line on \mathcal{L}_{ψ} between expected, s_{ψ} and observed s^{o}
- compute directional *p*-value on this line

p = 5, d = 2

... directional testing

• need density on this line $s(t) = s_{\psi} + t(s^{o} - s_{\psi})$

$$p(\psi_{\rm O}) = \frac{\int_{1}^{t_{max}} g(t;\psi_{\rm O}) dt}{\int_{0}^{t_{max}} g(t;\psi_{\rm O}) dt}$$

- use saddlepoint approximation to get density for $\mathsf{s}\in\mathcal{L}_\psi$
- $g(t; \psi_0) = t^{d-1} f_{SP}\{s(t)\}$

implicitly creating a one-dimensional model

	10	10	10		
	20	20	20		
	i				
t = 0.5					
	11.0	11.5	7.5		
	19.0	18.5	22.5		
t = 1					
	12	13	5		
	18	17	25		

t = 0

 $\begin{array}{c|c} t = 2 \\ \hline 14 & 16 & 0 \\ \hline 16 & 14 & 30 \\ \hline \end{array}$

independence (null hypothesis)

a table on the line

observed data

largest value of t

F**-tests**

- normal theory linear model $y = X\beta + \epsilon$
- linear constraint $A\beta = 0$, $A_{d \times p}$ $\psi_0 = 0$

$$p = \frac{\int_{1}^{t_{max}} g(t; \psi_{0}) dt}{\int_{0}^{t_{max}} g(t; \psi_{0}) dt}$$
$$g(t; \psi_{0}) \propto t^{d-1} \{\hat{\sigma}^{2}(t)\}^{(n-p-2)/2}$$
$$n\hat{\sigma}^{2}(t) = (Y - X\hat{\beta})^{\mathrm{T}} \{I - t^{2}X(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}\}(Y - X\hat{\beta})$$
$$p = \dots = \Pr\{F_{d,n-p} \ge MSR/MSE\}$$

McCormack et al., 2018; Sartori & Ruffato

... F-tests

- ratio of exponential rates $y_{1j} \sim \theta_1 e^{-\theta_1 y_{1j}}, y_{2j} \sim \theta_2 e^{-\theta_2 y_{2j}}, \quad j = 1, \dots, n$
- $H: \theta_1/\theta_2 = \psi$
- directional p-value

$$\frac{\mathsf{pr}(F_{2n_1,2n_2} > \psi \bar{y}_2 / \bar{y}_1)}{\mathsf{pr}(F_{2n_1,2n_2} > 1)}$$

- ratio of normal variances H : $\sigma_1^2/\sigma_2^2 = 1$
- directional *p*-value

$$\frac{\Pr(F_{n_2-1,n_1-1} > \psi S_2^2/S_1^2)}{\Pr(F_{n_2-1,n_1-1} > \frac{n_2(n_1-1)}{n_1(n_2-1)})}$$

- multivariate normal mean $y_i \sim N_q(\mu, \Sigma)$, $H: \mu = 0$
- directional *p*-value

$$pr{F_{p,n-p} > (n-p)T^2/p(n-1)}$$

McCormack et al 2018

Moderate dimension

- need n > p ($n \downarrow p \downarrow d$)
- seems to accommodate large number of parameters of interest and large number of nuisance parameters
- nuisance parameters eliminated using adjustment to log-likelihood
- this seems the most important aspect of HOA

Exponential rates n = 250, p = 50, d = 491 nuisance par

Moderate dimension

- need n > p ($n \downarrow p \downarrow d$)
- seems to accommodate large number of parameters of interest and large number of nuisance parameters
- nuisance parameters eliminated using adjustment to log-likelihood
- this seems the most important aspect of HOA

Normal variances n = 250, p = 100, d = 4951 nuisance pars.

... moderate dimension

Example	data <i>n</i>	parameter <i>p</i>	par. of int. d
contingency tables	1000	36	10
normal variances	5000	2000	999
exponential rates	5000	1000	999
covariance selection	60 (\mathcal{N}_q)	1275	1176
normal means	1000	400	199
marginal independence	60 (\mathcal{N}_q)	1275	1000
Box-Cox	48	14	6

Improved asymptotics seems to adjust well for large numbers of nuisance parameters Davison et al. 2014

Sartori et al. 2016

McCormack et al. 2018

New asymptotic theory being developed for $p/n
ightarrow \kappa \in (0,1)$

Thank You!

DATA, MODELS AND STATISTICAL INFERENCE

A one day workshop in honour of Anthony C. Davison

Some technical details

• exponential model, linear hypothesis

 $\exp\{\psi^{\mathrm{T}} \mathbf{S}_{1} + \lambda^{\mathrm{T}} \mathbf{S}_{2} - \kappa(\psi, \lambda)\}h(\mathbf{s})$

- based on conditional distribution of s_1 , given s_2
- exponential model, nonlinear hypothesis

 $\exp\{\varphi(\theta)^{\mathrm{T}} \mathbf{S} - \kappa(\varphi)\}h(\mathbf{S})$

- uses a marginalization step to eliminate nuisance parameter $\lambda(\psi)$
- in a general model, use an approximating exponential family model as first step $(n \downarrow p)$

$$p = \frac{\int_{1}^{t_{max}} g(t; \psi_{o}) dt}{\int_{o}^{t_{max}} g(t; \psi_{o}) dt}$$

EPFL September 15 2018

.

... some technical details

$$p = rac{\int_1^{t_{max}} g(t;\psi_{
m O}) dt}{\int_{
m O}^{t_{max}} g(t;\psi_{
m O}) dt}$$

$$g(t; \psi_{o}) = t^{d-1} f_{SP}\{s(t); \psi_{o}\}$$

 $f_{\mathsf{SP}}\{\mathsf{s}(\mathsf{t});\psi_{\mathsf{O}}\} = \mathsf{c}\exp[\ell\{\hat{\varphi}_{\psi_{\mathsf{O}}};\mathsf{s}(\mathsf{t})\} - \ell\{\hat{\varphi};\mathsf{s}(\mathsf{t})\}]|j_{\varphi\varphi}(\hat{\varphi})|^{-1/2}|j_{(\lambda\lambda)}(\hat{\varphi}_{\psi_{\mathsf{O}}})|^{1/2}$

$$\ell(\varphi; \mathsf{S}) = \varphi^{\mathrm{T}}(\theta)\mathsf{S} + \log f(\mathsf{y}^{\mathsf{O}}; \theta)$$

 $s \in \text{ plane } \mathcal{L}_{\psi_o} = \{s \mid \hat{\lambda}_{\psi_o} \text{ fixed } \}$ s on line in plane joining s_{ψ_o} and s^o